AP Review: Separating of Variables / Slope Fields

1997 AB-6, BC-6 (Calculator)

- 6) Let v(t) be the velocity, in feet per second, of a skydiver at time t seconds, $t \ge 0$. After her parachute opens, her velocity satisfies the differential equation $\frac{dv}{dt} = -2v 32$, with initial condition v(0) = -50.
- a) Use separation of variables to find an expression for v in terms of t, where t is measured in seconds.

- b) Terminal velocity is defined as $\lim_{t\to\infty} v(t)$. Find the terminal velocity of the skydiver to the nearest foot per second.
- c) It is safe to land when her speed is 20 feet per second. At what time t does she reach this speed?

<u>1998</u> (Calculator)

- 4) Let f be a function with f(1) = 4 such that for all points (x, y) on the graph of f the slope if given by $\frac{3x^2 + 1}{2y}$.
- a) Find the slope of the graph of f at the point where x = 1.
- b) Write an equation for the line tangent to the graph of f at x = 1 and use it to approximate f(1.2).

c) Find f(x) by solving the separable differential equation $\frac{dy}{dx} = \frac{3x^2 + 1}{2y}$ with the initial condition f(1) = 4.

d) Use your solution from part (c) to find f(1.2).

2000 (No Calculator)

- 6) Consider the differential equation $\frac{dy}{dx} = \frac{3x^2}{e^{2y}}$.
- a) Find a solution y = f(x) to the differential equation satisfying $f(0) = \frac{1}{2}$.

b) Find the domain and range of the function f found in part (a).

- b) While the slope field in part a) is drawn at only twelve points, it is defined at every point in the *xy*-plane.Describe all points in the *xy*-plane for which the slopes are positive.
- c) Find the particular solution y = f(x) to the given differential equation with the initial condition f(0) = 3.

2004 (Form B) (No Calculator)

- 6) Consider the differential equation $\frac{dy}{dx} = x^4(y-1)$.
- *a*) On the axes provided sketch a slope field for the differential equation at the twelve points indicated.
- b) While the slope field in part a) is drawn at only twelve points, it is defined at every point in the *xy*-plane. Describe all points in the *xy*-plane for which the slopes are negative.

c) Find the particular solution y = f(x) to the given differential equation with the initial condition f(0) = 0.

c) Find the particular solution y = f(x) to the given differential equation with the initial condition f(1) = -1.

5) A coffeepot has the shape of a cylinder with radius 5 inches, as shown in the figure above. Let *h* be the depth of the coffee in the pot, measured in inches, where *h* is a function of time *t*, measured in seconds. The volume V of coffee in the pot is changing at the rate of $-5\pi\sqrt{h}$ cubic inches per second. (The volume V of a cylinder with radius *r* and height *h* is $V = \pi r^2 h$.

a) Show that
$$\frac{dh}{dt} = -\frac{\sqrt{h}}{5}$$
.

b) Given that h = 17 at time t = 0, solve the differential equation $\frac{dh}{dt} = -\frac{\sqrt{h}}{5}$ for h as a function of t.

c) At what time *t* is the coffeepot empty?

2006 (No Calculator)

- 5) Consider the differential equation $\frac{dy}{dx} = \frac{1+y}{x}$, where $x \neq 0$.
- *a*) On the axes provided, sketch a slope field for the given differential equation at the eight points indicated.

b) Find the particular solution y = f(x) to the differential equation with the initial condition f(-1) = 1 and state its domain.

<u>2010</u> (No Calculator)

Question 6

Solutions to the differential equation $\frac{dy}{dx} = xy^3$ also satisfy $\frac{d^2y}{dx^2} = y^3(1+3x^2y^2)$. Let y = f(x) be a particular solution to the differential equation $\frac{dy}{dx} = xy^3$ with f(1) = 2.

- (a) Write an equation for the line tangent to the graph of y = f(x) at x = 1.
- (b) Use the tangent line equation from part (a) to approximate f(1.1). Given that f(x) > 0 for 1 < x < 1.1, is the approximation for f(1.1) greater than or less than f(1.1)? Explain your reasoning.</p>
- (c) Find the particular solution y = f(x) with initial condition f(1) = 2.