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Before You Begin

HOW THIS BOOK IS ORGANIZED
Whether you have five months, nine weeks, or just four short weeks to prepare
for the exam, Peterson’s Master AP Calculus AB & BC will help you develop a
study plan that caters to your individual needs and timetables. These step-by-
step plans are easy to follow and are remarkably effective.

• Top 10 Strategies to Raise Your Score offers you tried and true
test-taking strategies.

• Part I includes the basic information about the AP Calculus test that you
need to know.

• Part II provides reviews and strategies for answering the different kinds
of multiple-choice and free-response questions you will encounter on the
exam. You will have numerous opportunities to practice what you are
learning in the exercises that appear throughout the reviews. It is a good
idea to read the answer explanations to all of the questions, because you
may find ideas or tips that will help you better analyze the answers in the
next Practice Test.

• Part III includes four additional practice tests, two for AB and two for
BC. Remember to apply the test-taking system carefully, work the system
to get more correct responses, be careful of your time, and strive to
answer more questions in the time period.

• The Appendix is designed to provide you with an easy reference to the
AP Credit Policy Guidelines instituted for all colleges and universities.

SPECIAL STUDY FEATURES
Peterson’s Master AP Calculus AB & BC was designed to be as user-friendly as
it is complete. It includes several features to make your preparation easier.

Overview
Each chapter begins with a bulleted overview listing the topics that will be
covered in the chapter. You know immediately where to look for a topic that you
need to work on.

Summing It Up
Each strategy chapter ends with a point-by-point summary that captures the
most important points. The summaries are a convenient way to review the
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content of these strategy chapters. In addition, be sure to look in the page margins of
your book for the following test-prep tools:

Bonus Information

NOTE

Notes provide interesting calculus facts, connections, and notations to improve your
understanding of the material. Don’t overlook these little gems—they are an important
part of the text, highlighting important information and putting things into the proper
context.

TIP

Tips are the authors’ personal pointers to you, so that you can stay on track and in focus
as you study the material. Typically, they contain pieces of information to help you with
the many tasks you’ll be required to perform on the AP calculus Test.

ALERT!

Steer clear of these common errors of judgment in mathematics.

APPENDIX
Peterson’s College-by-College Guide to AP Credit and Placement gives you the equiva-
lent classes, scores, and credit awarded at more than 400 colleges and universities. Use
this guide to find your placement status, credit, and/or exemption based on your AP
Calculus AB or BC score.

YOU’RE WELL ON YOUR WAY TO SUCCESS
Remember that knowledge is power. You will be studying the most comprehensive guide
available, and you will become extremely knowledgeable about the exam. We look
forward to helping you raise your score.

GIVE US YOUR FEEDBACK
Peterson’s, a Nelnet company, publishes a full line of resources to help guide you
through the college admission process. Peterson’s publications can be found at your
local bookstore, library, and high school guidance office, and you can access us online at
www.petersons.com.

We welcome any comments or suggestions you may have about this publication and
invite you to complete our online survey at www.petersons.com/booksurvey. Or you
can fill out the survey at the back of this book, tear it out, and mail it to us at:

Publishing Department
Peterson’s
2000 Lenox Drive
Lawrenceville, NJ 08648
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Your feedback will help us to provide personalized solutions for your educational
advancement.

MIKE KELLEY’S HOW TO USE THIS BOOK

The Chess Dilemma
I like chess. It’s a fascinating game that, although easy to grasp, is nonetheless very
difficult. Once you learn how to move the pieces around the board, you are still light
years away from actually being any good (chess geniuses excepted). I have known how
to move chess pieces since I was about nine, but I have still yet to win a single chess
game against a living person. I am just terrible at chess, even though I have always
wanted to be good. In my holy grail-like quest to outsmart someone at this dastardly
game, I have sought wisdom from books. I can still remember my last trip to the
bookstore, standing with my mouth agape before the shelf allotted to chess instruction
books. I was hoping to find something to fortify (resuscitate) my chess game, only to find
books with titles such as 200 Pawn and Bishop Endings, 50 of the Greatest Chess Games
Ever, and 35 Tactics to Capture the Queen’s Rook in Six Moves or Less. None of these
books were of any use to me at all! None of them even claimed to try to teach me what I
needed to know.

I wanted a book to teach me how to play. I knew that a horsey moves in an ‘L’ shape,
but I didn’t know where he (or she) should go. Often, friends gave me such advice as
“control the middle of the board.” I still am not sure what that means or how to go
about doing it. In my frustration, I bought children’s chess games for my computer,
hoping to benefit from the tutorials that, surely, I had a better shot at understanding.
Once I had completed the tutorials, I was confident, ready to attack the toy men and
finally take my first step toward Chess Grand Master—or whatever they call those
smart guys. I was destroyed by the smiling toy chess pieces—beaten in under ten
moves, on the easiest level. I don’t think I blinked for fifteen minutes. I have seen that
look on my students’ faces before. It’s a look that says, “I have no idea what I’m doing
wrong, and I think I’m more likely to sprout wings than to ever understand.” Perhaps
you, too, have felt that expression creep across your face, shadowed by an oily, sick
feeling in the pit of your stomach. Perhaps you have a knack for math and are not
inspired to fear and cold sweat by calculus but are just looking for practice or to tie up
a few loose ends before the AP Calculus test. Either way, this book will help you
master calculus and prepare you for the infamous test day.

Understanding Versus Mastering: Calculus Reform
Calculus is a subject, like chess, that requires more than a simple understanding of its
component parts. Before you can truly master calculus, you need to understand how
each of its basic tenets work, what they mean, and how they interrelate. Such was not
always the case, however. In fact, you may have even heard the urban legend about the
AP Calculus student who simply took the derivative of each equation and set it equal to
zero and still got a three rating on the AP test! Such rumors are not true, but they
underscore the fundamental change gripping the mathematics world—a change called
reform. In fact, for many years, calculus was treated as merely “advanced arithmetic,”
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rather than a complex and even beautiful logical system. Calculus is so much more than
formulas and memorizing, and when you see this, you begin to actually understand the
rationale behind the mathematics involved. Having these connections makes under-
standing flourish and, before very long, banishes math phobias to the dark places,
inhabited heretofore only by your car keys when you were in a hurry.

What Makes This Book Different
This book is unlike most math textbooks published today. It not only presents formulas
and practice problems, but it also actually helps you understand through hands-on
activities and detailed explanations. It also puts difficult formulas into everyday
English, to shed some light on their meanings. In relation to my chess metaphor, my
book intends not only to tell you that bishops move diagonally, but also to offer you
advice on where to move them, how soon, and in what circumstances they are most
effective. (Although I cannot actually give you the corresponding chess advice, since my
deep understanding of bishops ends with the knowledge that they wear pointy hats.)

Traditional math test-preparatory books state formulas, prove them, and present
exercises to practice using them. There is rarely any explanation of how to use the
formulas, what they mean, and how to remember them. In short, traditional books do
not offer to teach, when that is what you truly need. I have compiled in this text all of
the strategies, insights, and advice that I have amassed as an instructor. Most of all,
I have used common sense. For example, I do not think that proving a theorem always
helps students understand that theorem. In fact, I think that the proof can sometimes
cloud the matter at hand! Thus, not every theorem in the book is accompanied by a
proof; instead, I have included it only when I think it would be beneficial. Also, there
are numerous activities in this book to complete that will teach you, as you progress,
basic definitions, properties, and theorems. In fact, you may be able to devise them
yourself! I not only want you to succeed—I want you to understand.

In order to promote understanding, it is my belief that a book that intends to teach
must offer answers as well as questions. How useful are 100 practice problems if only
numerical answers and maybe a token explanation are given? Some calculus review
books even confuse calculus teachers with their lack of explanation (although I bet
none of your teachers would ever admit it!). Every single question in this book has a
good explanation and includes all of the important steps; this is just one of the
characteristics that makes this book unique. No longer will you have to spend fifteen
minutes deciding how the author got from one step to the next in his or her compu-
tations. I know I am not the only one who, gnashing his teeth, has exclaimed, “Where
did the 4 go in the third step!? How can they just drop the 4? Did the 4 just step out
for a bite to eat and will be back later? Am I so stupid that it’s obvious to everyone but
me?”

You should also find that the problems’ difficulties increase as you progress. When
topics are first introduced, they are usually of easy or medium difficulty. However, the
problems at the end of each section are harder and will help you bind your under-
standing to previous topics in the book. Finally, the problems at the end of the chapter
are the most challenging of all, requiring you to piece together all the important topics
and involve appropriate technology along the way.
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Herein lies the entire premise and motivation of the book: You can prepare for the AP
Calculus test by understanding what’s involved rather than simply practicing skills
out of context. This is not to say that you won’t have to memorize any formulas or that
the concepts themselves will be presented any less rigorously than in a textbook. This
is not, as some might claim, “soft mathematics.” Instead, it is mathematics presented
in a way that ensures and promotes understanding.

The Game Pieces
The following are included to help you in your study of calculus:

• Hands-on activities or guided practice to introduce and teach all of the major
elements of calculus, including calculus reform topics

• “Target Practice” examples with detailed solutions to cement your understanding
of the topics (each target practice problem is accompanied by an icon denoting its
difficulty—see below—so that you can constantly monitor your progress)

• “Common Errors” denoted during practice problems and notes so that you can
avoid them

• Exercises at the end of each section to practice the skills you just learned

• A technology section in each chapter with step-by-step directions for the TI-83
series calculator to ensure that you are using it correctly and in accordance with
College Board guidelines. (The TI-83, TI-83 Plus, and TI-83 Plus Silver Edition
calculators constitute the vast majority of calculators used on the AP test, so
that’s why we chose them.)

• Additional problems at the end of each chapter to review your skills and chal-
lenge you

• James’ Diabolical Dilemma Problems at the end of each chapter are written by a
former AP Calculus student of mine, James Finley; as a former 5-er on the AP
test, he has created these problems to push your understanding to the very
limits—consider these problems concentrated, with all the pulp left in for flavor.

Conclusion
This book can be utilized for numerous reasons and toward many ends. It is best used as
a study guide to supplement your calculus textbook. As a teaching tool, it can help you
to learn calculus or fill in gaps in your understanding. As a resource, it can provide
numerous practice problems with full solutions. However you choose to use the book, it
is my hope that it can help unlock some of the mysteries of calculus for you, although it’s
almost certainly going to do nothing for your chess game.
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QUICK REFERENCE GUIDE
These pages contain just about all the formulas you need to know by heart before you
can take the AP Test. It does not contain all the theorems and techniques you need to
know. An asterisk (*) indicates a Calculus BC-only formula.
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Derivative Applications
Mean Value Theorem: ′ =

−
−( ) ( ) ( )

f c
f b f a

b a
s(t) is the position function; s′(t) 5 v(t), the velocity function; v′(t) 5 a(t), the accelera-
tion function

Projectile position equation:

s t gt v t h( )= − + +1
2

2
0 0 ; g 5 9.8 m/s2 or 32 ft/s2

Integration
Power Rule for Integrals: x dx x

n
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= + +

+
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1
*cos x dx 5 sin x 1 C

*sin x dx 5 2cos x 1 C

*tan x dx 5 2ln Ucos xU 1 C

*cot x dx 5 ln Usin xU 1 C

*sec x dx 5 ln Usec x + tan xU 1 C

*csc x dx 5 2ln Ucsc x + cot xU 1 C
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Fundamental Theorem (Part 1): f x dx F b
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Fundamental Theorem (Part 2):
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*Integration by Parts: *udv 5 uv 2 *vdu
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Integration Applications
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TOP 10 STRATEGIES TO RAISE YOUR SCORE
When it comes to taking an AP exam, some test-taking skills will do you more good than
others. There are concepts you can learn and techniques you can follow that will help
you do your best. Here’s our pick for the top 10 strategies to raise your score:

1. Pace yourself. Using less time on the easier questions will give you more time for
the harder ones. Questions usually go from easiest to most difficult. Work as
quickly as you can through the beginning of the test. Don’t get lulled into a false
sense of security because you appear to be maintaining a good pace in the first part.

2. Educated guessing will boost your score. Although random guessing won’t
help you, anything better than random guessing will. On most questions, you
should be able to make better-than-random guesses by using common sense and
the process of elimination techniques that are developed throughout this book. If
you can eliminate one choice out of five, you have a 25 percent chance of guessing
correctly. If you can knock out two choices, the odds go up to 33 percent.

3. The easy answer isn’t always the best answer. Make sure you read all of the
choices before selecting your choice. Quite frequently, test makers will put an
attractive, but incorrect, answer as an (A) or (B) choice. Reading all of the choices
decreases your chance of being misled, particularly in questions where no calcu-
lations are involved.

4. Use common sense. It is always important to make sure your answers make
sense. On multiple-choice questions, it might be readily apparent that you’ve
made an error (e.g., none of the choices match your answer). However, on the free
response, there is no immediate feedback about the accuracy of your answer. It is
important to inspect your work to make sure it makes sense.

5. Put down your calculator. You only get to use your calculator for certain parts
of the test. On the portions of the exam where calculators are prohibited, you
should expect to deal with numbers that are fairly easy to work with.

6. Become familiar with the topics in this book. You should find that the
problems’difficulties increase as you progress. However, the problems at the end of
each section of this book are harder and will help you bind your understanding to
previous topics in the book. Finally, the problems at the end of each chapter are
the most challenging of all, requiring you to piece together all of the important
topics and involve appropriate technology along the way.

7. Make sure you fill in the bubble sheet neatly. Otherwise, the machine that
scores your answers won’t give you credit.

8. Show all of your work on the free-response questions. If you only show your
answer, and it happens to be incorrect, the grader has no choice but to give you no
credit for the entire question. Writing down all of your steps makes sense.

9. Know your stuff. While all of these strategies are helpful, there is no substitute
for knowledge. You may not know every bit of information on the exam, but it is
important that you remember the information you have learned.

10. Be neat on the free-response questions. Let the grader focus on content,
rather than the form. The answers are not lengthy, so do your best to be neat and
organized.
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All About the AP
Calculus AB & BC Tests

OVERVIEW
• Frequently asked questions about the AP calculus tests
• Summing it up

Your goal and vision in any Advanced Placement class should be to take the
AP test, pass it with a sufficiently high score, jump up and down like a lunatic
when you receive your score, and attain credit for the class in the college or
university of your choice. All AP tests are graded on a scale from 1 to 5, with
5 being the highest possible grade. Most colleges will accept a score of 3 or
above and assign credit to you for the corresponding course. Some, however,
require higher scores, so it’s important to know the policies of the schools to
which you are applying or have been accepted. An AP course is a little
different from a college course. In a college course, you need only pass the
class to receive credit. In an AP course, you must score high enough on the
corresponding AP test, which is administered worldwide in the month of May.
So, it’s essential to know that all-important AP test inside and out.

FREQUENTLY ASKED QUESTIONS ABOUT THE AP
CALCULUS TESTS
Below are common questions that students pose about the AP Calculus tests.
For now, this test is your foe, the only thing standing in your way to glorious
(and inexpensive) college credit. Spend some time understanding the enemy’s
battle plans so that you are prepared once you go to war.

What topics are included on the test?
The list of topics changes a little bit every couple of years. The College Board
Web site (www.collegeboard.com/ap/calculus) always has the current course
description. As your academic year draws to a close, use it as a checklist to make
sure you understand everything.

What’s the difference between Calculus AB and BC?
The Calculus BC curriculum contains significantly more material than the AB
curriculum. Completing Calculus BC is equivalent to completing college Calcu-
lus I and Calculus II courses, whereas AB covers all of college Calculus I and
about half of Calculus II. TheAB and BC curricula cover the same material with
the same amount of rigor; BC simply covers additional topics. However, if you
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take the BC test, you will get both an AB and BC score (the AB score excludes all BC
questions from the test).

Of the topics on the course description, which actually appear the
most on the AP test?
This will vary, of course, but I asked my students to list the topics they saw the most.
This is the list of topics they generated (BC topics are denoted with an asterisk): relative
extrema (maximums and minimums), the relationships between derivatives of a
function, the difference quotient, basic integration, integral functions with variables as
limits of integration, volumes of solids with known cross-sections, motion (position,
velocity, and acceleration functions), differential equations, area between curves, power
series*, elementary series* (ex, cos x, sin x), Taylor polynomials*, radius of conver-
gence*, and integration by parts*.

How is the test designed?
The test is split into two sections, each of which has a calculator-active and a calculator-
inactive portion. Section I has 45 multiple-choice questions and lasts 105 minutes. Of
that time, 55 minutes are spent on 28 non-calculator questions, and 50 minutes are
dedicated to 17 calculator active questions. Section II has 6 free-response questions and
lasts 90 minutes. Three of the free-response questions allow the use of a calculator,
while 3 do not.

Should I guess on the multiple-choice questions?
You lose a fraction of a point for every multiple-choice question you answer incorrectly;
this penalizes random guessing. If you can eliminate even one choice in a question, the
odds are in your favor if you guess. If you cannot eliminate any choices, it is best to omit
the question.

Should I have the unit circle memorized?
Oh, yes. The unit circle never dies—it lives to haunt your life.

Should my calculator be in degrees or radians mode?
Unless specifically instructed by the question, set your calculator for radians mode.

I have heard that the AP Calculus test is written by scientists living
in the African rainforest, and that many tests are lost each year as
couriers are attacked and infected by virulent monkeys. Is this
true?
Definitely.

How many questions do I have to get right to get a 3?
There is no set answer to this, as the number varies every year based on student
achievement. Unofficially, answering approximately 50 percent of the questions cor-
rectly usually results in a 3.
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Why is the test so hard?
Many students are shocked that a 50 percent is “passing” on the AP test, but the exam
is constructed to be a “super test” that tests not only your knowledge but also your
ability to apply your knowledge under extreme pressure and in very difficult circum-
stances. No one expects you to get them all right. You’re shooting for better than 50
percent, so don’t panic.

How will I feel when the test is over?
Hopefully, you will still be able to function. Most students are completely exhausted and
drained at the end of the ordeal. Students who are well prepared (like those who buy my
book) experience less depression than others. In general, students have a vague positive
feeling when they exit the test if they dedicated themselves to studying all year long. I
have found that the way you feel when exiting the test is independent of how you will
actually perform on the test. Feeling bad in no way implies that you will score badly.

Are there any Web sites on the Internet that could help me prepare
for the AP test?
There are a few good sites on the Web that are free. Among them, one stands clearly
above the rest. It offers a new AB and BC problem each week, timed to coordinate with
a year-long curriculum to help you prepare for the test. Furthermore, each problem is
solved in detail the following week. Every problem ever posted is listed in an archive, so
it’s a very valuable studying tool for practicing specific skills and reviewing for tests
throughout the year. To top it off, the site is funny, and the author is extremely talented.
The site? Kelley’s AP Calculus Web Page, written and shamefully advertised here by
yours truly. You can log on at www.calculus-help.com. Enjoy the same hickory-smoked
flavor of this book on line for free each and every week. Another good problem of the
week site is theAlvirne Problems of the Week (www.seresc.k12.nh.us/www/alvirne.html).

How are the free-response questions graded?
Each free-response question is worth up to nine points. Free response questions usually
have multiple parts, typically two or three, and the available points are dispersed
among them. Many points are awarded for knowing how to set up a problem; points are
not only given for correct answers. It is best to show all of the setup and steps in your
solution in an orderly fashion to get the maximum amount of credit you can. The College
Board has examples of excellent, good, and poor free response answers given by actual
test takers on their Web site (www.collegeboard.com/ap/calculus). In addition, they have
the most recent free-response questions with their grading rubrics. You should try these
problems, grade yourself according to the rubrics, and see how you stack up to the
national averages.
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Are free-response questions the same as essays?
No. Free-response questions are most similar to questions you have on a typical
classroom quiz or test. They require you to solve a problem logically, with supporting
work shown. There’s no guessing possible like on the multiple-choice questions.
There’s really no need to write an essay—it just slows you down, and you need every
last second on the free response—it’s really quite meaty.

Should I show my work?
Yes, indeedy. TheAP graders (called readers) cannot assign you partial credit if you don’t
give them the opportunity. On the other hand, if you have no idea what the problem is
asking, don’t write a detailed explanation of what you would do, and don’t write
equations all over the paper. Pick a method and stick to it—the readers can definitely
tell if you are trying to bluff your way through a problem you don’t understand, so don’t
pull a Copperfield and try to work magic through smoke and mirrors. Also, keep in mind
that any work erased or crossed off is not graded, even if it is completely right.

What if the problem has numerous parts and I can’t get the first
part?
You should do your best to answer the first part anyway. You may not get any points
at all, but it is still worth it. If the second part requires the correct completion of the
first, your incorrect answer will not be penalized again. If you complete the correct
sequence of steps on an incorrect solution from a previous answer, you can still receive
full credit for the subsequent parts. This means you are not doomed, so don’t give up.

Is it true that a genetically engineered chicken once scored a 4 on
the AB test, but the government covered it up to avoid scandal?
I am not allowed to comment on that for national security reasons. However, I can say
that free-range poultry typically score better on free-response questions.

Should I simplify my answers to lowest terms?
Actually, no! The AP readers will accept an answer of 39

3 as readily as an answer of 13.
Some free-response questions can get a little messy, and you’re not expected to make the
answers pretty and presentable. However, you still

need to be able to simplify for the multiple-choice questions. For example, if you reach
a solution of ln1

3 but that is not listed among the choices, you should be able to
recognize that 2ln 3 has the same value, if you apply logarithmic properties.

