HW Rectilinear motion

Name:
$\underline{2002}$ (Calculator)
3) An object moves along the x-axis with initial position $x(0)=2$. The velocity of the object at time $t \geq 0$ is given by $v(t)=\sin \left(\frac{\pi}{3} t\right)$.
a) What is the acceleration of the object at time $t=4$?
b) Consider the following two statements.

Statement I: For $3<t<4.5$, the velocity of the object is decreasing.
Statement II: For $3<t<4.5$, the speed of the object is increasing.
Are either or both of these statements correct? For each statement provide a reason why it is correct or not correct.
c) What is the total distance traveled by the object over the time interval $0 \leq t \leq 4$?
d) What is the position of the object at time $t=4$?

2003 (Calculator)

2) A particle moves along the x-axis so that its velocity at time t is given by $v(t)=-(t+1) \sin \left(\frac{t^{2}}{2}\right)$. At time $t=0$, the particle is at position $x=1$.
a) Find the acceleration of the particle at time $t=2$. Is the speed of the particle increasing at $t=2$? Why or why not?
b) Find all times t in the open interval $0<t<3$ when the particle changes direction. Justify your answer.
c) Find the total distance traveled by the particle from time $t=0$ until time $t=3$.
d) During the time interval $0 \leq t \leq 3$, what is the greatest distance between the particle and the origin? Show the work that leads to your answer.
3) A particle moves along the y-axis so that its velocity v at time $t \geq 0$ is given by $v(t)=1-\tan ^{-1}\left(e^{t}\right)$. At time $t=0$, the particle is at position $y=-1 .\left(\right.$ Note: $\tan ^{-1} x=\arctan x$)
a) Find the acceleration of the particle at time $t=2$.
b) Is the speed of the particle increasing or decreasing at time $t=2$? Give a reason for your answer.
c) Find the time $t \geq 0$ at which the the particle reaches its highest point. Justify your answer.
d) Find the position of the particle at time $t=2$. Is the particle moving toward the origin or away from the origin at time $t=2$? Justify your answer.

2005 (No Calculator))
5) A car is traveling in a straight line. For $0 \leq t \leq 24$ seconds, the car's velocity $v(t)$, in meters per second, is modeled by the piece-wise linear function defined by the graph above.
a) Find $\int_{0}^{24} v(t) d t$. Using correct units, explain the meaning of $\int_{0}^{24} v(t) d t$.
b) For each of $v^{\prime}(4)$ and $v^{\prime}(20)$, find the value or explain why it does not exist. Indicate units of measure.
c) Let $a(t)$ be the car's acceleration at time t , in meters per second. For $0<t<24$, write a piecewise-defined function for $a(t)$.
d) Find the average rate of change of v over the interval $8 \leq t \leq 20$. Does the Mean Value Theorem guarantee a value of c , for $8<c<20$, such that $v^{\prime}(c)$ is equal to this average rate of change? Why or why not?

\mathbf{t} (seconds)	0	10	20	30	40	50	60	70	80
$\mathbf{v}(\mathbf{t})$ (feet per second)	5	14	22	29	35	40	44	47	49

2006 (No Calculator))

4) Rocket A has positive velocity $v(t)$ after being launched upward from an initial height of 0 feet at time $t=0$ seconds. The velocity of the rocket is recorded for selected values of t over the interval $0 \leq t \leq 80$ seconds, as shown in the table above.
a) Find the average acceleration of Rocket A over the time interval $0 \leq t \leq 80$ seconds. Indicate units of measure.
b) Using correct units, explain the meaning of $\int_{10}^{70} v(t) d t$ in terms of the rocket's flight. Use a midpoint Riemann sum with 3 subintervals of equal length to approximate $\int_{10}^{70} v(t) d t$.
c) Rocket B is launched upward with an acceleration of $a(t)=\frac{3}{\sqrt{t+1}}$ feet per second. At time $t=0$ seconds, the initial height of the rocket is 0 feet, and the initial velocity is 2 feet per second. Which of the two rockets is traveling faster at $t=80$ seconds? Explain your answer.
