Tangent Lines

1999

 (No Calculator)6) Consider the curve defined by $2 y^{3}+6 x^{2} y-12 x^{2}+6 y=1$.
a) Show that $\frac{d y}{d x}=\frac{4 x-2 x y}{x^{2}+y^{2}+1}$.
b) Write an equation of each horizontal tangent line to the curve.
c) The line through the origin with slope -1 is tangent to the curve at point P. Find the x and y coordinates of point P .

1999 (No Calculator)

4) Suppose that the function f has a continuous second derivative for all x, an that $f(0)=2, f^{\prime}(0)=-3$, and $f^{\prime \prime}(0)=0$. Let g be a function whose derivative is given by $g^{\prime}(x)=e^{-2 x}\left(3 f(x)+2 f^{\prime}(x)\right)$ for all x.
a) Write an equation of the line tangent to the graph of f at the point where $x=0$.
b) Is there sufficient information to determine whether or not the graph of f has a point of inflection when $x=0$?

Explain your answer.
c) Given that $g(0)=4$, write an equation of the line tangent to the graph of g at the point where $x=0$.
d) Show that $g^{\prime \prime}(x)=e^{-2 x}\left(-6 f(x)-f^{\prime}(x)+f^{\prime \prime}(x)\right)$. Does g have a local maximum at $x=0$? Justify your answer.
5) Consider the curve given by $x y^{2}-x^{3} y=6$.
a) Show that $\frac{d y}{d x}=\frac{3 x^{2} y-y^{2}}{2 x y-x^{3}}$.
b) Find all points on the curve whose x-coordinate is 1 , and write an equation for the tangent line at each of these points.
c) Find the x-coordinate of each point on the curve where the tangent line is vertical.