How accurate should my answers be?
Unless specified otherwise, the answer must be correct to at least three decimal places.
You may truncate (cut off) the decimal there or round the decimal there. For example, a
solution of x 5 4.5376219 may be recorded as 4.537 (truncated) or 4.538 (rounded). If you
want to write the entire decimal, that is okay, too, but remember that time is money.
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Should I include units in my answer?
If the problem indicates units, you need to include the appropriate units in your final
answer. For example, if the problem involves the motion of a boat and phrases the
question in terms of feet and minutes, velocity is in ft/min, and the acceleration will be
in ft/min2.

When can I use the calculator to answer questions?
You may use the calculator only on calculator-active questions, but you probably figured
that out, Mr. or Ms. Smarty Pants. Occasionally, you may use a calculator to completely
answer a question and show no work at all. You can do this only in the following
circumstances: graphing a function, calculating a numerical derivative, calculating a
definite integral, or finding an x-intercept. In fact, your calculator is expected to have
these capabilities, and you are expected to know how to use them. Therefore, in these
four cases, you need only show the setup of the problem and jump right to the solution.
For example, you may write

*
5

2(x2ex)dx 5 2508.246

without actually integrating by hand at all or showing any work. In all other circum-
stances, you must show supporting work for your solutions.

How should I write an answer if I used my calculator?

As in the above example, *
5

2(x2ex)dx 5 2508.246 is all you should write; the readers

understood and expected you to use your calculator. Never write “from the calculator”
as a justification to an answer. Also, never write calculator language in your answer.
For example, a free-response answer of fnInt(xˆ 2*eˆ (x),x,2,5) 5 2508.246 cannot get a
point for the correct setup, though it may get points for the correct answer.

What calculators can I use on the AP test?
The most current list of calculators can be found on the College Board Web site. Most
favored among the calculators are the Texas Instruments 83 and 831 (and probably the
TI 89 before too long). It’s a matter of preference. Some people live and die by HP
calculators and will jump down your throat in the blink of an eye if you suggest that the
TI calculators are better. Calculators like the TI-92 cannot be used because they have
QWERTY keyboards. Make sure to check the Web site to see if your calculator is
acceptable.

I recently made a calculator out of tinfoil, cat food, and toenail
clippings. Are you telling me I can’t use it on the AP test?
Sorry, but you can’t. By the way, I shudder to think about how the toenail clippings were
put to use.
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TIP
Never, never, never round a

number in a problem unless

you are giving the answer.

If you get a value of

3.5812399862 midway

through a problem, use the

entire decimal as you

complete the problem.

Rounding or truncating

during calculations almost

always results in inaccurate

final answers.

TIP
Because you can use your

calculator to find

x-intercepts, you can also

use it to solve any equation

without explaining how. See

the Technology section in

Chapter 2 for a more

detailed explanation.

www.petersons.com



Can I have programs stored in my calculator’s memory?
Yes. Programs are not cleared from the calculator’s memory before the test begins.
Many of my students have stored various programs, but I don’t think a single student
has ever used a program on the test. The test writers are very careful to construct the
calculator portions of the test so that no calculator has an advantage over another. It’s
really not worth your time to load up your calculator.

If I can store programs in the calculator memory, can’t I store
formulas and notes? Why do I need to memorize formulas?
Technically, you can enter formulas in the calculator as programs, but the test writers
also know you can do this, so it is highly unlikely that such a practice could ever be
useful to you. Remember that more than half of the test is now calculator inactive! Don’t
become so calculator dependent that you can’t do basic things without it.

PART I: AP Calculus AB & BC Basics8
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NOTE
Only in the four listed

circumstances can you use

the calculator to reach an

answer. For instance, most

calculators can find the

maximum or minimum

value of a function based

on the graph, but you

cannot use a calculator as

your justification on a

problem such as this.

NOTE
A QWERTY keyboard, for

those not in the know, has

keys in the order of those

on a computer keyboard.
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SUMMING IT UP
• All AP tests are graded on a scale from 1 to 5, with 5 being the highest possible

grade. Most colleges will accept a score of 3 or above and assign credit to you for
the corresponding course (see the Appendix at the back of this book).

• Completing Calculus BC is equivalent to completing college Calculus I and Cal-
culus II courses. AB covers all of college Calculus I and about half of Calculus II.

• The test is in two sections: Section I has 45 multiple-choice questions and lasts
105 minutes; Section II has 6 free-response questions and lasts 90 minutes.

• The most current list of calculators can be found on the College Board Web site.
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Calculus Prerequisites

OVERVIEW
• Functions and relations
• Function properties
• Inverse functions
• Hands-On Activity 2.1: Transforming functions
• Trigonometry
• Parametric equations (BC topic only)
• Polar equations (BC topic only)
• Vectors and vector equations (BC topic only)
• Technology: Solving equations with a graphing calculator
• Summing it up

This chapter is meant to help you review some of the mathematics that lead
up to calculus. Of course, all mathematics (and your entire life, no doubt) up
until this point has simply been a build-up to calculus, but these are the most
important topics. Since the focus of this book must be the actual content of the
AP test, this chapter is meant only to be a review and not an in-depth course
of study. If you find yourself weak in any of these areas, make sure to review
them and strengthen your understanding before you undertake calculus itself.
Ideally, then, you should plod through this chapter early enough to address
any of your weaknesses before it’s too late (read with a scary voice).

FUNCTIONS AND RELATIONS
Calculus is rife with functions. It is unlikely that you can find a single page in
your textbook that isn’t bursting with them, so it’s important that you under-
stand what they are. A function is a special type of relation, much as, in
geometry, a square is a special type of rectangle. So, in that case, what is a
relation? Let’s begin with a simple relation called r. We will define r as follows:
r(x) 5 3x 1 2. (This is read “r of x equals 3 times x plus 2.”) Our relation will
accept some sort of input (x) and give us something in return. In the case of r, the
relation will return a number that is two more than three times as large as your
input. For example, if you were to apply the rule called r to the number 10, the
relation would return the number 32. Mathematically, this is written r(10) 5

3(10) 1 2 5 30 1 2 5 32. Thus, r(10) 5 32. We say that the relation r has solution
point (10,32), as an input of 10 has resulted in an output of 32.

c
h
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r2
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Example 1: If g(x) 5 x2 2 2x 1 9, evaluate g(4) and g(23).

Solution: Simply substitute 4 and 23 in for x, one at a time, to get the solutions:

g(4) 5 (4)22 2(4) 1 9 5 16 2 8 1 9 5 17

g(23) 5 (23)2 2 2(23) 1 9 5 9 1 6 1 9 5 24

We call g and r relations because of the way they relate numbers together. Clearly, r
related the input 10 to the output 32 in the same way that g related 4 to 17 and 23 to
24. It is conventional to express these relationships as ordered pairs, so we can say
that g created the relationships (4,17) and (23,24).

There are numerous ways to express relations. They don’t always have to be written
as equations, though most of the time they are. Sometimes, relations are defined
simply as the sets of ordered pairs that create them. Here, we have defined the
relation k two ways that mean the same thing:

k: {(23,9),(2,6),(5,21),(7,12),(7,14)}

You can also express a relation as a graph of various ordered pairs that create it, in
the form (x,y). Below we have graphed the function we defined earlier, r(x) 5 3x 1 2.

Sometimes, the rule for a relation changes depending on the input of the relation.
These are called piecewise-defined relations or multi-ruled relations.
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Example 2: Graph the piecewise-defined relation and evaluate h(22), h(21), h(0),
h(2), h(2.5), and h(6).

Solution: The graph begins as the parabola x2, but once x 5 21, the new rule takes
over, and the graph becomes the horizontal line y 5 2. This line stops, in turn, at x 5

2. The function is undefined between x 5 2 and x 5 3, but for all x . 3, the line 2x 2

4 gives the correct outputs.

Note: If you didn’t recognize that y 5 x2 is a parabola, that’s OK (for now). Later in
the chapter, we discuss how to recognize these graphs.

h(22) 5 (22)2 5 4, since 22 falls within the definition of the first of the three rules.

h(21) 5 (21)2 5 1, for the same reason.

h(0) 5 2, as 0 is between 21 and 2, the defined region for the second rule.

h(2) 5 2, as it just falls within the definition of the second rule.

h(2.5) is not defined for this function—no inputs between 2 and 3 are allowed.

h(6) 5 2(6) 2 4 5 8, since 6 . 3, the defining restriction for the last rule.

So, a relation is, in essence, some type of rule that relates a set, or collection, of inputs
to a set of outputs. The set of inputs for a relation is called the domain, whereas the
set of outputs is called the range. Often, it helps to look at the graph of the relation to
determine its domain and range, as the x values covered by a graph represent its
domain, and the y values covered by a graph represent its range. Alternatively, you
can think of the domain as the numbers covered by the “width” of the graph, and the
range as the numbers covered by the “height” of the graph.
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Example 3: Find the domain and range for the relations k and h, as already defined
above.

Solution: Finding domain and range for k is quite easy. The domain is {23,2,5,7} and
the range is {21,6,9,12,14}. The order of the numbers does not matter in these sets.
The domain of h comes right from the relation—written in interval notation, the
domain is (2`,2] ∪ (3, `). This is true because any number up to or including 2 is an
input for the relation, as is any number greater than 3. The range is easily determined
from the graph we created already. Look at the height or vertical span of the graph.
Notice that it never dips below a height of 1, but above 1, every single number is
covered. Even though there are holes in the graph at (21,2) and (3,2), the height of 2
is covered by numerous other x values. Thus, the range of the graph is (1, `).

Now that you know quite a bit about relations, it’s time to introduce functions.
Functions are simply relations such that every input has a unique output. In other
words, every element of the domain must result in only one output.

Example 4: Which of the relations, r, g, and k, as defined in the preceding examples,
are functions?

Solution: Take r as an example. When you evaluated r(10), the result was 32. Is there
any chance that something other than 32 could result? No. In a similar fashion, any
number, when substituted for r, will result in only one output. Thus, r is a function.
Similarly, g is a function. However, k is not a function, since k(7) 5 12 and 14. Because
the domain element 7 results in two range elements, 12 and 14, k is not a function.
Consider what’s happening in function k graphically:

Graphically, the road (or map) from 7 in the domain to the range forks, whereas the
inputs 23, 2, and 5 have only one path to follow. Because of this fork in the road from
7, k is not a function.

Often, it is unfruitful to ponder whether or not a relation is a function merely by
remembering the definition. A shortcut to determining whether or not a given relation
is a function is the vertical line test. To use this test, imagine vertical lines passing
through the graph of the relation. If any vertical line you could possibly draw inter-
sects the graph in more than one place, the relation is not a function. If any vertical
line resembles former U.S. President James K. Polk, seek professional help.
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Example 5: Explain why the relation described by the equation x2 1 y2 5 9 is not a
function.

Solution: First, you need to remember that x2 1 y2 5 9 is the equation of a circle
centered at the origin with radius 3. Look at the graph of the relation:

Notice the line x 5 2 (one of many vertical lines you could imagine intersecting the
graph) intersects the circle in two places. By substituting 2 for x in the equation, you
can determine that the two points of intersection are (2,=5) and (2,2=5). Since x 5

2 has two distinct outputs, this is not a function.

Even if you weren’t sure what a function was by definition, you undoubtedly know
many functions already. You should know, at the minimum, 15 specific functions and
their properties by heart. Nine of these are listed below with any important charac-
teristics you should either memorize or be able to determine from the graph. The
remaining six are presented later in this chapter. These functions and their defining
characteristics need to become really familiar to you.
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NOTE
The other six functions are

given in the trigonometry

section of this chapter.

www.petersons.com



Important Functions to Memorize

Among these functions, the strangest might be y 5 [[x]], called the greatest integer
function. This function takes any real number input and returns the largest integer
that is less than or equal to it. For example, [[5.3]] 5 5 since among the integers that
are less than or equal to 5.3 (5,4,3,2,1,0,21,22,...), the largest is 5. Likewise, [[4]] 5 4.
However, [[23.6]] 5 24, since among the integers less than 23.6 (24,25,26,27,...),
24 is the largest.
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ALERT!
[[24.9]] Þ 24. The answer

cannot be 24 since 24 is

larger than 24.9, and the

greatest integer function

outputs the largest integer

less than or equal to the

input. [[24.0]] 5 25
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EXERCISE 1

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR PROBLEMS 3 THROUGH 6.

1. Which of the following relations are functions?

(a)

(b)

(c)

(d) y 5 6(2x) 1 3

e
xe
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ise

s
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(e) y
x

x x

x=
<

≥
⎧
⎨
⎪

⎩⎪

1 0

0

,

,

(f) y
x x

nx x
=

≤
≥

⎧
⎨
⎩

2 1

1 1

,

,

2. If f(x) 5 x2 2 25, g(x) 5 x2 1 9x 1 20, and h(x) 5
f~x!

g~x!
, what is the domain of h?

3. If f(x) 5UxU 1 1 and g(x) 5
1

3x2 1 4
, find f(4) 2 g(3) 1 (fg)(0)

4. Write the function, m, whose graph is given below. Also, find the domain and
range of m.

5. If m(x) is defined by the graph below, evaluate [[m(23)]], [[m(0)]], and [[m(4)]].

6. Graph some function s(x) such that

• s(1) 5 4

• s(22) 5 s(2) 5 s(5) 5 0

• s is increasing on [26 , x , 1 and 4 , x , 6]

• s has domain [26,6] and range (22,4]
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ANSWERS AND EXPLANATIONS

1. Only c and e are functions. Notice that a, b, and f (when graphed) fail the vertical
line test. In d, every input except zero will result in two outputs.

2. According to the problem, h(x) 5
x2 2 25

x2 1 9x 1 20
. When the denominator is zero, the

function is undefined (since it is illegal in this arm of the Milky Way to divide by
zero). Factoring the denominator gives (x 1 4)(x 1 5), which means that function
is undefined when x 5 24 or x 5 25. Thus, the domain of h is all real numbers
except 24 and 25.

3. The function (fg)(x) is created by the product of f and g. Since f(x) z g(x) 5
UxU 1 1
3x2 1 4

,

(fg)(0) 5
1
4

. Thus, f(4) 2 g(3) 1 (fg)(0) 5 5 2
1

31
1

1
4

5
647
124

or, approximately 5.218.

4. By examining the slopes and y-intercepts of these lines, it is not too hard to get
the piecewise-defined function.

The domain of m(x) is (2`,`), and the range is (21,`).

5. From the graph, you can see that m(23) 5 0, m(0) 5 3.5, and m(4) 5 2.5, so the
greatest integer function values are not too difficult: [[m(23)]] 5 0, [[m(0)]] 5 3,
and [[m(4)]] 5 21.

6. There are a number of solutions to the problem. One is given here:

a
n

sw
e

rs
e

xe
rc

ise
s

Chapter 2: Calculus Prerequisites 21
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

www.petersons.com



FUNCTION PROPERTIES
Once a relation is classified as a function, the fun is only just beginning. Functions
exhibiting other specific properties allow us to deepen our ever-widening puddle of
understanding. For example, some functions can be classified as even. An even function
is so mathematically robust that a negative input does not affect the function at all.
Consider the function f(x) 5 x2 2 3, and compare f(4) to f(24). Upon substituting, it is
clear that f(4) 5 f(24) 5 13. Opposite elements of the domain result in the same output.
Thus, f(x) exhibits the property that allows us to classify it as even. Mathematically, we
write: If f(2x) 5 f(x), then f(x) is even, which means that evaluating the function at a
negative input, 2x, results in the original function, f(x).

Example 6: Prove that m(x) 5 5x4 2 2x2 1 7 is even, whereas b(x) 5 x2 1 8x is not
even.

Solution: In order to test m, you substitute 2x into the function to get
m(2x) 5 5(2x)4 2 2(2x)2 1 7 5 5x4 2 2x2 1 7 5 m(x).

Because m(2x) 5 m(x), the function is even. Similarly, test b:

b(2x) 5 (2x)2 1 8(2x) 5 x2 2 8x Þ b(x)

Thus, b is not even.

Be careful! It is just plain wrong to assume that because b is not even, it must be an
odd function. Though that assumption is true with integers, it is not true with
functions. In fact, for a function to be odd, it must satisfy a completely different
property: If g(2x) 5 2g(x), then g(x) is said to be odd. Whereas the terms in an even
function stay exactly the same for an input of 2x, each of the terms of an odd function
will become its opposite.

Example 7: Show that the function d(x) 5 x5 2 3x is odd.

Solution: Notice that d(2x) 5 (2x)5 2 3(2x) 5 2x5 1 3x 5 2d(x). Therefore, d is odd.
All of the terms must change sign (as they did in this problem) in order for the
function to be odd.

Another important property of a function is the symmetry, if any, that is evident in its
graph. A graph is called symmetric if it is exactly the same (or mirrored) on both sides
of some arbitrary line or point. For example, the graph of y 5 x2/3, below, is described
as y-symmetric because the graph is identical on either side of the y-axis. All y-
symmetric graphs have this defining property: if a point (x,y) lies on the graph, so
must the point (2x,y).

PART II: AP Calculus AB & BC Review22
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

ALERT!
If a function does not fulfill

the requirements to be

even or odd, the function is

classified as “neither even

nor odd.”
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Notice that the sign of the input to the function does not matter—both x and 2x result
in the same y. Does that sound familiar? It should! That’s the definition of an even
function. Therefore, all even functions are y-symmetric and vice versa.

The other type of symmetry that is very common to calculus is origin-symmetry. If a
graph (or function) is origin-symmetric, then all points (x,y) on the graph must have a
corresponding (2x,2y), as displayed in the graph below, the graph of y 5 x3 2 x.

Using the same reasoning as above, all odd functions are origin-symmetric.

Example 8: Determine what symmetry, if any, is evident in the function
h:{(3,5),(4,21),(0,0),(23,25),(24,1)}.

Solution: The function h is origin-symmetric, since every (x,y) is paired with a
corresponding (2x,2y).
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It is easy to remember that
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with the letter “o.”
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EXERCISE 2

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR PROBLEMS 7 THROUGH 9.

In problems 1 through 6, determine if the given function is even, odd, or neither.

1. g(x) 5 x4 2 3x2 1 1

2. p(x) 5 2x3 1 =
3 x

3. m(x) 5
− +( )

−
3 1 4

2 5

3 2

4 2

x x

x x

4. b(x) 5 x7 1 5x3 2 17

5. v:{(21,4),(2,6),(1,4)}

6.

7. The equation x 5 y2 has an x-symmetric graph. In x-symmetric graphs, if the
point (x,y) is contained, then so is (x,2y). Why aren’t x-symmetric functions used
as often as y- and origin-symmetric functions in calculus?

8. Complete the below graph of f if ...
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(a) f is odd
(b) f is even

9. If j(x) and k(x) are odd functions and h(x) 5
j~x!

k~x!
, what kind of symmetry

characterizes h?

ANSWERS AND EXPLANATIONS

1. g is even: g(2x) 5 (2x)4 2 3(2x)2 1 1 5 x4 2 3x2 1 1 5 g(x).

2. p is odd: p(2x) 5 2(2x)3 1 =
3

2x 5 22x3 2 =
3 x. Remember that

=
3

21 5 21.

3. m is odd. No signs will change in m(2x), except 23x3 will become 3x3. Thus, the
entire fraction (all one term) changes from negative to positive, and
m(2x) 5 2m(x).

4. b is neither even nor odd: b(2x) 5 (2x)7 1 5(2x)3 2 17 5 2x7 2 5x3 2 17 Þ b(x).
Because the 217 does not change signs like all the other terms, b is not odd; b is
clearly not even, either.

5. v is neither even nor odd. You might think the function is even since the pair of
points (21,4) and (1,4) are present. However, (22,6) would also have to be present
to make the function even.

6. r is neither even nor odd since there is no y- or origin-symmetry.

7. The vast majority of x-symmetric graphs are not functions, as they fail the
vertical line test. Note that the single input x results in two outputs, y and 2y,
which is forbidden in the happy land of functions.
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8.

9. To test h(x), you proceed as usual: h(2x) 5
j~2x!

k~2x!
. Since j and k are odd, you know

that h(2x) 5
2j~x!

2k~x!
5

j~x!

k~x!
5 h(x). Therefore, h is even, as the negative signs will

cancel out, making h(x) y-symmetric by definition.

INVERSE FUNCTIONS
Everything has its eventual undoing—for every high there is a low, and for every up,
there is a down. The specific element that actually plays the role of spoiler depends on
the situation, of course; Superman has kryptonite and the Wicked Witch of the West
has the bucket of water. Functions are no exception to this rule—every function, f(x),
has its inverse function, f21(x)—a rule that completely “undoes” the function, effec-
tively destroying it, leaving behind only a smoldering, wide-eyed variable. This is a
little too much imagery for most mathematicians, who choose, instead, to write
f(f21(x)) 5 f21(f(x)) 5 x. Translated, this means that any function of x, when plugged
into its inverse function (or vice versa), leaves behind only x.

Any functions that satisfy this condition are inverse functions. Some inverse functions
are pretty obvious. For example, the inverse of g(x) 5 x 1 3 is a piece of cake: g21(x) 5

x 2 3. (The opposite of adding 3 to a number is subtracting 3). However, it’s not always
so obvious to determine if functions are inverses of each other.

Example 9: Prove that h(x) 5 2x2 2 3, x ≥ 0 and j(x) 5 Îx 1 3
2

are inverse functions.
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NOTE
Plugging one function into

another is called

composing the function

with another. It it usually

written as f(g(x)), where the

function g is being plugged

into f. The notation

(f ° g)(x) is also used; it means

the same thing.
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Solution: If the functions fit the above rule, they are inverse functions, but if the
glove don’t fit, we must acquit.

h(j(x)) 5 j(h(x)) 5 x

hSÎx + 3
2 D 5 j(2x2 2 3) 5 x

2SÎx + 3
2 D2

2 3 5 Î~2x2 2 3! + 3
2

5 x

2 z
x 1 3

2
2 3 5 Î2x2

2
5 x

x 1 3 2 3 5 =x2 5 x

x 5 x 5 x

Therefore, h and j are inverses.

You may be wondering how functions and their inverses actually “undo” each other, as
we have said. The answer is that, in essence, inverse functions reverse the domain
and range of the “host” function, making the inputs the outputs and the outputs the

inputs. Consider the simple function r:{(1,5),(2,23),S7,
1
2D,(9,2p)}. Clearly, the domain

is {1,2,7,9} and the range is {5,23,
1
2

,2p}. It is quite easy to construct r21—simply

switch the domain and range: r21:{(5,1),(23,2),S1
2

,7D,(2p,9)}. Now, the defining prop-

erty of inverse functions becomes more obvious. Consider r21(r(x)) for the ordered pair
(1,5). Because r(1) 5 5, we write r21(r(1)) 5 r21(5) 5 1. You end up with a 1, just as
you started, and the functions have, in essence, canceled one another out. The same
property is at work when you commute from home to school in the morning and then
back home in the afternoon. The rides to and from school are inversely related, and
you end up back where you started.

Because the purpose of inverse functions is to reverse the domain and range of a
function—changing the order of the function’s (x,y) pair— the graphs of inverse
functions have a special property as well. The graphs of inverse functions are reflec-
tions of one another across the line y 5 x. Below, the functions h and j from Example
9 are graphed. Notice how they are symmetric to each other across the y 5 x line.
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NOTE
We must restrict h (x ≥ 0) to

ensure that it has an inverse

function. This is explained

later in this section.
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It’s worth discussing why you had to limit the domain of h in order to even qualify h
for an inverse function. The graph of h(x) 5 2x2 2 3, with no restriction, has two roots.

Easily found, the two roots are SÎ3
2

,0D and S2Î3
2

,0D. Because inverse functions

reverse ordered pairs, h21 must include the points S0,Î3
2D and S0,2Î3

2D. If this

were allowed, h21 would have two outputs for the domain element 0 and, therefore,
could not be a function.

The visual test used to ensure that a function has an inverse is called the horizontal
line test, and it works much like the vertical line test. If any horizontal line drawn
through a function graph intersects the graph at more than one place, the function
cannot have an inverse. (In the function h above, because the parabola has two roots,
the horizontal line y 5 0 intersects the parabola in two places—one of many such lines
that ensures h fails the test.) If a function passes the horizontal line test, it is said to
be one-to-one. In other words, for every input there is one output and vice versa.

It still remains to actually find an inverse function, but the process is rather simple
and is directly based on the properties dicussed above.

Example 10: Find the inverse function of f(x) 5 =
4 2x 2 7.

Solution: Because inverse functions, in effect, switch the x and y variables, do so in
the function, and solve the resulting equation for y. This is the inverse function.

y 5 =
4 2x 2 7

x 5 =
4 2y 2 7

x4 5 2y 2 7
x4 1 7

2
5 y 5 f21~x!

However, you must restrict f21(x) to x ≥ 0 to make the graph monotonic and ensure the
existence of an inverse.
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NOTE
By restricting the graph of h

to x ≥ 0, you are removing

the left half of the

parabola. The resulting

graph only increases from

left to right, as the portion

that decreased was

included on x , 0. Because

the restricted graph moves

only in one direction, it is

termed monotonic. Many

monotonic graphs have

inverses because of their

unidirectional nature.
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EXERCISE 3

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR ALL OF THESE PROBLEMS.

1. If f(x) 5 x2 1 3x 11 and g(x) 5 x − 2 , find

(a) (f + g)(x)
(b) g(g(x))
(c) g21(f(x))
(d) g(f(4))

USE THE CHART BELOW FOR PROBLEMS 2 AND 3.

2. If r(x) and s(x) are functions, as defined above, evaluate

(a) r(s(2))
(b) s(r21(0))
(c) r21(r21(s(1)))

3. Why does s21(x) not exist?

4. Find the inverse functions of each (if possible):

(a) p(x) 5 2x3 2 1
(b) y 5 [[x]]

5. If h(x) 5 x5 1 3x 2 2, find h21(4).

6. Using the definition of one-to-one functions, explain why function m, as defined
in the function map below, has no inverse.

e
xe

rc
ise

s
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ANSWERS AND EXPLANATIONS

1. (a) (f + g)(x) 5 f(g(x)) 5 f~=x 2 2! 5 ~=x 2 2!2 1 3~=x 2 2! 1 1 5 x 1 3
~=x 2 2! 2 1.

(b) g(g(x)) 5 g~=x 2 2! 5 ==x 2 2 2 2.

(c) First, find g21(x). Using the same method as Example 10, g21(x) 5 x2 1 2.
Now, g21(x2 1 3x 1 1) 5 (x2 1 3x 1 1)2 1 2 5 x4 1 6x3 1 11x2 1 6x 1 3.

(d) Clearly, f(4) 5 29 (by substitution), so g(f(4)) 5 g(29) 5 =27.

2. This problem is simplified by finding r21(x) (by reversing the ordered pair of r);
r21:{(1,23),(0,22),(2,21),(5,0),(3,1),(21,2),(23,3)}.

(a) r(s(2)) 5 r(23) 5 1.

(b) s(r21(0)) 5 s(22) 5 4.

(c) r21(r21(s(1))) 5 r21(r21(1)) 5 r21(23) 5 3.

3. Function s has no inverse because it is not one-to-one. Notice that both x 5 22
and x 5 3 result in the same output of 4. In a one-to-one function, every output
must have only one input that maps to it.

4. (a) Reverse the x and y to get x 5 2y3 2 1, and solve for y; p21(x) 5 x +1
2

3 .

(b) There is no inverse function for y 5 [[x]] since the greatest integer function
fails the horizontal line test. Because the graph is a collection of horizontal
line segments, a horizontal line overlapping one of these segments will inter-
sect an infinite amount of times.

5. This problem is difficult because you cannot find h21(x)—if you try to use the
method of Example 10, you are unable to solve for y. Thus, a different approach is
necessary. Note that if 4 is in the domain of h21 (as evidenced by the fact that we
are able to plug it into h21), then it must be in the range of h. Thus, h21 contains
some point (4,a) and h contains (a,4), where a is a real number. Substitute the
point (a,4) into h to get a5 1 3a 2 2 5 4, and use your graphing calculator to solve
the equation. Therefore, a 5 1.193 and h21 contains the point (4,1.193). Hence,
h21(4) 5 1.193. See the technology section at the end of this chapter to review
solving equations with the graphing calculator.

6. Notice that m(c) 5 m(d) 5 3. Therefore, two inputs result in the same output, m
is not one-to-one, and only one-to-one functions can have inverses. One-to-one
functions map one domain element to one range element; visually, this means
that only one road can lead away from each input and only one road can lead into
each output.
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HANDS-ON ACTIVITY 2.1: TRANSFORMING FUNCTIONS
The process of graphing functions becomes much easier once you can see how the
presence of additional numbers affects a graph. You can move, reflect, and stretch a
graph simply by tinkering with the constants in a function, as you will learn in this
activity. You will find Hands-on Activities like this throughout the book. Sometimes, the
best way to learn something isn’t by reading but by doing. In such cases, we have
foregone notes and substituted these laboratory activities. In order to complete this
activity, you will need to be able to graph functions on a calculator.

1. Draw the graphs of y 5 x2 , y 5 x2 2 1, and y 5 x2 1 2 on the grids below. The first
you should know by memory (as one of the nine important functions described
earlier in the chapter). You should graph the others with your graphing
calculator.

2. How do the numbers 21 and 2 seem to affect the graph of x2?

3. Complete this conclusion: When graphing the function f(x) 1 a, the a value
causes the graph of f(x) to

4. Using the same process as you did for problem 1 above, graph the functions
y 5 x3, y 5 (x 2 3)3, and y 5 (x 1 1)3.

5. How do the numbers 23 and 1 seem to affect the graph of x3?
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TIP
In the Hands-On Activities in

this book, exact graphs are

not important. It is more

important to get the

general shape of the graph

correct and pay more

attention to the concepts

behind the

actvities instead.
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6. Complete this conclusion: When graphing the function f(x 1 a), the a value
causes the graph of f(x) to

7. Try to draw the graphs of y 5 (x 1 2)2 2 3 and y 5 (x 2 1)3 1 1 below, based on
the conclusions you made in problems 3 and 6. Check your result with your
graphing calculator.

8. Graph the functions y 5 Ux 1 1U and y 5 2Ux 1 1U below. You should be able to
graph the first, but use the graphing calculator for the second.

9. Complete this conclusion: Multiplying f(x) by a negative, 2f(x), causes the
graph to

10. Graph the functions y 5 =x and y 5 =2x below, again using your graphing
calculator for the second graph.
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TIP
You may need to consult

your owner’s manual if

you’re not sure how to

graph absolute values on

your calculator. On a TI-83,

the command is abs( and is

found on the

Math→Number menu.
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11. Complete this conclusion: Substituting 2x into the function f(x) causes its
graph to

12. Try to draw the graphs of y 5 2Ux 1 2U 1 3 and y 5 2
1

x 2 1
2 2 based on all of

your conclusions so far. Once again, check your results with your graphing
calculator.

13. Graph the functions y 5 x2 2 2 and y 5 Ux2 2 2U on the grids below, again using
your calculator only for the second graph, if possible.

14. Complete this conclusion: The graphs of f(x) and U f(x)U differ in that U f(x)U

15. Graph the functions y 5 =x and y 5 =UxU , using your calculator for the second
only.
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TIP
When checking the second

graph in Question 12 with

your calculator, make sure

you enter the function as
21

x 2 1
. If x 2 1 is not in

parentheses, the calculator

interprets the equation as
1
x

2 1.
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16. Complete this conclusion: The graph of f(UxU ) fundamentally changes the graph of
f(x) by

SELECTED SOLUTIONS TO HANDS-ON ACTIVITY 2.1

2. The graph is moved down one and up two, respectively.

3. ...move up if a is positive, and move down if a is negative.

5. The graph is moved right 3 and left 1, respectively.

6. ...move left if a is positive, and move right if a is negative (although this might be
the opposite of what you expected).

9. ...flip upside down, or (more mathematically) reflect across the x-axis.

11. ...reflect across the y-axis.

14. ...has no negative range. Visually, any negative portion of the graph is “flipped” so
it lies above the x-axis.

16. ...replacing all the values of x , 0 with a mirror image of x . 0. The graphs f(x)
and f(UxU ) are always y-symmetric.
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NOTE
You may not have worded

all of your answers exactly

the same, but that does

not mean they are wrong.

Check to see if the

concepts are correct.
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EXERCISE 4

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

DO NOT USE A GRAPHING CALCULATOR FOR THESE PROBLEMS.

1. Graph the following:

(a) y 5 (x 2 p)2 1 2

(b) y 5
1

x 1 1
2 1

(c) y 5 Ux 2 1U 1 3

(d) y 5 2(UxU )3

(e) y 5 − −( ) −x 3 2

2. Explain mathematically why the graphs of y 5 (2x)3 and y 5 2(x3) are identical.

3. Given f(x) as defined in the below graph, graph the indicated translations:

(a) f(x) 2 2

e
xe

rc
ise

s
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(b) f(x 1 1)

(c) 2f(x)

(d) f(2x)

(e) U f(x)U

PART II: AP Calculus AB & BC Review36
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

www.petersons.com



(f) f(UxU )

(g) g21(x), if g(x) 5 f(x) when 23 ≤ x ≤ 21

4. Why does y 5 =2x have a graph if you cannot find a real square root of a
negative number? (Answer based on the graph)

ANSWERS AND EXPLANATIONS

1.

2. The graphs are identical because y 5 x3 is odd; therefore (2x)3 5 2x3.

e
xe

rc
ise

s
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3.

f x ) 1)

−−f (  ) ff (−  )

⏐f (x ⏐
f (⏐ ⏐)

gg 1( ))

Translate each of the graphs’ defining points, as indicated in the graph. To find
the inverse function in 3(g), simply reverse the order of the coordinate pair of g(x);
note that g is made by the points (23,21), (22,0), (21,1) and the line segments
connecting them.
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4. You graphed this function in Activity 2.1, Question 10. Notice that the domain of
the resulting function is (2`,0]. A negative input will eliminate the problem of a
negative radicand, as the product of two negative numbers is positive.

TRIGONOMETRY
It is extremely important to make sure you are very proficient in trigonometry, as a
great deal of calculus uses trigonometric functions and identites. We have whittled the
content down to only the most important topics. Familiarize yourself with all these
basics. Learn them. Love them. Take them out to dinner, and pick up the tab without
grimacing.

The study of triangles and angles is fundamental to trigonometry. When angles are
drawn in a coordinate plane, their vertices sit atop the origin, and the angles begin on
the positive x-axis. A positive angle proceeds counterclockwise from the axis, whereas

a negative angle winds clockwise. Both angles in the below figure measure
p

3
radians

(60°), although they terminate in different quadrants because of their signs.

On the other hand, some angles, although unequal, look the same. In the figure below,

the angles A 5
5p

4
and B 5

13p

4
terminate in the exact same spot, but B has traveled

an extra time around the origin, completing one full rotation before coming to rest.
Angles such as these are called coterminal angles (since they terminate at the same
ray).
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NOTE
Radicand is the fancy-

pants term for “stuff

beneath the radical sign.”

TIP
In order to convert from

radians to degrees, multiply

the angle by
180
p

. To

convert from degrees to

radians, multiply the angle

by
p

180
.
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Another major topic from yonder days of precalculus is the unit circle—the dreaded
circle with center at the origin and radius one—that defines the values of many
common sines and cosines. It is essential to memorize the unit circle in its entirety.

The points next to each of the angles are the cosine and sine of that angle, respec-
tively. The remaining trigonometric functions are directly based on sine and cosine:

tan x 5
sin x
cos x

cot x 5
cos x
sin x

sec x 5
1

cos x

csc x 5
1

sin x

Example 11: Evaluate all six trigonometric functions if u 5
11p

6
.

Solution: From the unit circle, cos
11p

6
5

=3
2

and sin
11p

6
5

21
2

. From there, we use

the definitions of the other functions:
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TIP
Radians are used almost

exclusively on the AP test

(in lieu of degrees).

TIP
One real-life example of

coterminal angles in action

is a revolving door. You may

enter such a door and

proceed right into the

building or continue to loop

around and around before

entering. The number of

times you circled in the

revolving door does not

affect your final destination,

although it may alarm the

building’s security staff (who

are typically much larger

and stronger than you).
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tan
11p

6
5

sin
11p

6

cos
11p

6

5

2
1
2

=3
2

5 2
1

=3
or 2

=3
3

(both are correct)

cot
11p

6
5

23

=3
, as cotangent is the reciprocal of tangent

sec
11p

6
5

2

=3
or

2=3
3

, as secant is the reciprocal of cosine

csc
11p

6
5 22, as cosecant is the reciprocal of sine

The reason that coterminal angles are so useful in trigonometry is that all trigono-
metric functions are periodic functions, because after some period of time, the graphs
will repeat themselves. That interval of time is called (surprise!) the period. Sine,
cosine, secant, and cosecant all have a period of 2p, whereas tangent and cotangent

have a period of p. Thus, tan Sp

4D 5 tanS5p

4 D, since there is an interval of
4p

4
(p)

between the inputs, and tangent has begun to repeat itself.

Perhaps the most important aspects of trigonometry you will use are the trigonomet-
ric identities. These are used to rewrite expressions and equations that are unsolvable
in their current form. In other cases, through the substitution of an identity, an
expression becomes much simpler. You’ll need to memorize these formulas, too. Below
are listed the most important trigonometric identites:

Pythagorean identities: cos2x 1 sin2x 5 1 (Mamma Theorem)
1 1 tan2x 5 sec2x (Pappa Theorem)
1 1 cot2x 5 csc2x (Baby Theorem)

Even and odd identities: sin(2x) 5 2sin x
csc(2x) 5 2csc x
tan(2x) 5 2tan x
cot(2x) 5 2cot x
cos(2x) 5 cos x
sec(2x) 5 sec x

Double-angle formulas: sin 2x 5 2sin xcos x
cos 2x 5 cos2x 2 sin2x

5 2cos2x 2 1
5 1 2 2sin2x

tan 2x 5
2tan x

1 2 tan2 x

Chapter 2: Calculus Prerequisites 41
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

ALERT!
Some students record unit

circle values in their

calculator’s memory

instead of memorizing

them. Remember that

approximately 50 percent

of the AP exam is taken

without a calculator, and

those precious notes will be

inaccessible. Make sure to

memorize the unit circle!

TIP
You are not required to

rationalize fractions on the

AP test (like when

calculating secant and

tangent in Example 11),

and it’s generally a good

idea not to waste time

doing it. However, a

nonrationalized fraction

may not always be listed

among multiple-choice

options, whereas a

rationalized answer could

be. Make sure you can

express your answer

either way.
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Power-reducing formulas: cos2 x 5
1 1 cos 2x

2

sin2 x 5
1 2 cos 2x

2

tan2 x 5
sin2 x
cos2 x

5
1 2 cos 2x
1 1 cos 2x

Sum and difference formulas: sin (x 6 y) 5 sin x cos y 6 cos x sin y
cos (x 6 y) 5 cos x cos y 7 sin x sin y

tan (x 6 y) 5
tan x 6 tan y

1 7 tan x tan y

Example 12: Simplify the expression
sec2 x
tan x

2 tan x.

Solution: The first order of business is common denominators, so we can add the

terms—multiply the tan x term by
tan x
tan x

to do so. You then use a result of the Big

Pappa Theorem to simplify.

sec2 x
tan x

2
tan2 x
tan x

=
sec2 x 2 tan2 x

tan x

=
1

tan x

= cot x

Example 13: Rewrite the expression =1 2 cos x in terms of sine.

Solution: If you multiply the second power-reducing formula by 2, the result is

1 2 cos 2x 5 2sin2 x. Therefore, 1 2 cos x 5 2sin2 x
2

. This is still true, as the cosine

angle is still twice as large as the sine angle. Therefore, we can substitute 2sin2 x
2

for

1 2 cos x:

Î2sin2 x
2

=2 sin
x
2

Another major important trigonometric topic is inverse functions. Inverse trigonomet-
ric functions can be written one of two ways. For example, the inverse of cosine can be
written cos21x or arccos x. Because the first format looks like (cos x)21 (which equals
sec x), the latter format (with the arc- prefix) is preferred by many. Both mean the
same thing. The trickiest part of inverse trig functions is knowing what answer to
give.

If asked to evaluate arccos 0, you might answer that cosine is equal to 0 when x 5
p

2

or
3p

2
. It is true that cos

p

2
5 cos

3p

2
5 0. However, this means that the function y 5

arccos x has two outputs when x 5 0, so arccos x is not a function! This is remedied by
restricting the ranges of the inverse trig functions, as shown below.
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TIP
The nicknames Mamma,

Pappa, and Baby are not

conventional but are good

for quick reference. Don’t

use these names on the AP

Test, or no one will have

any idea what you are

talking about!

NOTE
Only cosine and secant are

even functions; the other

trigonometric functions

are odd.

NOTE
The cosine has three

possible substitutions for a

double angle. Choosing

the correct one depends

on the circumstance.
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The Restricted Ranges (The Bubbles)

Any answer for arcsin x, arctan x, or arccsc x will have to fall within the interval

F2
p

2
,
p

2
G, whereas outputs for arccos x, arccot x, and arcsec x must fall in the interval

[0,p]. For our previous example of arccos 0, the correct answer is
p

2
, as

3p

2
does not fall

within the correct interval (or “bubble”—see Tip at left).

Example 14: Evaluate the following expressions without the use of a calculator:

(a) arcsin
=3

2
(b) arcsec 22

(c) arctan 2
=3

3

Solution: (a) The sine function has the value
=3

2
when x 5

p

3
and

5p

3
; only

p

3
falls in

the arcsin bubble.

(b) If an angle has a secant value of 22, it must have a cosine value of 2
1
2

, as the

functions are reciprocals. Cosine takes this value when x 5
2p

3
and

4p

3
. Only the

first falls in the arccos bubble, so the answer is
2p

3
.

(c) Notice that 2
=3

3
is the same as

1
2=3

(the latter is just not rationalized). This is

the same as

1
2

2=3
2

. Tangent is negative in the second and fourth quadrants, but

only the fourth quadrant is in the arctan bubble. Thus, only angle
11p

6
has the

appropriate values (recall that tangent is equal to sine divided by cosine). How-

ever, to graph
11p

6
, you have to pass outside the arcsin bubble, since

11p

6
.

p

2
, the

largest value allowed for arctan, and passing outside the bubble is not allowed.

Therefore, the answer is the coterminal angle 2
p

6
, which ends in the same spot.
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NOTE
Because the Pappa

Theorem says 1 1 tan2x 5

sec2x, subtract tan2x from

both sides to get 1 5 sec2x

2 tan2x. This substitution is

made in the second step.

TIP
It helps to read “arc” as

“where is...”. For example,

the function arcsin 1 is

asking “Where is sine equal

to 1?”. The answer is
p

2
.

TIP
We will refer to the

restricted trig ranges as

“bubbles” for convenience

and, well yes, fun. For

example, arctan 1 Þ
5p

4
because

5p

4
is not in the

arctan bubble (i.e., the

angle does not fall in the

intervals given by The

Restricted Ranges

diagram).
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Finally, as promised earlier in the chapter, here are the final six functions you
need to know by heart. They are—big shocker—the trigonometric functions:

The Trigonometric Functions

π−π 2π−2π

y = sin x

−1

1

−1

1

−1

1

π−π 2π−2π

y = cos x

−1

1

π−π 2π−2π

y = tan x

π−π 2π−2π

y = cot x

π−π 2π−2π π−π 2π−2π

y = sec x y = csc x
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TIP
When giving solutions to

inverse trigonometric

functions, always remember

the bubble. The bubble is a

happy place. Outside the

bubble, the people are not

nice, and the dogs bite.

Also, it’s hard to find stylish

shoes that are still

comfortable outside the

bubble.
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EXERCISE 5

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

DO NOT USE A GRAPHING CALCULATOR FOR THESE PROBLEMS.

1. If sin b 5 2
2
5

and p , b ,
3p

2
, find the values of the other five trigonometric

functions for b.

2. Use coterminal angles to evaluate each of the following:

(a) sin (11p)

(b) cos
21p

4

(c) tan
13p

3

3. Evaluate cos(arcsin(22x)).

4. Simplify:

(a) tan4x 1 2tan2x 1 1

(b)
cos x
sec x

1
sin x
csc x

5. Verify that csc2x 5
1

cos2 x 2 cos 2x
.

6. Solve this equation algebraically: cos2x 2 cos 2x 1 sin x 5 2sin2x, and give
answers on the interval [0,2p).

7. Graph y 5 2
3
2

sin(2x) 1 1.

e
xe

rc
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ANSWERS AND EXPLANATIONS

1. The given interval for b makes it clear that the angle is in the third quadrant
(sine is also negative in the fourth quadrant, so this information is necessary).
This allows you to draw a reference triangle for b, knowing that sine is the ratio
of the opposite side to the hypotenuse in a right triangle. Be careful to make the
legs of the triangle negative, as both x and y are negative in the third quadrant.
Using the Pythagorean Theorem, the remaining (adjacent) side measures =21.
From the diagram, you can easily find the other 5 trigonometric ratios.

cos b 5 2
=21

5
, tan b 5

2

=21
, sec b 5 2

5

=21
, csc b 5 2

5
2

, cot b 5
=21

2

2. (a) sin (11p) 5 sin(p) 5 0

(b) cosS21p

4 D = cosS5p

4 D =
2=2

2

(c) tanS13p

3 D = tanSp

3D =
sin

p

3

cos
p

3

=

=3
2
1
2

= =3

3. This problem is similar to Number 1, but the additional restriction we had there
is replaced by the bubble. You know that sine is positive, but since this is the
arcsin funcion, only the fourth quadrant is in the bubble. Thus, your reference
triangle is drawn as if in the fourth quadrant.

From the diagram, cos u 5
adjacent

hypotenuse
5 =1 2 4x2
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4. (a) The quadratic expression can be factored to get (tan2x 1 1)(tan2x 1 1), or
(tan2x 1 1)2. By the Pappa Theorem, this equals (sec2x)2 5 sec4x.

(b) Substituting the values of sec x and csc x, you get

cos

cos

sin

sin

cos sinx

x

x

x

x x
1 1

2 2+ = + , which equals 1 by the Mamma Theorem.

5. 1 1
22 2sin cos cosx x x

=
−

cos2x 2 cos 2x 5 sin2x

cos2x 2 sin2x 2 cos 2x 5 0

cos2x 2 sin2x 5 cos 2x

6. Note that this question specifies the interval [0,2p). Thus, we do not ignore
answers outside of the arcsin bubbles in the final step but give all the answers on
the unit circle. Note also that we made the problem easier by substituting 1 for
cos2x 1 sin2x in the second step:

cos2x 1 sin2x 2 cos 2x 1 sin x 5 0

1 2 (1 2 2sin2x) 1 sin x 5 0

2sin2x 1 sinx 5 0

sin x(2sin x 1 1) 5 0

x 5 0, p, 7
6
π , 11

6
π .

7. The coefficient of the x affects the graph by stretching or shrinking the period.
The number—here 2—explains how many full graphs of sine will fit where one
used to. Since the period of sine is 2p, now two full graphs will occupy the period
instead of one. Had the coefficient been 3, three graphs would squeeze into the

same space. The
3
2

gives the amplitude of the sine wave. The rest of the transla-

tions work the same as they did earlier in the chapter.
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PARAMETRIC EQUATIONS (BC TOPIC ONLY)
There are numerous ways to express relations, and the Calculus AB test focuses almost
exclusively on rectangular representation. However, the BC test includes three others:
parametric, polar, and vector. Luckily, there is a lot of overlap among the three, so come
on back in off of that ledge, BCer—you have so much to live for!

Parametric equations use a parameter (a third variable) in their definition. For
example, the parametric representation of a circle centered at the origin with radius
one is given by: x 5 cos t, y 5 sin t. You get the ordered pair to draw the graph by
substituting successive values of t into the expressions for x and y (the arrows give you
a sense of direction in the graph but are not actually part of the graph).

The graph tells you a lot more than the equivalent rectangular equation of x2 1 y2 5 1.
With this set of parameters, you can easily tell that the graph begins and ends at the
point (1,0) and proceeds in a counter-clockwise path. You can even get some notion of the
speed traveled in the path. These are the major endearing qualities of parametric equa-
tions.

Your TI calculator can easily draw parametric equations. Press the Mode button and
select Parametric mode. The “Y5” screen will now show “x1T 5” and “y1T 5”. Type your
parametric equations there. The “x,t,u” button will now display a t, since you are in
parametric mode. In order to adjust the values through which t will cycle, press
Window, and set the maximum and minimum values of t.
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NOTE
In this example, you should

use t values on the interval

[0,2p), since x and y involve

trigonometric functions. The

graph you get as a result is

the unit circle! If you think

about it, this makes a lot

of sense.
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Example 15: Graph the parametric equation x 5 1 1 2t, y 5 2 2 t2 and convert it to
rectangular form.

Solution: Using a table of values or the calculator, you get the graph of a parabola. If
you got only half of the parabola, make sure you are substituting in negative values of
t. A good range for t on the calculator is 210 ≤ t ≤ 10 if there aren’t any trigonometric
functions, although sometimes 10 is unnecessarily high. Better safe than sorry,
though.

In order to convert to rectangular form, solve either x or y for t and plug into the other.
The x expression seems easier, so it’s better to start by solving it for t:

x 2 1 5 2t

x 2 1
2

= t

y 5 2 2 Sx 2 1
2 D2

y 5 2 2
~x 2 1!2

4

y 5 2
1
4

(x 2 1)2 1 2

This is a parabola with vertex (1,2) opening downward, as is verified in our graph.
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NOTE
If you graph the parametric

equations x 5 cos (2t), y 5

sin (2t), the graph is the

same as x 5 cos t and y 5

sin t, but the circle is

actually drawn twice! In

fact, the circle is fully

completed when t 5 p.

There can be numerous

ways to express a graph in

parametric form, differing in

direction, path, and the

speed of the graph.

TIP
Adjust the range of t on the

calculator by pressing the

Window button.
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Example 16: Graph the parametric equation x 5 cos2t, y 5 sint, and find its
corresponding equation in rectangular form.

Solution: Again, graph using a table of values or a calculator, but make sure to reset
your t values to [0,2p). In order to convert to rectangular form, utilize the Mamma
Theorem and substitute.

cos2 u 1 sin2 u 5 1

x 1 y2 5 1

x 5 1 2 y2

Notice that the parametric graph does not include the entire parabola. Therefore, it is
important that you restrict the rectangular equation so that its graph matches
exactly. The final answer is x 5 1 2 y2, x ≥ 0.
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EXERCISE 6

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

DO NOT USE A GRAPHING CALCULATOR FOR THESE PROBLEMS.

1. Draw the graphs of the following parametric equations and rewrite each in
rectangular form:

(a) x 5 3cos u, y 5 2sin u

(b) x 5 t 2 1, y 5 2 2
2
t

2. Given the graphs below, draw the graph of the parametric equations x 5 a(t),
y 5 b(t).

3. Find parametric equations whose graph is an ellipse centered at the origin with
horizontal major axis of length 8 and minor axis of length 4.

4. Based on your work on the above problems, name another benefit of parametric
equations versus rectangular functions.

5. Create as many parametric representations of y 5 ax 1 b as you can.

ANSWERS AND EXPLANATIONS

1. (a) The graph is easy to find via chart or graphing calculator. In this instance, it
is just as easy to find by converting the equation to rectangular form. Because
the Mamma Theorem states that cos2u 1 sin2u 5 1, you should solve the

parametric equations for cos u and sin u. If you do, the result is
x
3

5 cos u and

y
2

5 sin u. By substitution into the Mamma Theorem,
x2

9
+

y2

4
= 1, which is

standard form for an ellipse.

e
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(b) Again, the challenge is the conversion to rectangular form. In this problem, it
is easy to solve the x equation for t: t 5 x 1 1. Substitute this into the y

equation to get y 5 2 2
2

x + 1
. Simplify this to get the rectangular equation

y 5
2x

x + 1
.

2. Make an ordered pair to begin graphing. For example, consider t 5 2. At this
value of t, a(2) 5 0 and b(2) 5 2. Therefore, the graph will contain the point (0,2).
Use a similar process for the other values of t between 0 and 6.
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3. Your work in 1(a) makes this much easier. The ellipse described has equation
x y2 2

16 4
1+ = . Because the Mamma Theorem also has two terms being summed to

equal 1, you can do the following:

cos2
2

16
t x= sin2

4

4
t y= (because of Mamma)

cos sint x t y= =
4 2

x 5 4cos t y 5 2sin t

4. Parametric equations can easily describe non-functions, as best evidenced in
Solution 2 above. That crazy-looking thing certainly does not pass the vertical
line test.

5. The simplest representation of any function in parametric form is accomplished
by setting x 5 t and to make that substitution in the y equation: y 5 at 1 b.
However, there are many ways to express that function. Notice that x 5 t 2 b and
y 5 at 2 ab 1 b also results in the same graph. Simply pick anything for the x
equation and adjust y accordingly.

POLAR EQUATIONS (BC TOPIC ONLY)
Polar equations are a very handy way to express complex graphs very simply. However,
the polar system utilizes a completely different coordinate axis and graphing system.
Once you warm up to polar coordinates, it’s not too hard to bear them.

All polar points are given in the form (r,u), where u is an angle in standard position
and r is a distance along the terminal ray of that angle. Therefore, in order to graph
a polar coordinate, first draw the angle specified by u, and then count r units along the
terminal ray.
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Example 17: Graph the polar coordinates A 5 (3,
p

2
), B 5 (1,2

3p

4
), and C 5 (22,

5p

6
).

Solution:

Point A is graphed on the terminal ray of
p

2
(or 90°), the positive y-axis. Count 3 units

along this ray from the origin to place A. B is one unit away from the origin at u 5

2
3p

4
. C is just a little trickier. After drawing the angle u 5

5p

6
, you count two units

backward from the origin, as r is given as 22. Therefore, C ends up in the fourth
quadrant rather than the second, as you might have hypothesized.

Graphing polar equations consists of nothing more than plotting a series of polar
points (as you just did) and connecting the resulting dots. Just as was the case for
parametric graphs, a table of values and the calculator are your main graphing tools.

Example 18: Graph r 5 4sin 2u without weeping.

Solution: To solve this, we will allow u to take on values from 0 to 2p and find the
corresponding r values. The table below gives the major angles of the first quadrant,
and the result, r, when those angles, u, are plugged into r 5 4sin 2u. If you continue
this process for the other three quadrants, you will obtain a similar shape.

It is important that you know how polar graphs are created, but it is expected that you
will typically graph them on your calculator. The AP test is more focused on applying
different skills to polar and parametric equations, rather than focusing on simply
graphing them. So, don’t spend too much time honing your skills and trying to graph
these quickly—make use of your technology.

Although you practiced converting parametric equations to rectangular form, no such
practice follows suit for polar equations. As you saw in Example 18, the graphs can be
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NOTE
The origin is also referred to

as the pole when

graphing—hence the

name of polar equations.

TIP
Choose polar mode by

pressing the “Mode” button

on your calculator. The

“Y5” screen now functions

as as the “r5” screen, and

pressing the x,t,u button will

display u.

NOTE
The graph of r 5 4sin 2u is

called a rose curve, since it

sort of looks like a flower.

More common polar

graphs are given in the

exercises.
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quite complicated, and the major strength of polar graphing is the ease with which
such complicated graphs can be formed. There’s no need to strong-arm the equations
into rectangular form. It is interesting, however, how simply polar coordinates can be
converted into rectangular coordinates and vice versa. Well, at least it is interesting to
me. A little.

Example 19: Convert the polar coordinate (22,
5p

4
) into a rectangular coordinate.

Solution: Any polar coordinate (r,u) can be transformed into the corresponding rect-

angular coordinate (x,y) with the formulas x 5 rcosu and y 5 rsinu. Therefore, (22,
5p

4
)

becomes the rectangular coordinate S22z2
=2

2
,22z2

=2
2 D = ~=2,=2!. The diagram

below gives a visual proof of this—the right triangle created by the polar coordinate
and the axes is a 45-45-90 isosceles right triangle with hypotenuse 2. Basic geometry
verifies that the legs have length =2.

Example 20: What polar coordinate corresponds to the rectangular coordinate
(23,23)?

Solution: Notice that u =
opposite
adjacent

=
23
23

= 1. Tangent has a value of 1 at u 5
p

4
and

5p

4
,

but the correct answer is
5p

4
since you are working in the third quadrant. All that

remains, then, is to find r, which is very easy to do thanks to good old Pythagoras. By
the Pythagorean Theorem, (23)2 1 (23)2 5 r2, so r 5 =18 5 3=2. Thus, the correct

polar coordinate is S3=2,
5p

4 D.
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EXERCISE 7

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR PROBLEMS 4 AND 5.

1. Graph the following polar equations without a table of values:

(a) r 5 2.5

(b) u 5
3p

4
(c) r 5 csc u

2. Predict the graph of r 5 u, 0 ≤ u ≤ 2p, and justify your prediction.

3. Below are examples of common polar curves. Match the graphs to the correct
equations below.

r 5 1 1 sin u

r 5 2 1 3cos u

r2 5 9cos 2u

r 5 2cos 3u

4. Graph r 5 2sin u.
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5. Convert:

(a) (r,u) 5 S22,
11p

6 D to rectangular coordinates

(b) (x,y) 5 ~2=3,1! to polar coordinates.

ANSWERS AND EXPLANATIONS

1. (a)

The graph will have a radius of 2.5, regardless of the angle u. Does this sound
familiar? Yep...it’s a circle with radius 2.5.

(b)

In this case, only the angle comes into play. Along that angle, any radius is fair
game. The result is a line that corresponds to the angle indicated. Notice that the
line stretches into the fourth quadrant (because the negative radii are possible).

(c)
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If you rewrite r 5 csc u as
1

sin u
and cross-multiply, the result is rsin u 5 1.

However, according to Example 19, we know that y 5 rsin u. Therefore, rsinu 5 1
becomes the equation y 5 1, a horizontal line.

2. Clearly, you begin the graph at the pole, as r 5 u 5 0. As u increases (moving
counterclockwise), your radius (being equal) increases also. Therefore, the further
you rotate, the longer the radius, forming a spiral.

3. These problems are simply a study in testing points. Once you choose a signifi-
cant number of angles and plug them into each of the formulas, you can begin to
see which graphs could represent those equations.

(A) r 5 2cos 3u: A rose curve has “petals,” but not necessarily only three petals,
as in this particular graph.

(B) r2 5 9cos 2u: A lemniscate is in the shape of a figure eight that you can
skate.

(C) r 5 1 1 sin u: A cardioid curve looks a little bit like a heart, hence the
name. To me, it looks more like a tush print in a recliner.

(D) r 5 2 1 3cos u: A limaçon may or may not have the puckered loop evident
in this graph—without the loop, a limaçon looks like a less rounded
cardioid.

4. A calculator or a table of values results in the graph below. Make sure you can do
these by either method.
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5. (a) Use the polar coordinate to create a right triangle, from which it is clear that
x 5 2=3 and y 5 1. You can also use the formulas from Example 19. For

instance x 5 rcos u 5 22 z cos
11p

6
5 22 z

=3
2

5 2=3. The y-coordinate will

work just as easily.

(b) Once again, a graph is very helpful; from the diagram below, tan u =

1
2=3

=

1
2

=3
2

. Therefore, u 5
5p

6
. Use the Pythagorean Theorem to find r: 12 1

~2=3!2 5 r2, so r 5 =4. One appropriate polar coordinate is (2,
5p

6
).

VECTORS AND VECTOR EQUATIONS (BC TOPIC ONLY)
Vector curves complete the triumvirate of BC graph representations. Although they
have very peculiar and individual characteristics, they are very closely related (by
marriage) to parametric equations, as you will see.Avector is, in essence, a line segment
with direction. It is typically drawn as an arrow on the coordinate plane. The diagram
below is the vector ABY , with initial point A 5 (23,22) and terminal point B 5 (4,1).
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Although you can draw vectors anywhere in the coordinate plane, it’s really handy
when they begin at the origin—such a vector is said to be in standard position.

Example 21: Put vector ABY (as defined above) in standard position.

Solution: To begin, calculate the slope of the line segment:
Dy
Dx

=
1 2 ~22!

4 2 ~23!
=

3
7

. There-

fore, to get from point A to point B, you travel up 3 units and to the right 7 units.

Because vector ABY has the same length and direction wherever it is on the coordinate
plane, moving it to standard position did not affect it at all. In fact, we can now write
ABY in component form: ABY 5 ,7,3.. Graphing ,7,3. is almost equivalent to graph-
ing the point (7,3), except that ,7,3. will have a vector leading up to that point.

Thanks to Pythagoras (ya gotta love him), finding the length of a vector, denoted
U UABYU U , is very simple. For instance, U UABYU U from Example 21 is =58. To calculate the
length, simply draw a right triangle with the vector as its hypotenuse and apply the
Pythagorean Theorem.
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Perhaps the most common way a vector is represented is in unit vector form. A unit
vector is defined as a vector whose length is 1. Clearly, i 5 ,1,0. and j 5 ,0,1. are
unit vectors, and these vectors are the backbone of unit vector form.

Let’s put good old vector ABY 5 ,7,3. from previous examples in unit vector form.
This vector is created by moving 7 units right and 3 units up from the origin. As
demonstrated by the diagram below, this is the same as seven i vectors and three j
vectors. Therefore, ABY 5 7i 1 3j 5 7i 1 3j.

Example 22: If vector v has initial point (22,6) and terminal point (1,25), complete
the following:

(a) Put v in component form.
In order to travel from the beginning to the end of the vector, you proceed
right 3 units and down 11. Thus, v 5 ,3,211..
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(b) Find U UvU U .
As pictured in the diagram below, U UvU U 5 3 11 1302 2+ −( ) = .

(c) Write v in unit vector form.

Any vector ,a,b. has unit vector form ai 1 bj, so v 5 3i 2 11j.

Graphing vector curves is quite easy. Although the graphs are created by
vectors, the graphs are not covered with arrows. Instead, you can graph
vector equations exactly the same as parametric equations.

Example 23: Graph the vector curve r(t) 5 (t 1 1)i 1 t 3j.

Solution: This vector function can be expressed parametrically. Remember that i
refers to horizontal distance and j to vertical distance, exactly like x and y, respec-
tively. Therefore, this vector function has exactly the same graph as the parametric
equations x 5 t 1 1, y 5 t3, which you can graph using a calculator or table of values.
Solving x 5 t 1 1 for t and substituting t into the y equation gives you the rectangular
form of this graph: y 5 (x 2 1)3.
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EXERCISE 8

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR PROBLEM 4 ONLY.

For numbers 1 through 3, v 5 ,2,3., w has initial point (3,23) and terminal point
(21,4), and p 5 2v 2 w.

1. Express p in component form.

2. Find U UpU U .

3. What is the unit vector form of p?

4. Given vectors r(t) 5 eti 1 (2et 1 1)j and s(t) 5 ti 1 (2t 1 1)j, explain why r and
s have the same rectangular form but different graphs.

ANSWERS AND EXPLANATIONS

1. First, put w in component form. You can either count units from the start to the
end of the vector or simply find the difference of the beginning and ending
coordinates: w 5 ,21 2 3,4 2(23). 5 ,24,7.. Now, p 5 2v 2 w 5

2,2,3. 2 ,24,7. 5 ,4,6. 2 ,24,7. 5 ,8,21..

2. If you like, you can draw a right triangle to justify your calculations, but it is not
necessary. U UpU U = =64 + 1 = =65.

3. Once p is in component form, all of the hard work is done. In standard unit vector
form, p 5 8i 2 1j.

4. You can express r(t) as the parametric equations x 5 et, y 5 (2et 1 1). By
substitution, y 5 2x 1 1. You will get the very same parametric equations for s(t),
but the graph of s(t) is the entire line 2x 1 1, whereas the graph of r(t) is 2x 1 1,
x . 0. The reason for this is the domain of et. Think back to the major graphs to
memorize for the chapter. Remember that et has a positive range and can’t output
negative numbers or 0. Therefore, after substituting x 5 et into y to get 2x 1 1,
that resulting linear function carries with it the restriction x . 0, limiting the
graph accordingly.

TECHNOLOGY: SOLVING EQUATIONS WITH A GRAPHING
CALCULATOR
You know how to solve equations; you’ve been doing it successfully since introductory
algebra, and you’re not even afraid of quadratic functions. “Bring ‘em on,” you say, with
a menacing glint in your eye and a quadratic formula program humming in your
calculator’s memory. One problem: the College Board also knows that you have access to
calculator technology, and some of the equations you’ll be asked to solve aren’t going to
be the pretty little factorable ones you’re used to. In fact, some equations on the
calculator-active section will look downright ugly and frightening.
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The College Board expects that you will have access to and proficiency with a
graphing calculator that can do four major things, at the least, as described in
Chapter 1. You must be able to solve equations (even ugly ones) with your
graphing calculator. As always, instructions are included for the TI-83, currently
the most common calculator used on the AP test. Consult your instruction manual if
you have a calculator other than the TI-83.

Example 24: Find the solutions to the equation e2x 1 cos x 5 sin x on [22p,2p].

Solution: There is no easy way to solve this; it’s just enough to shake your faith in the
usefulness of the quadratic formula. However, there is hope! First, move things
around so that the equation equals zero. If you subtract sin x from both sides of the
equation, that goal is accomplished: e2x 1 cos x 2 sin x 5 0. Now, the solutions to the
original equation will be the roots of this new equation. Put your calculator in radians
mode ([Mode] →“Radian”) and graph Y 5 e2x 1 cos x 2 sin x. If you press [Zoom] →
“Ztrig”, the window is nicely suited to trigonometric functions—the window is basi-
cally [22p,2p] for the x-axis and [24,4] for the y-axis. If you did everything correctly,
you should see this:

Finding those x-intercepts is our goal. It doesn’t matter which you find first, but we’ll

start with the rightmost one. Clearly, the root falls between x 5 2p and 2
p

2
. To

calculate the root, press [2nd]→[Trace] → “zero,” as we are looking for zeros of the
function. At the prompt “Left bound?” type a number to the left of this root; for
example, 2p. Similarly, for the prompt “Right bound?” you can type 0.

At the prompt “Guess?” you should take a stab at prognosticating the root. A good

guess seems to be 2
3p

4
. Once you press [Enter], the calculator does the rest of the

work for you, and the root turns out to be x 5 22.362467. The AP test only requests
three-decimal place accuracy, so 22.362 is acceptable. Note, however, that 2.363 is not
correct and is not accepted. You do not have to round answers—you can simply cut off
(or truncate) decimals after the thousandths place.

Follow the same steps to get the second root. If you don’t like typing in guesses for the
boundaries, you can press the left and right arrow buttons to move the little “X” turtle
along the graph. For example, in the diagrams below, you move the little turtle to the
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left of the root at the prompt “Left bound?”. Once you press Enter and get the “Right
bound?” prompt, you move the turtle to the right of the root. You can even do this
when asked for a guess—just move the turtle between the two boundaries and get
close to the root.

The second root of the equation is 25.497775, which can be written as 25.497 or
25.498 on the AP test.

Chapter 2: Calculus Prerequisites 65
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

www.petersons.com



EXERCISE 9

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR PROBLEMS 9 AND 10 ONLY.

For problems 1 through 5, use the following graphs of f and g:

1. Determine which of the two functions has an inverse and sketch it.

2. Graph U f(x)U and g(UxU ).

3. If f is created with a semicircle and an absolute value graph, write the equation
that represents f(x).

4. Draw a function h(x) such that h(x) 5 g21(x) when x ≤ 0 and h(x) is odd.

5. Evaluate f(g(f(22))).

6. Solve the equation cos 2x 2 cos2x 5 2sin x and give solutions on the interval
[0,2p).

7. If m(x) 5 2x3 1 5x 2 2, find m21(6).

*8. Graph r 5 cos u 2 sin ucos u and find the values of u where the graph intersects
the pole.

*9. Graph x 5 et, y 5 t 1 1, and express the parametric equations in rectangular
form.

*10. James’ Diabolical Challenge: Write a set of parametric equations such that: at
t 5 0, x 5 0 and y 5 0 and at t 5 4, x 5 4 and y 5 6. Then, find the rectangular
inverse of your equations.

*BC2only problem
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ANSWERS AND EXPLANATIONS

1. Only g has an inverse function; because f fails the horizontal line test, it is not
one-to-one and thus has no inverse. To graph g21, either reflect g about the line
y 5 x or choose some coordinates from the graph of g and reverse them—
remember that if (a,b) is on the graph of g, then (b,a) is on the graph of g21.

2. The graph of U f(x)U will not extend below the x-axis, and g(UxU ) will be y-symmetric,
as shown below:

3. The circle has equation (x 1 2)2 1 y2 5 4, so solving for y and identifying only the
upper half of the circle results in the equation y 5 =4 2 ~x + 2!2. The absolute
value graph is y 5 Ux 2 1U 2 1, by graph translations. Therefore, we can write the
multi-rule function.

4. The graph of h will look exactly like the graph of g21 for x ≤ 0 (as the functions are
equal there), but since h is odd, its graph will have to be origin-symmetric, which
dictates the graph of h for x . 0.

a
n

sw
e

rs
e

xe
rc

ise
s

Chapter 2: Calculus Prerequisites 67
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

www.petersons.com



5. From the graphs, you see that f(22) 5 2, g(2) 5 1, and f(1) 5 21. Thus,
f(g(f(22))) 5 21.

6. Using a double-angle formula for cos 2x, rewrite the equation to get cos2x 2

sin2x 2 cos2x 5 2sin x. This simplifies easily to 2sin2x 2 2sin x 5 0. Now, factor
the equation: 2sin x(sin x 1 2) 5 0. The answer is x 5 0, p (remember that you
cannot solve sin x 5 22, since sine has a range of 0 ≤ y ≤ 1).

7. First of all, if 6 is in the domain of m21, then it is in the range of m. Therefore,
there is some number x such that 2x3 1 5x 2 2 5 6. It is not easy to find that
number, however, and you should resort to the graphing calculator to solve the
equivalent equation 2x3 1 5x 2 8 5 0 in the method described in the Technology
section of this chapter. Doing so results in x 5 1.087. Thus, m(1.087) 5 6 and
m21(6) 5 1.087.

8. The graph, given below, will hit the pole whenever r 5 0. Therefore, set the

equation equal to 0 and factor to get cos u(1 2 sin u) 5 0. This has solutions u 5
p

2

and
3p

2
.

9. The graph is given below. In order to put in rectangular form, solve x 5 et for t by
taking ln of both sides. Doing so results in ln x 5 t. (You could also solve the y
equation for t, but this results in a much uglier rectangular form—a function of
y.) Substituting t 5 ln x into the y equation gives y 5 ln x 1 1, x . 0. The
restriction is caused by the range of et being positive, as denoted earlier in the
chapter.
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10. The simplest solution for this problem is x 5 t and y 5
3
2

t, as 6 is
3
2

of 4. The

rectangular form of this problem is y 5
3
2

x, so the inverse is y 5
2
3

x.
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SUMMING IT UP
• Calculus is rife with functions so it’s important that you understand what they

are: a function is a special type of relation.

• If a function does not fulfill the requirements to be even or odd, the function is
classified as neither even nor odd.

• It is easy to remember that origin-symmetric functions are odd—they both start
with the letter “o.”

• Plugging one function into another is called composing the function with another.

• Remember not to stress out over exact graphs.

• Radians are used almost exclusively on the AP test (in lieu of degrees).

• Some students record unit circle values in their calculator’s memory instead of
memorizing them. Remember that approximately 50 percent of the AP test is
taken without a calculator. Make sure to memorize the unit circle!

• When giving solutions to inverse trigonometric function, always remember the
bubble.
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Limits and Continuity

OVERVIEW
• Hands-On Activity 3.1: What is a limit?
• Evaluating limits analytically
• Continuity
• Hands-On Activity 3.2: The extreme value theorem
• Hands-On Activity 3.3: The intermediate value theorem
• Limits involving infinity
• Special limits
• Technology: Evaluating limits with a graphing calculator
• Summing it up

The concepts of limits stymied mathematicians for a long, long time. In fact,
the discovery of calculus hinged on these wily little creatures. Limits allow us
to do otherwise illegal things like divide by zero. Since, technically, it is never
acceptable to divide by zero, limits allow uptight math people to say that they
are dividing by “basically” zero or “essentially” zero. Limits are like fortune
tellers—they know where you are heading, even though you may not ever get
there. Unlike fortune tellers, however, the advice of limits is always free, and
limits never have bizarre names like “Madame Vinchense.”

HANDS-ON ACTIVITY 3.1: WHAT IS A LIMIT?
By completing this activity, you will discover what a limit is, when it exists, and
when it doesn’t exist. As in previous Hands-On Activities, spend quality time
trying to answer the questions before you break down and look up the answers.

1. Let f(x) 5
x2 2 3x 2 4

x + 1
. What is the domain of f(x)? Graph f(x).

c
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2. The table below gives x-values that are less than but increasingly closer and
closer to 21. These values are said to be approaching 21 from the left. Use your
calculator to fill in the missing values of f(x) for each x.

3. The y-value (or height) you are approaching as you near the x value of 21 in the
table above is called the left-hand limit of 21 and is written lim

x→− −1
f(x). What is the

left-hand limit of f(x)?

4. The table below gives x-values that are greater than but increasingly closer to
21. These values are approaching 21 from the right. Use your calculator to fill in
the missing values, as you did in Number 2.

5. The y-value (or height) you are approaching as you near the x value of 21 in the
table above is called the right-hand limit of 21 and is written lim

x→− +1
f(x). What is

the right-hand limit of f(x)?

6. Graph f(x) below, and draw the left- and right-hand limits as arrows on the graph.

7. When the left- and right-hand limits as x approaches 21 both exist and are equal,
the general limit at x 5 21 exists and is written lim

x→−1
f(x). Does the general limit

exist at x 5 21? If so, what is it?

8. Write a few sentences describing what a limit is and how it is found.

PART II: AP Calculus AB & BC Review72
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

TIP
Limits can help you

understand the behavior of
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9. Each of the following graphs has no limit at the indicated point. Use a graphing
calculator and your knowledge of limits to determine why the limits do not exist.

(a) lim
x→2

g(x) if g(x) 5
− + <

− ≥

⎧
⎨
⎪

⎩⎪

1
2

3 2

3 1 2

x x

x x

,

,

(b) lim
x→0

sin
2p

x

(c) lim
x→0

1
x4

10. Complete this statement: A limit does not exist if...

A.

B.

C.
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SELECTED SOLUTIONS TO HANDS-ON ACTIVITY 3.1

1. The domain is (2`,21) ∪ (21,`), or all real numbers excluding x 5 21, as this
makes the denominator zero and the fraction undefined. The graph looks like
y 5 x 2 4 with a hole at point (21,25).

3. The graph seems to be heading toward a height of 25, so that is the left-hand
limit.

5. The right-hand limit also appears to be 25.

6. The graph is identical to y 5 x 2 4, except f(x) is undefined at the point (21,25).
Even though the function is undefined there, the graph is still “headed” toward
the height (or limit) of 25 from the left and right of the point.

7. The general limit does exist at x 5 21, and lim
x→−1

f(x) 5 25.

8. A general limit exists on f(x) at x 5 c (c is a constant) if the left- and right-hand
limits exist and are equal at x 5 c. Mathematically, lim

x c→
f(x) 5 L if and only if

lim ( ) lim ( ) .
x c x c

f x f x L
→ →− +

= =

9. (a) lim
x→ −2

g(x) 5 2 and lim
x→ +2

g(x) 5 5. Because lim
x→ −2

g(x) Þ lim
x→ +2

g(x), the general

limit lim
x→2

g(x) does not exist, according to your conclusion from problem 8.

(b) As you get closer to x 5 0 from the left or the right, the function does not
approach any one height—it oscillates infinitely between heights, as demon-
strated in its graph on the following page.
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(c) As you approach x 5 0 from the left or the right, the function grows infinitely
large, never reaching any specified height. Functions that increase or de-
crease without bound, such as this one, have no general limit.
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EXERCISE 1

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

For problems 1 through 6, determine if the following limits exist, based on the graph
below of p(x). If the limits do exist, state them.

1. lim
x→ −2

p(x)

2. lim
x→ +3

p(x)

3. lim
x→3

p(x)

4. lim
x→ −5

p(x)

5. lim
x→ +5

p(x)

6. lim
x→−1

p(x)
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For problems 7 through 9, evaluate (if possible) the given limits, based on the graphs
below of f(x) and g(x).

7. lim
x→2

(f(x) 1 g(x))

8. lim
x→0

(f(x) z g(x))

9. lim
x

f x
g x→−

( )
( )1

ANSWERS AND EXPLANATIONS

1. This limit does not exist, as p increases without bound as x→21. You can also say
lim
x→ −2

p(x) 5 `, which means there is no limit.

2. You approach a height of 21. In this instance,
lim lim lim
x x x

p x p x p x
→ → →+ −

( ) = ( ) = ( ) = −
3 3 3

1

3. As stated in Number 2, the general limit exists at x 5 3 and is equal to 21 (since
the left- and right-hand limits are equal to 21).

4. lim
x→ −5

p(x) 5 1

5. lim
x→ +5

p(x) 5 21. Notice that lim
x→ +5

p(x) cannot exist.

6. lim
x→−1

p(x) 5 lim
x→−1

p(x) 5 0. Thus, the general limit, lim
x→−1

p(x) 5 0. Even though the
function is undefined at x 5 21, p is still headed for a height of 0, and that’s
what’s important.

7. lim
x→2

(f(x) 1 g(x)) 5 (21 1 1) 5 0

8. lim
x→0

(f(x) z g(x)) 5 (0 z 0) 5 0

9. Although lim
x→−1

g(x) appears to be approximately 1
4 1

, lim
x

f x
→−

( ) does not exist. There-

fore, lim
x

f x
g x→−

( )
( )1

cannot exist.
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EVALUATING LIMITS ANALYTICALLY
At this point in your mathematics career, you possess certain polished skills. For
example, if asked “How many is 4 1 5?” you would not need nine apples in order to reach
a solution. In the same way, you can evaluate most limits without actually looking at a
graph of the given function. In fact, you don’t need fruit of any kind to evaluate limits
analytically. Instead, you need to learn the three major methods of finding limits:
substitution, factoring, and the conjugate methods.

Remember that limits answer the question “Where is a function heading?” Luckily
for math nerds all over the world (like me), a function usually reaches the
destination for which it was heading. In such cases, you can use the substitution
method for evaluating limits. It should be the first method you try in every limit
problem you encounter.

Example 1: Evaluate the following limits:

(a) lim
x→2

(x2 2 4x 1 9)
Substitute x 5 2 into the function to get 22 2 4 z 2 1 9 5 5. Thus,
lim
x→2

(x2 2 4x 1 9) 5 5. That’s all there is to it.

(b) lim
x

x

→π
2

2 z cot 3x

Substitution is again the way to go:

π
π2

2
3

2
• cot

π
π

π4

3
2

3
2

•
cos

sin

π
4

0

1
•

−
5 0

If all limits were possible via direct substitution, however, you would have done limits
in basic algebra, and everyone would, in general, be happier. Sometimes, substitution
will not work, because the result is illegal. For example, consider the function with

which you experimented in Hands-On Activity 3.1: lim
x→−1

x x
x

2 3 4
1

− −
+ . If you try direct

substitution, the result is −( ) − −( ) −
− + = + −

− +
1 3 1 4

1 1
1 3 4

1 1

2
=

0
0

. The technical term for a

result of
0
0

is indeterminate, which means that you cannot determine the limit using

this method. (And you were just starting to feel confident...) Luckily, just in the knick
of time, in rides the factoring method of evaluating limits on a shiny white steed.
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NOTE
The only appreciable

difference between

x2 2 3x 2 4
x + 1

and x 2 4 is that

x2 2 3x 2 4
x + 1

is undefined

when x 5 21. Though

technically unequal, the

functions share identical

limit values everywhere.
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Example 2: Evaluate lim
x→−1

x2 2 3x 2 4
x + 1

Solution: The factoring method entails factoring the expression and then simplifying

it. This numerator factors easily, giving you lim
x→−1

x x
x

−( ) +( )
+

4 1
1

. Next, cancel the common

factors in the fraction to get lim
x→−1

(x 2 4). Therefore, lim
x→−1

x x
x

−( ) +( )
+

4 1
1

5 lim
x→−1

(x 2 4).

Although substitution did not work before, it certainly will in the new expression, so
lim
x→−1

(x 2 4) 5 21 2 4 5 25, the same result you reached in Activity 3.1. Huzzah!

The last limit evaluation method has a very specific niche in life—it attacks radical
expressions in limits. This makes deciding to apply the conjugate method relatively
easy. This technique is based on a simple complex number concept you have most
likely already learned (although you won’t be using it to simplify complex numbers in
this application).

Example 3: Evaluate lim
x

x
x→

− −
−7

3 2
7

Solution: Substitution will result in the indeterminate answer
0
0

, and factoring isn’t

as fruitful as it was in Example 2. To evaluate this limit, multiply the fraction by the

conjugate of the radical expression divided by itself: x
x

− +
− +

3 2
3 2

.

x→7
lim x x

x x

− − − +

− − +

( ) ( )
( ) ( )

•

•

3 2 3 2

7 3 2

x→7
lim x

x x

− −

− − +

( )
( ) ( )•

3 4

7 3 2

x→7
lim x

x x

−
− − +( ) ( )•

7

7 3 2

It’s best to leave the denominator alone initially, as you can now cancel the common
(x 2 7) term to get

x→7
lim 1

3 2x − +

Now, substitution is possible, and the answer is

1

7 3 2

1

4 2

1

4− +
=

+
=
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The conjugate of the

complex number a 2 bi is

the complex number a 1

bi. To take the conjugate,

change the sign that

combines the terms to
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EXERCISE 2

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

DO NOT USE A CALCULATOR FOR PROBLEMS 1 THROUGH 6.

Evaluate the following limits, if they exist.

1. lim
x

x x x
x→

− −
−4

3 22 7 4
4

2. lim
x

x
x→

−
−9

3
9

3. lim
x

x x
x→

− −
+1

2 2 5
1

4. lim
x

x
x→−

+
+2

3 8
2

5. lim
,

,
x

f x f x
x

x
x

x
→

( ) ( ) =
−
− ≠

=

⎧
⎨
⎪

⎩⎪
4

2 5
5

4

0 4
 if 

6. lim
x

x
x→0

7. lim sin
x

x
x→0

1

ANSWERS AND EXPLANATIONS

1. Direct substitution results in the indeterminate form
0
0

and cannot be used. The

best option is factoring—doing so results in lim
x

x x x
x→

+( ) −( )
−4

2 1 4
4

. Eliminating

the common factor gives you lim
x→4

x(2x 1 1). Substitution is now allowed, and the
answer is 36.

2. Substitution (always your first method to attempt) fails. The presence of a radical
alerts you to use the conjugate method:

lim

lim

x

x

x x

x x

x
x x

→

→

−( ) +( )
−( ) +( )

−
− −( ) +( )

9

9

3 3

9 3

9
9 3

i

i
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TIP
While undertaking the

factoring or conjugate

methods, make sure to

leave the “ lim
x → c

” in front of

each successive line—the

limits of each step are

equal, but the functions

themselves are not

always equal.
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Notice that you have to factor a 21 out of (9 2 x) in the denominator to be able to
match the (x 2 9) in the numerator.

lim
x x→

−
+

−
+

−

9

1
3

1
9 3
1
6

3. Although you may want to apply factoring in this example because of the pres-
ence of polynomials, substitution works—don’t forget to try substitution first:

1 2 1 5
1 1

6
2

3
2 − ( ) −

+ = − = −

4. Because substitution fails and there are no radicals, factoring is the method to
use. In fact, the numerator is a sum of perfect cubes and factors easily.

lim

lim

x

x

x x x
x

x x

→−

→−

+( ) − +( )
+

− + = −( ) − −( ) +

+ + =

2

2

2

2 2

2 2 4
2

2 4 2 2 2 4

4 4 4 112

5. Don’t be distracted by the fact that f(4) 5 0. This does not mean that lim
x→4

f(x) 5 0.
If you graph the function, you’ll see that f(x) is not heading for a height (limit) of zero
when x 5 4. The graph is headed for the height defined by the rule that is true for

all x Þ 4. Substitution works for this function. So, the limit is 16 5
5 4

13 764−
− ≈ . .

6. None of your methods will apply in this problem, so you’ll need to draw a graph
(use a table of values):

Once you do, you’ll see that the left-hand limit at x 5 0 is 21 and the right-hand

limit at x 5 0 is 1; thus, there is no general limit, and lim
x

x
x→0

does not exist.

a
n

sw
e

rs
e

xe
rc

ise
s
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7. You currently have no good methods to evaluate this limit, so look at the graph as
x approaches 0 from the left and the right:

Visually, you can determine that the function approaches a limit (height) of zero
as you near x 5 0.

CONTINUITY
I have had some bad experiences at the movies. Perhaps you have also—right at the
good part of the film when everything’s getting exciting, the movie flickers off and the
house lights come up. An usher informs the crowd that they are experiencing technical
difficulties and that the movie should be up and running again in about 15 minutes. It
ruins the whole experience, because the smooth, flowing, continuous stream of events in
the film has been interrupted. In calculus, if a function experiences a break, then it, too,
is said to be discontinuous. Any hole or jump in the graph of a function prevents the
function from being classified as continuous. (Sometimes the sound in a theater
prevents you from enjoying the film, but volume is not discussed until Chapter 9.)

Mathematically, a function f(x) is said to be continuous at x 5 a if all three of the
following conditions are true:

(1) lim
x a→

f(x) exists

(2) f(a) exists

(3) lim
x a→

f(x) 5 f(a).

In other words, a function must be headed toward some height at x 5 a, and when you
reach x 5 a, the function must actually exist at the height you expected.
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Classifying functions as

continuous or discontinuous

is important, because the

continuity of a function is

often a prerequisite for

important calculus

theorems.
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Example 4: On what intervals is g(x) 5 x x x
x

3 2 17 15
3

− − −
+

continuous?

Solution: Visually, the graph is discontinuous at any hole or break, but a graphing
calculator shows no obvious holes or breaks—it looks like a parabola. However,
because g(x) is a rational (fractional) function, it will be undefined whenever the
denominator equals 0. Thus, g(x) is discontinuous at x 5 23, because g(23) does not
exist, and that breaks the second requirement for continuity. There must be a hole (or
point discontinuity) in the graph at x 5 23, even though it wasn’t obvious from the
graph. So, the intervals of continuity for g(x) are (2`,23) ∪ (23,`). Note that x 5 23
is the only discontinuity of the function—g is continuous at all other values of x.

In Example 4, it is still true that lim
x→−3

g(x) exists and is easily found (using the
factoring method) to be 16, even though the function doesn’t exist there. What if you
rewrote the function as follows?

h(x) 5

The new function, h, acts exactly as g did, except that h(23) 5 16. Redefining x 5 3
“fixes” the discontinuity in g(x), satisfies the final two continuity conditions that g did
not, and makes h a continuous function. Whenever you are able to redefine a finite
number of points like this and make a discontinuous function continuous, the function
is said to have had removable discontinuity. If it is not possible to “fix” the disconti-
nuity by redefining a finite number of points, the function is said to be nonremovably
discontinuous. If it is possible to “fix” the discontinuity, but you don’t feel like it, you
are said to be a lazy bonehead.

Example 5: What type of discontinuity is exhibited by r(x)5 x
x

+
−

2
42 ?

Solution: Factor the denominator to get r(x) 5
x

x x
+

+( ) −( )
2

2 2 . Clearly, r is undefined

for x 5 22 and 2, and, hence, these are the discontinuities. Next, it is important to

determine if lim
x→2

r(x) and lim
x→−2

r(x) exist, because if a limit exists at a point of

discontinuity, that discontinuity is removable. Remember: if no limit exists there, the
discontinuity is nonremovable. Using the factoring method of evaluating limits,

lim lim
x x

r x
x→− →−

( ) = − = − − = −
2 2

1
2

1
2 20

1
4
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However, lim
x→−2

r(x) results in
1
0

, which does not exist. Therefore, there is a point

discontinuity at x 5 22 and an infinite discontinuity at x 5 2. The graph of the
function verifies these conclusions.

Substitution is a shortcut method for classifying types of discontinuity of a function
that typically works very well. In the previous example, you substituted x 5 2 into

r and got
1
0

. In the shortcut, a number divided by zero suggests that a vertical

asymptote exists there, making it an infinite (or essential) discontinuity (the two

terms are interchangeable). Substituting x 5 22 results in
0
0

, which suggests point

discontinuity.

Example 6: Find the value of k that makes f(x) continuous, given

f(x) 5

Solution: Because f(x) is defined as a radical and a polynomial function, the two
pieces of the graph will be continuous. The only possible discontinuity is at x 5 2,
where the graphs will have to meet. Otherwise, a jump discontinuity will exist. You
know that f(2) 5 =11, according to the function. In order for a limit to exist at x 5 2,
the other rule in the function x2 2 x 1 k must also reach a height of =11 when x 5 2.

(2)2 2 2 1 k 5 11

4 2 2 2 11 5 2k

2(2 2 11 ) 5 k

k ' 1.3166
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Only point discontinuities

are removable, because a

limit exists.

TIP
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The graph below of f(x) visually verifies our result—no holes, gaps, or jumps when
x 5 2:
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EXERCISE 3

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

DO NOT USE A GRAPHING CALCULATOR FOR ANY OF THESE PROBLEMS.

For problems 1 through 3, explain why each function is discontinuous and determine if
the discontinuity is removable or nonremovable.

1. g(x) 5

2. b(x) 5
x x
x x

3 1
3 5 22

+( )
− −

3. h(x) 5 x x
x

2 10 25
5

− +
−

4. Describe the continuity of the 15 functions you were to memorize in Chapter 2
without consulting any notes.

5. Draw the graph of a function, f(x), that satisfies each of the following conditions.
Then, describe the continuity of the function:

• lim
x→2

f(x) 5 21

• lim
x→ +0

f(x) 5 2`

• lim
x→ −0

f(x) 5 `

• f(2) 5 4

• f(21) 5 f(3) 5 0

• f increases on its entire domain

6. Find the value of k that makes p continuous if p(x) 5 .

ANSWERS AND EXPLANATIONS

1. g is made up of two polynomial (linear) segments, both of which will be continu-
ous everywhere. However, the graph has a jump discontinuity at x 5 3. Notice

that lim
x→ −3

g(x) 5 3 (you get this by plugging 3 into the x , 3 rule). The right-hand

limit of g(x) at x 5 3 is 2. Because the left- and right-hand limits are unequal, no
general limit exists at x 5 3, breaking the first condition of continuity. Further-
more, because no limit exists, the discontinuity is nonremovable.

2. Because b is rational, b will be continuous for all x in the domain. However,

x 5 2
1
3

and 2 are not in the domain. Using the factoring method of evaluating

limits, you get that lim
x

x
x→− − =

1
3

2
1
7 , so x 5 2

1
3

is a removable discontinuity. No

limit exists at x 5 2, an essential discontinuity.
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3. The numerator of the fraction is a perfect square, so simplify to get

h(x) 5 x
x

−( )
−

5
5

2

Remember that the square root function has a positive range, so the numerator
must be positive:

h(x) 5
x
x

−
−

5
5

It helps to think about this graphically. After substituting some values of x into h,
you get the following graph:

Thus, h has a jump discontinuity at x 5 5.

4. y 5 x: continuous on (2`,`)

y 5 x2: continuous on (2`,`)

y 5 x3: continuous on (2`,`)

y 5 =x: continuous on [0, `)

y 5 UxU : continuous on (2`,`)

y 5
1
x
: continuous on (2`,0) ∪ (0,`)

y 5 [[x]]: continuous for all real numbers x, if x is not an integer

y 5 ex: continuous on (2`,`)

y 5 ln x: continuous on (0,`)

y 5 sin x: continuous on (2`,`)

y 5 cos x: continuous on (2`,`)

y 5 tan x: continuous for all real numbers x, if x ≠ −… , 3
2
π , 2

π
2

, π
2

, 3
2
π ,… (which

can also be written x n≠ +( )2 1
2

iπ , when n is an integer)

y 5 cot x: continuous for all real numbers x if x Þ...,2p,0,p,... (which can also be
written x Þ np, when n is an integer)

y 5 sec x: continuous for all real numbers x, x n≠ +( )2 1
2

iπ , when n is an integer

y 5 csc x: continuous for all real numbers x, x Þ np, when n is an integer
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5. There is some variation in the possible answer graphs, but your graph should
match relatively closely.

6. Just like Number 1 in this problem set, the x ≤ 4 rule evaluated at 4 represents
lim
x→ −4

, and the x . 4 rule evaluated at 4 represents lim
x→ +4

. In order for p to be
continuous, these limits must be equal.

lim
x→ +4

p(x) 5 2(4)2 1 11(4) 2 23 5 5

Therefore, lim
x→ −4

p(x) 5 5

lim
x→ −4

p(x) 5 2U4 2 2U 1 k 5 5

22 1 k 5 5

k 5 7

HANDS-ON ACTIVITY 3.2: THE EXTREME VALUE THEOREM
This and the next activity introduce you to two basic but important continuity theorems.
Note that both of these are called existence theorems. They guarantee the existence of
certain values but do not tell you where these values are—it’s up to you to find them, and
they’re always in the last place you look (with your car keys, your wallet from two years
ago, and the words to that Bon Jovi song you used to know by heart).

1. Given f(x) 5 x4 2 3x 2 4, justify that f(x) is continuous on the x interval [21,2].
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for trigonometric functions
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up their domains, as

trigonometric functions are
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2. Draw the graph of f(x). Use a graphing calculator if you wish.

3. The maximum height reached by f(x) on the interval [21,2] is called the maxi-
mum of f on the interval. At what value of x does f(x) reach its maximum, and
what is that maximum value?

4. To calculate the minimum value of f(x), use the 2nd→Trace→minimum function
on your calculator. Set bounds to the left and the right of the minimum and make
a guess, as you did when finding x-intercepts in Chapter 2. What is the minimum
value of f(x) on [21,2]?

5. At what x-value does the minimum occur? (Hint: The value is displayed when
you calculate the minimum with the calculator.)

6. Graph g(x) 5
1
x

on the axes below. Can you find a maximum and a minimum for

g(x) on the x interval (1,5)?

7. Why do your results for f and g differ?
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8. Graph h(x) 5 x x x
x

3 24 5− + below. Why is there no maximum on [0,3]?

9. Complete the Extreme Value Theorem, based on your work above:

Extreme Value Theorem: Any function, f(x), will have a maximum and a
minimum on the ______________ interval ___________ as long as f(x) is
______________.

10. Visually speaking, where can maximums and minimums occur on a graph?

SELECTED SOLUTIONS TO HANDS-ON ACTIVITY 3.2

1. f is a polynomial whose domain is (2`,`), and polynomials are continuous on
their entire domain (remember the red parrot?)

3. f reaches its highest point on [21,2] when x 5 2, and f(2) 5 6. Thus, f has a
maximum of 6.

4. f has a minimum of 26.044261. If you can’t get this, use a left bound of 0, a right
bound of 2, and a guess of 1.

5. The minimum occurs at x 5 .9085621.

6. You cannot find a maximum or a minimum. Although g(1) 5 1 and g(5) 5
1
5

would

be the maximum and minimum values, respectively, they are not included on the
open interval (1,5). You cannot choose an x value whose function value is higher
or lower than every other in the interval—try it!

7. You used a closed interval with f and an open interval with g.

8. h is removably discontinuous at x 5 0, and because the maximum would have
occurred there, the function will have no maximum.
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9. Any function, f(x), will have a maximum and minimum on the closed interval
[a,b] as long as f(x) is continuous. If the interval is not closed or the function is
discontinuous, the guarantees of the Extreme Value Theorem do not apply.

10. The maximum and minimum (together called extrema, since they represent the
extreme highest and lowest points on the graph) will occur at “humps” on the
graph (like the minimum of f) or at the endpoints of the interval (like f’s maxi-
mum).
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EXERCISE 4

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE YOUR CALCULATOR FOR ALL OF THESE PROBLEMS.

For each of the following functions and intervals, determine if the Extreme Value
Theorem applies, and find the maximum and minimum of the function, if possible.

1. y 5 tan x, on [0,p].

2. y 5 , on [2p, − π
4

].

3. y 5 ex 2 x3, on [22,4].

4. y 5 ln (x 2 1), on [2,5].

ANSWERS AND EXPLANATIONS

1. The Extreme Value Theorem (EVT) does not apply because tan x is discontinuous

on the given interval, specifically at x 5
p

2
. No maximum or minimum values are

possible on the closed interval, as the function both increases and decreases

without bound at x 5
p

2
.

2. The function is continuous on the interval. Both parts of the function are trigo-

nometric and, therefore, continuous on their domain, and [2p,2
p

4
] is included in

the domain of each. The only possible discontinuity comes at x 5 2
p

2
, but both

functions have the same value there, guaranteeing that the function is continu-
ous. See the below graph—there is no break or jump. The EVT will apply. The
maximum is 0 and occurs at x 5 2p, as the function decreases for the remainder

of the interval. The minimum is 2
2

1 414≈ − . and occurs at x 5 2
p

4
.
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In problem 2, a common

mistake is to say that the

maximum of the function is

2, but that is only the
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3. The EVT will not apply, but the function still has a maximum and minimum. The
maximum occurs at the point (22,8.135), and the minimum occurs at the point
(3.733,210.216). (The minimum is found using the minimum function on your
graphing calculator.)

4. Although ln (x 2 1) is discontinuous at x 5 1, ln (x 2 1) is continuous on the given
interval [2,5], so the EVT will apply. Because ln x is monotonic and increasing,
the minimum (0) will occur at the beginning of the interval, and the maximum
(1.386) will occur at the end of the interval.

HANDS-ON ACTIVITY 3.3: THE INTERMEDIATE
VALUE THEOREM
Much like the Extreme Value Theorem guaranteed the existence of a maximum and
minimum, the Intermediate Value Theorem guarantees values of a function but in a
different fashion. Once again, continuity is a cornerstone of this theorem.

1. Consider a continuous function f(x), which contains points (1,24) and (5,3). You
are not given an equation that defines f(x)—only these points.

Draw one possible graph of f(x) on the axes above.

2. Decide which of the following must occur between x 5 1 and x 5 5. Justify your
answer.
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(A) maximum
(B) minimum
(C) root
(D) y-intercept

3. Which of the following height(s) is the function guaranteed to reach, and why?

(A) 25
(B) 21
(C) 2
(D) 5

4. Draw three different graphs of f(x) that are discontinuous and, therefore, do not
fulfill the conclusion you drew in Number 2.

5. Based on your work above and the diagram below, complete the Intermediate
Value Theorem below.

Intermediate Value Theorem: Given a function f(x) that is ___________ on the
interval _______, if d is between _____ and ______, then there exists a c between
_____ and _____ such that f(c) 5 ______.
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6. Rewrite the Intermediate Value Theorem in your own words to better illustrate
its meaning.

7. Give one real-life example of the Intermediate Value Theorem’s guarantees.

SOLUTIONS TO HANDS-ON ACTIVITY 3.3

1. There are many possible answers, but here’s one:

2. The correct answer is (C), root. If the function is continuous, it must cross the
x-axis at some point in the interval. A continuous function will have both a
minimum and maximum value. If the function begins with negative values at
x 5 1 but eventually has positive values at x 5 5, the function had to equal zero
(change from positive to negative) somewhere in [1,5].

3. Much like the function must reach a height of zero (as described in Number 2
above), the function must also reach all other heights between 24 and 3. Thus,
the answer is both (B) and (C).

4. There are numerous ways to draw discontinuous functions that will not reach a
height of zero. Below are three possible graphs. This highlights the importance of
f(x) being continuous.

5. Given a function f(x) that is continuous on the interval [a,b], if d is between f(a)
and f(b), then there exists a c between a and b such that f(c) 5 d.
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height at least once. Note
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6. If a continuous function begins at height f(a) when x 5 a and ends at height f(b)
when x 5 b, then the function will cover every single height between f(a) and f(b)
at some x between a and b.

7. If I am two feet tall when I am 18 months old and 6 feet tall when I am 27 years
old, then at some age between 18 months and 27 years, I was 4 feet tall. (In fact,
since height according to age is continuous—you don’t suddenly jump from 3 to 4
feet tall—I will cover all heights between 2 and 6 feet sometime in that time
interval.)
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EXERCISE 5

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

DO NOT USE A CALCULATOR FOR PROBLEMS 1 AND 2.

1. On what interval must the function g(x) 5 2x2 1 7x 2 1 intersect the line y 5 7?

(A) [28,26]
(B) [24,21]
(C) [0,2]
(D) [6,9]

2. Given a function h(x) continuous on [3,7] with h(3) 5 1 and h(7) 5 9, which of the
following must be true?

I. There exists a real number p such that h(p) 5 5, 1 , p , 9

II. h(5) 5 5

III. h has a maximum and a minimum on [3,7]

(A) I only
(B) III only
(C) I and III
(D) I, II, and III

YOU MAY USE YOUR CALCULATOR FOR PROBLEM 3.

3. Given the continuous function f(x) 5 ln (2x) 1 cos x, prove that there exists a

c ∈ [2p,2
p

2
] such that f(c) 5 .240 and find c.

ANSWERS AND EXPLANATIONS

1. This question is only the Intermediate Value Theorem (IVT) rephrased. Using the
terminology of problem 5 from the hands-on exercise, 7 is the d value between
g(a) and g(b). Each of the interval choices is a candidate for [a,b]. You should plug
each pair into the function to see if the resulting pair f(a) and f(b) contains 7.
Choice (C) results in f(a) 5 21, f(b) 5 21. Clearly, 7 falls between these numbers;
this is not true for any of the other intervals.
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2. It helps to draw the situation in order to visualize what’s being asked.

The correct answer is (C). Statement I is true. The IVT guarantees that p will
exist on the interval [3,7]. So, if p exists on [3,7], p will definitely exist on [1,9], as
[3,7] is merely a subset of [1,9]. Statement II is not always true; in fact, it’s not
true in the representation of h in the diagram above . Statement III is true by the
Extreme Value Theorem since h is continuous on a closed interval.

3. To apply the IVT (the prerequisites of the theorem are met as f is continuous on

a closed interval), you note that f(2p) ' .1447 and f(2
p

2
) ' .4516. As .240 falls

between these values, a c ∈ [2p,2
p

2
] such that f(c) 5 .240 is guaranteed. To find

c, set f(x) 5 .240 and solve with your calculator; c 5 22.0925.
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LIMITS INVOLVING INFINITY
You can learn a lot about a function from its asymptotes, so it’s important that you can
determine what kind of asymptotes shape a graph just by looking at a function.
Remember that asymptotes are lines that a graph approaches but never reaches, as the
graph stretches out forever. The two kinds of asymptotes with which you should concern
yourself are vertical asymptotes and horizontal asymptotes; in the graph below of g(x),
x 5 22 is a vertical asymptote and y 5 4 is a horizontal asymptote.

lim

lim

lim

x

x

x

f x

f x

f x

→−

→−

→∞

−

+

( ) = ∞

( ) = −∞

( ) =

2

2

4

Some students are confused by this diagram, since g(x) actually intersects the hori-
zontal asymptote. “I thought a graph can’t hit an asymptote,” they mutter, eyes filling
with tears. A graph can intersect its asymptote, as long as it doesn’t make a habit of it.
Even though g intersects y 5 4 at (2,4), g only gets closer and closer to y 5 4 after that
(for x . 2), and g won’t intersect the line out there near infinity—it’s the infinite
behavior of the function that concerns us. It’s the same with the criminal justice
system—if you cross paths with the law a couple of times when you’re very young, it’s
not that big a deal, but as you get much older, the police tend to frown upon your
crossing them again.

Vertical asymptotes are discontinuities that force a function to increase or decrease

without bound to avoid an x value. For example, consider the graph of f(x) 5
1

x 2 1
.
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In this case, the function has an infinite discontinuity at x 5 1. As you approach
x 5 1 from the left, the function decreases without bound, and from the right, you
increase without bound. In general, if f(x) has a vertical asymptote at x 5 c, then
lim
x c→ f(x) 5 ` or 2`. This is commonly called an infinite limit. This terminology is

slightly confusing, because when f has an infinite limit at c, f has no limit at c!

Example 7: Determine which discontinuities of p(x) 5
x

x x
+

+ +
2

5 62 are caused by
vertical asymptotes.

Solution: To begin, factor p(x) to get
x

x x
+

+( ) +( )
2

3 2 . Because the denominator of a
fraction cannot equal zero, p is discontinuous at x 5 22 and 23. However, using the

factoring method, lim
x→−2

p(x) exists and equals 1
2 3− + 5 1. Therefore, the discontinuity

at x 5 22 is removable and not a vertical asymptote; however, x 5 23 is a vertical

asymptote. If you substitute x 5 23 into the p, you will get 2
1
0

. Remember, a constant

divided by zero is the fingerprint of a vertical asymptote.

Horizontal asymptotes (or limits at infinity) are limiting heights that a graph
approaches as x gets infinitely large or small. Consider the graph below of
s(x) 5

4 1
2 8

2

2
x
x

+
−

.

As x gets infinitely large (the extreme right side of the graph), the function is
approaching a height of 2; in fact, the same is true as x gets infinitely negative (the

left side of the graph). In this case, we write lim
x→∞

s(x) 5 lim
x→−∞ s(x) 5 2. The AP

Calculus test often features problems of the type lim
x→∞

f~x!

g~x!
, and there is a handy trick

to finding these limits at infinity of rational functions. We’ll begin with a generic
example to learn the technique.

Example 8: Evaluate lim
x→∞

f~x!

g~x!
.

Solution: Let A be the degree of f(x) and B be the degree of g(x).

• If A . B, then the limit is `.

• If B . A, then the limit is 0.

• If A 5 B, then the limit is the ratio of the leading coefficients of f(x) and g(x).
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This technique only works for rational functions when you are finding the limit as x
approaches infinity, and although it may sound tricky at first, the method is quite
easy in practice.

Example 9: Evaluate the following limits.

(a) lim
x→∞

x4 2 3x2 + 1
x2 + 5

Because the degree of the numerator is greater than the degree of the denominator
(4 . 2), the limit is `. In other words, the function does not approach a limiting height
and will reach higher and higher as x increases.

(b) lim
x→∞

x x x

x x x

6 3

5 4 3

5 2 7

4 11

− + +

+ −

The degree of the numerator is 3, since =x6 5 x3, and the degree of the denominator
is 5. Since the denominator’s degree is higher, the limit is 0.

(c) lim
x→∞

2 7 2

5 3 1

3 4

4 2

x x

x x

− +

+ +
The degrees of the numerator and denominator are both 4, so take the ratio of those

terms’ coefficients to get a limit of 2
7
5

.

Example 10: Give the equations of the vertical and horizontal asymptotes of

k(x) 5
2 5 12

12 32

2

2

x x

x x

− −

− +

Solution: The horizontal asymptotes are easy to find using the technique of the
previous two examples. The degrees of the numerator and denominator are equal, so

lim
x→∞

k(x) 5
2
1

5 2. Therefore, k has horizontal asymptote y 5 2. In order to find any

vertical asymptotes, begin by factoring k:

k(x) 5
x x

x x

−( ) +( )
−( ) −( )
4 2 3

4 8

From this, you can see that k has discontinuities at x 5 4 and 8. To determine which

represents an asymptote, substitute them both into k. k(4) 5
0
0

and k(8)5
76
0

. Thus,

x 5 8 is an infinite discontinuity, and x 5 4 is a point discontinuity, as verified by the
graph.
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EXERCISE 6

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

1. Explain how horizontal and vertical asymptotes are related to infinity.

2. If m is an even function with vertical asymptote x 5 2 and lim
x→∞

m(x) 5 0, draw a
possible graph of m(x).

3. Evaluate:

(a) lim
x→∞

1 4 6

2 3 12

3 4

5 3

− +

− +

x x

x x

(b) lim
x→∞

5 7 4

3 8 7

3

2 6

x x

x x x

+ +

+ +

4. Given f(x) 5
bx x

x a

2

2 2

14 6

2

+ +

−( ) , a and b are positive integers, f has horizontal asymp-

tote y 5 2, and f has vertical asymptote x 5 3:

(a) Find the correct values of a and b.
(b) Find the point of removable discontinuity on f.

5. Draw a function g(x) that satisfies all of the following properties:

• Domain of g is (2`,22) ∪ (22,2`)

• g has a nonremovable discontinuity at x 5 22

• Range of g is [23,`)

• g has one root: x 5 24

• lim
x→− −2

g(x) 5 3

• lim
x→−∞ g(x) 5 21

• lim
x→∞

g(x) 5 1

ANSWERS AND EXPLANATIONS

1. When a function approaches the vertical asymptote x 5 c, the function values

either increase or decrease without bound (infinitely); for example: lim
x c→ + f(x) 5 `.

A horizontal asymptote occurs when a function approaches a fixed height forever

as x approaches infinity (for example: lim
x→∞

f(x) 5 c).
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2. Because m is even, it must be y-symmetric, and, therefore, have a vertical
asymptote at x 5 22 as well. Furthermore, lim

x→−∞ m(x) must also equal 0. Any
solution must fit those characteristics; here is one:

3. (a) Because the degree of the denominator is greater than the degree of the
numerator, the limit at infinity is zero.
(b)
The numerator and denominator are both of degree 3 (since =x6 5 x3), so

take the corresponding coefficients to find the limit of
5
7

. Note that the
radical remains around the 7.

4. (a) If f has vertical asymptote x 5 3, we can find a. Remember the vertical
asymptote fingerprint: a zero in the denominator but not in the numerator.
The denominator equals zero when 32 2 a2 5 0.

32 2 a2 5 0
a2 5 9
a 5 3 (since a has to be positive according to the problem)
Substitute a into the fraction to give you

bx x

x

2

2

14 6

2 18

+ +

−
If f has horizontal asymptote y 5 2, then lim

x→∞
f(x) 5 2. The numerator and

denominator have the same degree, so the limit is b
2

5 2. Thus, b 5 4.

(b) Substituting both b and a gives you

4 14 6

2 18

2

2

x x

x

+ +

−
Factor completely to get

2 2 7 3

2 9

2 1 3

3 3

2

2

x x

x

x x

x x

+ +( )
−( ) =

+( ) +( )
+( ) −( )

The (x 1 3) factor can be eliminated, meaning that lim
x→−3

f(x) 5
5
6

. Since x 5

23 is a discontinuity at which a limit exists, f is removably discontinuous at

the point (23,
5
6

).
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5. This problem is pretty involved, and all solutions will look similar to the graph
below.

In order to get the range of [23,`), it’s important that lim
x→− +2

g(x) 5 `. The graph

must also reach down to and include the height of 23, although it need not
happen at (26,23) as on this graph.

SPECIAL LIMITS
You have a number of techniques available to you now to evaluate limits and to interpret
the continuity that is dependent on those limits. Before you are completely proficient at
limits, however, there are four limits you need to be able to recognize on sight. (BC
students have still another topic to cover concerning limits—L’Hôpital’s Rule—but that
occurs in Chapter 5.) I call these “special” limits because we accept them without formal
proof and because of the special way they make you feel all tingly inside.

Four Special Limits

1. lim
x→∞

c
xn 5 0, if c is a nonzero constant and n is a positive integer

Justification: In the simplest case (c 5 1, n 51), you are considering lim
x→∞

1
x
. You should

know the graph of
1
x

by heart, and its height clearly approaches zero as x approaches

infinity. The same will happen with any c value. Remember that the denominator is
approaching infinity, so it is getting very large, while the numerator is remaining
fixed. The denominator will eventually get so large, in fact, that no matter how large
the numerator is, the fraction has an extremely small value so close to zero that the

difference is negligible. This limit rule works the same way for other eligible n values.

Consider lim
x→∞

2
7
3x

. The denominator is growing larger more quickly than in the

previous example, while 7 remains constant. Clearly, this limit is also equal to 0.

2. lim
x→∞ S1 1

1
xDx

5 e

Justification: Using the first special limit rule, lim
x→∞ S1 1

1
xD 5 1 1 0 5 1. Technically,

S1 1
1
xD is a number very close to, but not quite, one. That small difference becomes

magnified when raised to the x power, and the result is e. To visually verify that the
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limit is accurate, use your graphing calculator to calculate S1 1
1
xDx

for a very large

value of x. For example, if x 5 100,000,000, S1 1
1
xDx

5 2.718281815, which is ap-

proximately the value of e, accurate to seven decimal places.

3. lim
a→0

sin a
a

5 1

Justification: This is easily proven by L’Hôpital’s Rule, but that is outside the spec-
trum of Calculus AB, so ABers will have to satisfy themselves with the graph of
y 5

sinx
x as proof.

Note that the formula above uses a instead of x, because the rule holds true for more
than just sinx

x . For example, you can set a 5 5x3 and the formula still works:

lim
x→0

sin5
5

3

3
x

x
5 1.

4. lim
a→0

cos a
a

− 1
5 0

Justification: Again, L’Hôpital’s Rule makes this easy, but the graph will suffice as
proof; also, any value of a will make this true.

Example 11: Evaluate each of the following limits.

(a) lim
x→∞ S3 2

4
x

+
8
x2D
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You can do each of these limits separately and add the results:

lim
x→∞

3 5 3, lim
x→∞

4
x

5 0, lim
x→∞

8
2x

5 0

lim
x→∞

3 2
4
x

1
8

2x
5 3 1 0 1 0 5 3

The last two limits are possible because of Special Limit Rule 1.

(b) lim
x→∞ S5

x3 +
4

x22D
You can rewrite this as

lim
x→∞

5
3x

1 4x2

Although
5
x3 has a limit of 0 as x approaches infinity, 4x2 will grow infinitely large. The

resulting sum will have no limiting value, so the limit is 0 1 ` 5 `. (No limit exists.)

(c) lim
x→0

sin3x
x

This is not quite the form of Special Limit Rule 3—the 3x and x have to match.

However, if you multiply the fraction by
3
3

, you get

lim
x→0

z
sin3x

3x

Now, Special Limit Rule 3 applies:

lim
x→0

3 z
sin3x

3x
5 lim

x→0
3 z 1 5 3

Notice that 3 z 1 is not affected by the limit statement at all in the last step; the x may
be approaching 0, but there are no x’s left in the problem!

(d) lim
x→∞

2 z S1 1
1
xDx

1 cos
p

x

By Special Limit Rule 2, lim
x→∞

2 z S1 1
1
xDx

5 2 z e. Note that
p

x
will follow Special Limit

Rule 1, since p is a constant. Therefore, you get:

lim
x→∞

cos
p

x
5 lim

x→∞
cos 0 5 1

Therefore, the solution is 2e 1 1.

Example 11 demonstrates that the presence of addition and subtraction does not
affect the outcome of the limit. Each piece of the limit can be done separately and
combined at the end.
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EXERCISE 7

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

DO NOT USE A GRAPHING CALCULATOR FOR ANY OF THESE PROBLEMS.

1. lim
x→∞

(4x2 2 x 1 18)

2. lim
x→0

1 7−cos x

x

3. lim
x→0

3 3

9

2

2

cosx

x

−

4. lim
x→∞

4 2

3

x

x

−

ANSWERS AND EXPLANATIONS

1. lim
x→∞

(4x2 2 x 1 18) 5 `. Some texts propose very complicated means to prove this.
However, the question is very easy if you consider the graph of y 5 4x2 2 x 1 18—it
is a parabola facing upward. Therefore, lim

x→∞
(4x2 2 x 1 18) 5 `. It is also correct to

say that no limit exists because the function increases without bound.

2. This is almost of the form lim
x→0

cosx
x

−1. Multiply the numerator and denominator
by 7, and factor out a negative to make it match that form:

lim cos
x

x
x→

− −
•

0

7 1 7
7

lim cos
x

x
x→

−( ) −
•

0
7 7 1

7

27 z 0 5 0

3. Again, some minor massaging is necessary to use Special Limit Rule 4:

lim
cos

x

x

x→

−( )
0

2

2

3 1

9

lim cos
x

x
x→

•
−

0

2

2
1
3

1

1
3

z 0 5 0

4. This fraction can be rewritten to give you lim
x x→0

4
5 . According to Special Limit

Rule 1, this is of form c
x n , so the limit is 0.
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TECHNOLOGY: EVALUATING LIMITS WITH A GRAPHING
CALCULATOR
You can sum up the whole concept of limits in one statement: A limit is a height toward
which a function is heading at a certain x value. With this in mind, a graphing calculator
greatly simplifies the limit process. Many times, the function you are given is bizarre
looking, and its graph is beyond the grasp of mere mortal men and women in the time
allotted to answer an AP question. The majority of these limit questions appear on the
non-calculator portion of the AP test, forcing you to use the substitution, factoring, and
conjugate methods to reach an answer. However, evaluating limit problems will some-
times seep into the calculator-active section like a viscous, sticky goo. In these cases,
limits are no match for you at all, as the calculator affords you numerous tools in your
dual quests for a 5 on the AP test and peace in the universe.

Example 12: Evaluate lim
x

x
x→

−
−9

3
9

using your calculator.

Solution: You solved this problem in an earlier exercise using the conjugate method

(which works just fine) and got 2
1
6

. Graph it on your calculator—it looks almost like a

straight line (but it’s definitely not linear).

Use the [2nd]→[Trace]→“value” command on your calculator to find the value of the
function at x 5 9. The corresponding y value should come out blank! This makes
sense, because 9 is not in the domain of the function. Therefore, substitution does not
work. However, we can use the calculator to substitute a number very close to 9. This
value is a good approximation of the limit for which you are looking. Again, use the
[2nd]→[Trace]→“value” function of your calculator to evaluate the function at
x 5 8.9999.
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The calculator gives a limit of x 5 2.1666671. Using other x values even closer to 9
(e.g., 8.99999999999), the approximation looks more like 2.16666666667, which is

approximately 2
1
6

, the exact value we received from using the conjugate method.

Example 13: Show that lim
x

x
x x→∞

−
+ +

=3 7
4 2 5

3
5

2

2 using your calculator.

Solution: Using the rule for rational functions at infinity, the limit is clearly
3
5

as the

degrees of the numerator and denominator are the same. The graph certainly appears
to approach that height as x approaches both ` and 2`.

To verify this numerically, press [Trace] and repeatedly press the right arrow key. The

function’s height will slowly get closer to
3
5

5 .6.
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Another option open to you is the [2nd]→graph (or [Table]) function of the calculator,
which lists function values quickly.

Clearly, the function approaches a limiting height of .6 as x approaches `.
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EXERCISE 8

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

1. If lim
x a→ f(x) exists, what must be true?

2. Given p(x) 5
x x b

x x

2

2

4

2 7 15

+ +( )
+ −( ) , find the value of b that ensures p is nonremovably

discontinuous only once on (2`,`).

3. What conditions must be met if f(x) is continuous at x 5 c?

4. lim
s→−∞

~5s + 1!~s 2 4!

~26 + 3s 2 7s2 + 2s3!

5. Design two functions, g(x) and h(x), such that g(x) 1 h(x) 5 4x2 1 3x 1 1 and

lim
x→∞

g x

h x
( )
( ) 5 3.

6. What three function behaviors prevent a limit from existing?

7. What value of a makes k continuous if k(x) 5

8. lim
x→∞

2 4

2 3
2x

x
x

−

−
9. If d(x) is defined by the graph below, answer the following questions:

(a) lim
x→0

d(x)

(b) lim
ñx→ 1

d(x)

(c) lim
ñx→ 1

d(x)

(d) lim
x→2

d(x)

(e) lim
x→ +4

d(x)

(f) List all x values where d is discontinuous.
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(g) Which of your answers to part (f) represents removable discontinuities,
and why?

(h) What value(s) of b make the following statement true?
lim
x

d x
→

( ) = ∞
β

10. lim
x→2

sin x
x

11. Give the equations of the horizontal and vertical asymptotes of

g(x) 5
3 2
6

2 2 2

2 2 2
a x abx b
a x abx b

+ −
− −

, if a and b are real numbers.

12. lim
x→∞

4 5 1 22x x x− + −⎛
⎝

⎞
⎠

13. The population, y, of the bacteria Makeyoucoughus hurtyourthroatus is modeled
by the equation y 5 50e.1013663t, where t is days and y is the number of colonies of
bacteria. Use the Intermediate Value Theorem to verify that the bacteria will
reach a population of 100 colonies on the time interval [4,7].

14. If f(x) and g(x) are defined by the graphs below, evaluate the following limits (if
possible):

(a) lim
x→2

(f(x) 2 3g(x))

(b) lim
x→−3

f x
g x

( )
( )

(c) lim
x→1

g(f(x))

15. Find the values of c and d that make m(x) continuous if

m(x)5

16. James’ Diabolical Challenge Problem:

Given j(x) 5 , j(2) 5 1, and j(x) is everywhere continuous,

find A and B.
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ANSWERS AND EXPLANATIONS

1. The three conditions for a limit to exist are: (1) lim
x a→ + f(x) exists, (2) lim

x a→ − f(x) exists,
and (3) they are equal.

2. The denominator of p factors to (2x 2 3)(x 1 5), so p will be discontinuous at

x 5
3
2

and 25. If the numerator contains one of these factors, our goal will be

achieved. It makes good sense to force (x 1 5) to be a factor, rather than (2x 2 3)
because the leading coefficient of the numerator is 1. (In other words, the nu-
merator will factor into (x 1 A)(x 1 B) and (x 1 5) is of this form.) To find b, we
factor the numerator using (x 1 5) as one of the factors:

(x 1 A)(x 1 5) 5 x2 1 4x 1 b

x2 1 5x 1 Ax 1 5A 5 x2 1 4x 1 b

Subtract x2 from each side and factor to get

x(5 1 A) 1 5A 5 4x 1 b

Thus, 5 1 A (the coefficient of x on the left side of the equation) must equal 4 (the
coefficient of x on the right side of the equation).

5 1 A 5 4

A 5 21

Therefore, (x 2 1) is the remaining factor. Thus,

x2 1 4x 1 b 5 (x 1 5)(x 2 1)

x2 1 4x 1 b 5 x2 1 4x 2 5

b 5 25

Because (x 1 5) is a factor of the numerator and denominator, lim
x→−5

p(x) exists,

and the discontinuity there is removable. The discontinuity at x 5
3
2

has no limit

because pS3
2D 5 S3.25

0 D, which indicates a vertical asymptote (essential discon-

tinuity).

3. If f(x) is continuous at x 5 c, then (1) lim
x c→ f(x) exists, (2) f(c) exists, and (3) the two

are equal.

4. Multiply the binomials in the numerator to get lim
s→−∞

5 19 4
6 3 7 2

2

2 3
s s

s s s
− −

− + − +
.

Because this is a rational function evaluated at infinity, you can use the shortcut
method of examining their degrees. Because the degree of the denominator
exceeds the degree of the numerator, the function’s limit at infinity is 0. Don’t be
confused because x→2`. Remember that a rational function approaches the
same limits as x→` and 2`.

5. Because
g x

h x
( )
( ) is a rational function and lim

x→∞
5 3, we know that the leading

coefficients of g(x) and h(x) must be in the ratio 3:1. One possible g(x) is 3x2 1 2x
1 1. The matching h(x) would have to be x2 1 x. Notice that the sum of the two

functions is 4x2 1 3x 1 1, as directed, and lim
x→∞

g x

h x
( )
( ) 5 3. There are numerous

possible answers, but they will work in essentially the same fashion.
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6. If a function oscillates infinitely, increases or decreases without bound, or has
right- and left-hand limits that are unequal, the function will not possess a limit
there.

7. Special Limit Rule 4 gives us that lim
x→0

1 2 cosx
x

5 0. Thus, lim
x→0

k(x) 5 0, and the

first condition of continuity is met. Notice that k(0) 5 a, and (for k to be
continuous) a must equal that limit as x approaches 0. Therefore, a 5 0.

8. Use Special Limit Rule 1 to simplify the fraction as follows:

lim
x

x
x→∞

−
−

2 0
2 3

This is a rational function being evaluated at infinity with equal degrees in the

numerator and denominator, so the limit is equal to
2

23
5 2

2
3

.

9. (a) 0

(b) 21: Remember the key is that you are approaching 21 from the right, not to
the right.

(c) 3
(d) 2: even though f(2) 5 21, the function leads up to a height of 2 when x 5 2
(e) 3
(f) x 5 23, 22, 2, 4
(g) x 5 2: If you redefine d such that d(2) 5 2 (instead of 21), then the limit

and the function value are equal to 2 and d is continuous there. No other
discontinuities can be eliminated by redefining a finite number of points.

(h) b 5 23,`: d increases without bound as you approach 3 from the left and
the right; the graph also increases without bound as x approaches `.

10. You don’t have to use special limit rules here—substitution is possible. The

answer is
sin 2

2
, or .455.

11. Factor the fraction fully to get

3

3 2

ax b ax b

ax b ax b

−( ) +( )
+( ) −( )

The denominator of g will equal 0 when x 5 2
b

3a
,

b
2a

. However, the numerator

will not equal zero simultaneously. Thus, vertical asymptotes are present, and

the equations for the vertical asymptotes are x 5 2
b

3a
and x 5

b
2a

. To find the

horizontal asymptotes, note that the numerator and denominator have the same
degree, and find the limit at infinity.
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lim
x→∞

g(x) 5
3

6

2

2

a

a
5

1
2

if a Þ 0

From this, you know that the horizontal asymptote is y 5
1
2

.

12. It’s the revenge of the conjugate method! Multiply the numerator and denomina-
tor of the fraction by the conjugate of the expression.

lim
x→∞

4 5 1 2 4 5 1 2

4 5 1 2

2 2

2

x x x x x x

x x x

− + −⎛
⎝

⎞
⎠ − + +⎛

⎝
⎞
⎠

− + +

•

lim
x→∞

4 5 1 4

4 5 1 2

2 2

2

x x x

x x x

− + −
− + +

lim
x→∞

− +
− + +
5 1

4 5 1 22

x

x x x

Because the degrees of the numerator and denominator are both 1 (since
=x2 5 x), you find the limit by taking the coefficients of the terms of that degree
and ignoring the rest of the problem (just as you’ve done in the past with rational
limits at infinity).

lim
x→∞

−
+

= −
+

= −5

4 2

5
4 2

5
42

x

x x

13. The population at t 5 4 is approximately 75, and the population at t 5 7 is
approximately 101.655. The Intermediate Value Theorem guarantees the exist-
ence of a c ∈ [4,7] such that f(c) 5 100.

14. (a) No limit: lim
x→2

f(x) does not exist, so f(x) 2 3g(x) cannot have a limit.

(b) 0: lim
x→−3

f(x) 5 0 and lim
x→−3

g(x) 5 2. So, lim
x→−3

f x
g x

( )
( ) 5 0

2
5 0.

(c) 2: lim
x→1

f(x) 5 22 and g(22) 5 2.

15. The graph will begin as a semicircle of radius 2 centered at (23,0), will become a
line (since cx 1 d is linear) between the x values of 21 and 3, and will end as the
graph of =x shifted to the right 3 and up 4. To find the first point on the linear

section, plug 21 into the first rule: 2 4 1 3 2− − +( ) 5 0. The line will begin at

point (21,0). The line will end at m(3) 5 3 3− 1 4 5 4. The focus of the problem,
then, is to find the equation of the line that passes through (21,0) and (3,4). Find
the slope of the line and use point-slope form to get

y 2 0 5
4
4

(x 1 1)

y 5 x 1 1
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Therefore, the correct c and d values are both 1. The solution is further justified
by the graph of m.

16. To begin, factor the function and use the fact that j(2) 5 1.

j(x) 5
x x A

x

−( ) −( )
−

4

4
5 x 2 A

j(2) 5 2 2 A 5 1

A 5 1

Since the function is continuous, lim
x→4

f(x) must be equal to f(4). So, you get
f(4)5 4 2 1 5 B (according to the given information); B 5 3.
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SUMMING IT UP
• Remember that the limit of a graph at x 5 c is the height that the graph reaches

at x 5 c

• Limits answer the question “Where is a function heading?”

• Only point discontinuities are removable, because a limit exists.

• Rational, polynomial, radical, exponential trigonometric, and logarithmic func-
tions are always continuous at all points in their domain. To help remember this,
use the mnemonic device

• Red Parrots continuously Repeat Everything They Learn.
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Differentiating

OVERVIEW
• Derivative as a rate of change
• The power rule
• Derivatives to memorize
• The chain rule
• The product rule
• The quotient rule
• A word about respecting variables
• Implicit differentiation
• Hands-On Activity 4.1: Approximating derivatives
• Technology: Finding numerical derivatives with the

graphing calculator
• Summing it up

The study of limits and continuity only sets the stage for the first meaty topic
of calculus: derivatives and differentiation. In fact, more than half of the
questions on the AP test will involve derivatives in some way or another.
Unlike limits, however, finding derivatives is an almost mechanical process
full of rules and guidelines, which some students find a relief. Other students
don’t find any relief in any topic of calculus; these people have awful night-
mares in which monsters corner them and force them to evaluate limits while
poking them with spears.

DERIVATIVE AS A RATE OF CHANGE
The derivative of a function describes how fast and in what capacity a
function is changing at any instant. You already know a bit about
derivatives, though you may not know it. Consider the graph of y 5 2x 2 1.
At every point on the line, the graph is changing at a rate of 2. This is such
an important characteristic of a line that it has its own nifty term—slope.
Because a slope describes the rate of change of a linear equation, the
derivative of any linear equation is its slope. In the case of y 5 2x 2 1, we
write y′ 5 2.

c
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Not all derivatives are so easy, however. You’ll need to know the definition of the
derivative, also called the difference quotient. The derivative of a function f(x) is
defined as this limit:

lim
∆x→0

f x x f x
x

+( )− ( )∆
∆

Example 1: Use the difference quotient to verify that
dy
dx

5 2 if y 5 2x 2 1.

Solution: Set f(x) 5 2x 2 1, and apply the difference quotient. You need to substitute
(x 1 Dx) into the function, subtract f(x), and then divide the whole thing by Dx.

lim
∆x→0

2 1 2 1x x x
x

+( ) − − −( )∆
∆

lim
∆x→0

2 2 1 2 1x x x
x

+ − − +∆
∆

lim
∆x→0

2∆
∆

x
x

lim
∆x→0

2 5 2

That wasn’t so bad, now was it? Well, bad news—it gets worse. What about the graph
y 5 x2 1 2? That graph changes throughout its domain at different rates. In fact, when
x , 0, the graph is decreasing, so its rate of change will have to be negative. However,
when x . 0, the graph increases, meaning that its rate of change will need to be
positive. Furthermore, can you discuss “slope” if the graph in question isn’t a line?
Yes. Derivatives allow us to discuss the slopes of curves, and we do so by examining
tangent lines to those curves. The diagram below shows y 5 x2 1 2 and three of its
tangent lines.

The graph of y = x + 1
and some tangent lines.

Geometrically, the derivative of a curve at a point is the slope of its tangent line there.
In the diagram above, it appears that the tangent line is horizontal when x 5 0 and
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NOTE
Differentiation is the process

of taking derivatives. If a

function is differentiable,

then it has derivatives.

NOTE
The notations y ′,

dy
dx

, and Dx

all mean the derivative of y

with respect to x. Don’t

concern yourself too much

with what “with respect to

x” actually means yet.

TIP
The difference quotient has

an alternative form for

finding derivatives at a

specific value x 5 c: f ′(c) 5

lim
x→c

f~x! 2 f~c!

x 2 c
.
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thus has slope zero. Is it true, then, that y′(0) 5 0? You can use the alternate form of
the difference quotient (given in the preceding margin note) to find out.

Example 2: Prove that y ′(0) 5 0 if y 5 x2 1 1 using the difference quotient.

Solution: Set f(x) 5 x2 1 1. In this problem, you are finding y′(0), so c 5 0; therefore,
f(c) 5 f(0) 5 1:

lim
x→0

f x f
x

( )− ( )
−

0
0

lim
x→0

x
x

2 1 1+ −

lim
x→0

x 5 0 (by substitution)

Sometimes, the AP test will ask you to find the average rate of change for a function.
This is not the same thing as a derivative. The derivative is the instantaneous rate of
change of a function and is represented by the slope of the tangent line. Average rate
of change gives a rate over a period of time and is represented geometrically by the
slope of a secant line. The next example demonstrates the difference.

Example 3: Given the function f(x) defined by the graph below is continuous on [a,b],
put the following values in order from least to greatest: f ′(d), f ′(e), f ′(h), average rate
of change of f on [a,b].

bed

h

a

f (x )

Solution: The function is not given, so you cannot use the difference quotient.
Remember that derivatives are represented by slopes of tangent lines to the graph
(drawn below), and average rate of change is given by the slope of the secant line
(drawn below as a dotted line).

bbbbeeeedddd

hh

aaaa

ffff ((x ))))

The tangent line at x 5 e has the only negative slope, so it is ranked first. Of the
remaining lines, you can tell which slope is greatest according to which line is the
steepest. Thus, the final ranked order is f ′(e), f ′(h), average rate of change, f ′(d).
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By now, you have an idea of what a derivative is (a rate of change), how it gets its
value (the difference quotient), and what it looks like (the slope of a tangent line). As
was the case with limits, there are times when a derivative does not exist. No
derivative will exist on f(x) at x 5 c when any of the following three things happen:

• The graph of f has a sharp point (cusp) at x 5 c;

• f is discontinuous at x 5 c;

• The tangent line to f at x 5 c is vertical.

In the first graph above, two linear segments meet at a sharp point at x 5c. The slope
of the left segment is positive, while the slope of the second is negative. The derivative
will change suddenly and without warning (“Stand back, my derivative is about to
change! Seek cover!”) at x 5 c, and thus, it is said that no derivative exists. The same
is true of the case of discontinuity at x 5 c in the diagram. You will justify the
nonexistence of a derivative at a vertical tangent line in the problem set.

The final fact you need to know before we get our feet wet finding actual derivatives
without the big, bulky difference quotient is this important fact: If f(x) is a differen-
tiable function (in other words, f has derivatives everywhere), then f is a continuous
function. (Remember from the discussion above that if a function is discontinuous,
then it does not have a derivative.) However, the converse is not true: continuous
functions do not necessarily have derivatives! Explore this further in the proceeding
exercises.
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EXERCISE 1

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

DO NOT USE A GRAPHING CALCULATOR FOR ANY OF THESE PROBLEMS.

1. Which function, among those you are to have memorized, is continuous but not
differentiable on (2`,`)?

2. What is the average rate of change of g(x) 5 sin x on [p2,
11p

6 ]?
3. Knowing that the derivative is the slope of a tangent line to a graph, answer the

following questions about p(x) based on its graph.

p ((x )

(a) Where is p′ (x) 5 0?

(b) Where is p′ (x) . 0?

(c) Where is p′ (x) , 0?

(d) Where is p′(x) undefined?

4. Why does no derivative exist when the corresponding tangent line is vertical?

5. Set up, but do not evaluate, an expression that represents the derivative of g(x)5

csc x if x 5
p

4
.
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ANSWERS AND EXPLANATIONS

1. y 5 UxU is continuous but not differentiable at x 5 0, because its graph makes a
sharp point there.

2. The average rate of change is the slope of the line segment from Sp

2
, 1D to

S11p

6
, 2

1
2D, as shown in the diagram below.

To find slope, calculate the change in y divided by the change in x:

y y
x x

2 1

2 1

1
2

1

11
6 2

−
− =

− −

−π π

− 3
2

8
6
π

2
9

8p
' 2.358

3. (a) The derivative is zero when the tangent line is horizontal. This happens at
x 5 22, 1, and 3.

(b) If you draw tangent lines throughout the interval, their slopes will be positive
on the intervals (22,1) and (3,`).

(c) Again, drawing tangent lines on the graph shows tangents with negative
slope on (2`,22) and (1,3).

(d) There are no cusps, discontinuities, or vertical tangent lines, so the derivative
is defined everywhere.

4. The slope of a vertical line does not exist, and since the derivative is equal to the
slope of a tangent line, the derivative cannot exist either.

5. Use either form of the difference quotient to get one of the following:

lim
∆x→0

csc
π π
4 4

+( )−∆

∆

x

x

csc ,
lim

x → π
4

csc cscx

x

−

−

π

π
2

4

, or
lim

x → π
4

cscx

x

−
−

1

4
π
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TIP
Notice in 3(b) and 3(c) that

f ′(x) is positive when f(x) is

increasing, and f ′(x) is

negative when f(x) is

decreasing. More on this

later—stay tuned.
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THE POWER RULE
Many years ago, I attended a Faye Kellerman book signing with my father in California.
The famous mystery writer politely asked what I did for a living as I handed her a copy
of her most recent book, Prayers for the Dead, to sign for me. When she found out I was
a calculus teacher, she confessed to taking many math classes in college and that one of
the most vivid things she remembered from calculus was how to take a derivative with
the power rule. This sentiment is echoed by many of the people I meet—but only by
those who will maintain eye contact with me when they find out I am a math teacher.

The Power Rule is the most basic of derivative techniques, used when you encounter
a variable raised to a constant power:

The Power Rule: If y 5 xc, where c is a real number, then y′ 5 c z xc21

The Power Rule, so named because the variable is raised to a power, also works if a
coefficient is present. In the case of y 5 nxc, you still bring the original exponent c to
the front and subtract one from the power, but now the c you brought to the front gets
multiplied by the n that was already there. For example, if y 5 5x4, then by the Power
Rule, y′ 5 5 z 4x3 5 20x3.

That’s the Power Rule in its entirety. Sometimes, the Power Rule will apply even
though it is not obvious—some rewriting will be necessary first, as demonstrated
below.

Example 4: Use the Power Rule to find the derivative of each of the following:

(a) y 5 x8

This is a straightforward example: y′ 5 8x7.

(b) f(x) 5 2x3 1 9x2

This problem is a sum, so each term can be differentiated separately—the same would
be true for a difference. Remember, when you “bring down” the powers, you need to
multiply by the coefficients that are already present.

f 8(x) 5 3 z 2x2 1 2 z 9x1

f ′(x) 5 6x2 1 18x

(c) y 5
5
x2

Rewrite this as 5x22 to apply the Power Rule:

y′ 5 5(22)x23 5 210x23, or 2
10

3x
.
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TIP
Visually, you “pull the

exponent down” in front of

the variable and subtract

one from the power.

ALERT!
The derivative of y 5 2x is

not y ′ 5 x z 2x 21. The Power

Rule works only when a

single, solitary variable is

raised to a constant power.

ALERT!
You cannot find the

derivatives of products or

quotients as easily as you

did in 4(b). Unlike sums and

differences, they have

special rules (the Product

and Quotient Rules) that

govern their derivatives.
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(d) y 5 2
3p2

5p6

This fraction can be simplified to y 5 2
3
5

p24, so y′ 5 2
3
5

z (24)p25 5
12
5p5

(e) y 5 6

You can rewrite this as y 5 6x0, since x0 5 1 (as long as x Þ 0, but don’t worry about
that). If y 5 6x0, then y′ 5 0 z 6x21 5 0. This is an important fact: The derivative of any
constant term is zero.

(f) y 5 7x 1 5

This is the same as 7x1, so y′ 5 1 z 7x0 5 7 z x0 5 7 z 1 5 7. This is another important
fact: The derivative of a linear polynomial, y 5 ax 1 b, is a.

Now that you have some practice under your belt, try some slightly trickier problems
in Example 5. More rewriting is required here in order to apply the Power Rule.

Example 5: Find
dy
dx

for each of the following:

(a) y 5 (x2 2 1)(x 1 5)

You’ll have to multiply these binomials together before you can apply the Power Rule.
You cannot simply find the derivative of each factor and then multiply those. Remem-
ber, products and quotients have their own special rules, and we haven’t gotten to
those yet.

y 5 x3 1 5x2 2 x 2 5
dy
dx

5 3x2 1 10x 2 1

(b) y 5 (2x3)2

Square the (2x3) term first to get y 5 4x6. Clearly, then,
dy
dx

5 24x5.

(c) y 5 x (x3 2
3

2x
)

Some rewriting and distributing is necessary to begin this problem:

y 5 x1/2(x3 2 3x22)

y 5 x7/2 2 3x23/2

Now the Power Rule applies:

y′ 5 7
2 x5/2 1 9

2 x25/2

y′ 5 7
2 x5/2 1

9
2x5/2
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TIP
Even though you can find

the derivatives of 4(e) and

4(f) using the Power Rule,

it’s better if you can find

the derivatives immediately

using the important facts

listed there.

NOTE
The directions in Examples 1

through 5 ask you to find

the derivative but in

different ways. Be able to

recognize different kinds of

notation. More on the

notation
d
dx

and
dy
dx

in the

section entitled “A Word

About Respecting

Variables.”
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EXERCISE 2

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

DO NOT USE A GRAPHING CALCULATOR FOR ANY OF THESE PROBLEMS.

1. Find
dy
dx

if y 5 12xp.

2. If f(x) 5 x4 1 3x2 2 1, what is f ′ (x)?

3. Calculate
dy
dx

x
x

3

74
⎛
⎝⎜

⎞
⎠⎟ .

4. Find DX [2x 2 1]3.

5. Find y′ if y 5
x x

x

3 52
4

+ .

6. What is the equation of the tangent line to h(x) 5 2x3 2 3x 1 5 at the point (1,4)?

7. How many derivatives must you take of g(x) 5 4x2 1 9x 1 6 until you get zero?

ANSWERS AND EXPLANATIONS

1. p is just a real number, so you can still apply the Power Rule:
dy
dx

5 12pxp21.

2. Each of the terms can be differentiated separately, so f ′(x) 5 4x3 1 6x. Don’t
forget that the derivative of any constant (in this case 1) will be 0.

3. Rewrite the expression to get
1
4

z
1
x4 or

1
4

x24. The
1
4

is now a constant and we can

apply the Power Rule. The derivative will be
1
4

z (24)x25 5 2
1
x5.

4. A common mistake is to assume that the derivative is 3(2x 2 1)2. This is not
correct. Instead, expand the expression before applying the Power Rule:

y 5 (2x 2 1)3 5 (2x 2 1) (2x 2 1) (2x 2 1)

y 5 8x3 2 12x2 1 6x 2 1

y′ 5 24x2 2 24x 1 6

5. This one is a little ugly to start with. Some rewriting and distributing will fix
that:

y 5
1
4

z (x21/2)(x1/3 1 2x5)

y 5
1
4

(x21/6 1 2x9/2)

e
xe

rc
ise
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Notice that the 4 in the denominator squirts out easily to become the coefficient
1
4

.

This is not absolutely necessary, but it simplifies your calculations. As in past
examples, leave the coefficient alone until the last step and then multiply it
through:

y′ 5
1
4 S2

1
6

x27/6 1 9x7/2D
y′ 5 2

1
24x7/6 1

9x7/2

4

6. To create the equation of a line, you need a point and a slope; point-slope form
will then easily follow. You are given the point (1,4), and the slope of a tangent
line may be found by the derivative. Thus, the slope we need is given by h′(1):

h′(x) 5 6x2 2 3

h′(1) 5 6(1)2 2 3 5 3

Apply the point-slope formula using m 5 3 and (x1,y1) 5 (1,4):

y 2 y1 5 m(x 2 x1)

y 2 4 5 3(x 2 1)

y 2 4 5 3x 2 3

y 5 3x 1 1

7. Each of the derivatives is pretty easy: g′(x) 5 8x 1 9, g′′(x) 5 8, g′′′(x) 5 0. The
third derivative, then, will give you zero.

DERIVATIVES TO MEMORIZE
Before exploring other tools of differentiation, it is necessary to supplement your
toolbox. If the Power Rule is the hammer of derivatives, it is pretty useless without a
collection of different kinds of nails—one for every purpose. Calculus is full of deriva-
tives, most of which cannot be nailed down by the Power Rule alone. In order to succeed
in calculus and on theAP test, you’ll need to be able to derive the functions in this section
automatically, without even a second thought. In other words, memorize, memorize,
memorize. Although memorizing may not be a glorious road to enlightenment, it has
plenty of clean rest stops along the way with reasonably priced vending machines.

Trigonometric Derivatives
Trigonometric functions and their derivatives are all over the AP test. By not memo-
rizing these, you are crippling yourself and your chance to score well.

d
dx

(sin x) 5 cos x

d
dx

(cos x) 5 2 sin x

d
dx

(tan x) 5 sec2x

d
dx

(sec x) 5 sec x tan x

PART II: AP Calculus AB & BC Review128
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

NOTE
The second derivative of

f(x) can be written as f ′′(x)

or
d2y
dx2. Similarly, the third

derivative can be written as

f ′′′(x) or
d3y
dx3.

NOTE
The notation for each

derivative formula is
d
dx

,

which means the derivative

with respect to x.
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d
dx

(cot x) 5 2csc2x

d
dx

(csc x) 5 2csc x cot x

Note the similarities between the tangent and cotangent functions as well as the
cosecant and secant functions. It is also important to note that all the co-trigonometric
derivatives are negative.

Logarithmic Derivatives
In traditional courses, logarithmic and exponential derivatives are not introduced
until the end of calculus. However, this is not the case any more. In fact, the functions
are pervasive on the AP test, so it is common practice now to introduce them right
away. The result is a lot more to memorize at first, but greater success and mastery
later.

d
dx

(ln x) 5
1
x

d
dx

(loga x) 5
1

x z ~lna!

You will see far more natural logs on the AP test, but logs with different bases
occasionally make cameo appearances.

Example 6: Find f ′(t) if f(t) 5 4log3 t.

Solution: Remember, when finding derivatives, you can ignore the coefficient and
multiply through at the end. Therefore, according to the formula,

f ′(t) 5 4 z
1

t aln( )

f ′(t) 5
4

t~ln3!

Exponential Derivatives
It doesn’t get much easier than exponential derivatives, especially ex.

dy
dx

(ex) 5 ex

dy
dx

(ax) 5 ax
z ln a

Notice that the derivative of ax involves multiplying by the natural log of the base
used. This is similar to deriving logax, in which you divide by the natural log of the
base used. This makes sense, because exponential functions and logarithmic functions
are inverse functions, just like multiplication and division are inverse operations.

Example 7: Find y′ if y 5 csc x 2 lnx 1 5x without consulting your derivative
formulas.

Solution: If you are memorizing these formulas as you proceed, this problem is

relatively simple: y′ 5 2csc x cot x 2
1
x

1 (ln 5)5x.
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NOTE
The a in the logarithmic

and exponential derivative

formulas represents a

constant.
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Inverse Trigonometric Function Derivatives
These functions revisit you later, during the integration section of the book. Knowing
them now makes life so much easier down the road. Some textbooks use the notation
sin21x to denote the inverse sine function, whereas many use arcsin x. Both mean the
same thing. I personally prefer arcsin x because sin21x looks hauntingly similar to
(sin x)21, or csc x.

d
dx

(arcsin x) 5
1

1 2− x

d
dx

(arccos x) 5 2
1

1 2− x

d
dx

(arctan x) 5
1

1 2+ x

d
dx

(arccot x) 5 2
1

1 2+ x

d
dx

(arcsec x) 5
1

12x x −

d
dx

(arccsc x) 5 2
1

12x x −

Things start getting messy with arcsecant, but all these derivatives have things in

common. Notice that the derivatives contain ~1 1 x2!, 1 2− x , and x2 1− . Learn-

ing which denominator goes with which inverse function is the key to recognizing
these later. Also note that the co- derivatives are again negative, as they were with
ordinary trigonometric function derivatives.
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TIP
If anyone told you that

there was no memorizing in

calculus, they were

lying to you.
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EXERCISE 3

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

DO NOT USE A GRAPHING CALCULATOR FOR ANY OF THESE PROBLEMS.

1. Below is a list of all the functions whose derivatives were listed in this section.
Complete the table without the use of notes.

Note: You may want to make a few photocopies of this problem and complete
them every few weeks to keep the formulas fresh in your mind.

d
dx

(cos x) 5 _______________

d
dx

(ex) 5 _______________

d
dx

(arccsc x) 5
_______________

d
dx

(tan x) 5
_______________

d
dx

(arcsin x) 5
_______________

d
dx

(sec x) 5
_______________

d
dx

(arctan x) 5
_______________

d
dx

~loga x! 5
_______________

d
dx

(cot x) 5
_______________

d
dx

(arcsec x) 5
_______________

d
dx

(ln x) 5
_______________

d
dx

(sin x) 5
_______________

d
dx

(arccos x) 5
_______________

d
dx

(csc x) 5
_______________

e
xe
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ise
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d
dx

~ax! 5
_______________

d
dx

(arccot x) 5
_______________

2. Name each function whose derivative appears below:

(a) sec x tan x

(b) 2
1
x

(c)
1

x2 1 1

(d) ex

(e) 2
1

1 2− x

(f) csc2x

3. Find each of the following derivatives:

(a) sec x 1 arcsec x
(b) 2x2 1 cos x 2 8ex 1 arccotx
(c) 4x 1 log4x 2 ln x

4. Name a function, g(x), other than ex such that g′(x) 5 g(x).

ANSWERS AND EXPLANATIONS

1. Check answers with the formulas listed previously in this section.

2. (a) sec x

(b) 2ln x: The 21 is a coefficient, so
d
dx

(2ln x) 5 21 z
1
x

= 2
1
x

(c) arctan x: By the commutative property of addition, 1 1 x2 5 x2 1 1
(d) ex

(e) arccos x
(f) 2cot x: By the same reasoning as 2(b) above.

3. (a) secx tan x 1
1

12x x −

(b) 4x 2 sin x 2 8ex 2
1

1 2+ x

(c) (ln 4)4x 1
1
4ln( )x 2

1
x

4. The easiest such function is g(x) 5 0, since the derivative of any constant is 0.
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THE CHAIN RULE
The Power Rule, although wonderful in some instances, falls short in others. For

example,
d
dx

(x3) is solved easily using the Power Rule, and the answer is 3x2. However,

if cos x is cubed instead of just x, the Power Rule fails! The derivative of cos3x is not
3(cos x)2. Another rule is necessary, and it is called the Chain (rhymes with pain) Rule.

The Chain Rule applies to all composite functions (expressions in which one function
is plugged into another function). For example, (cos x)3 is the cosine function plugged
into the cubed function. Mathematically, you can write

f(x) 5 x3; g(x) 5 cos x

f(g(x)) 5 f(cos x) 5 (cos x)3

To make things clearer, you can refer to cos x as the “inner function” and x3 as the
“outer function.”

Example 8: Each of the following is a composition of functions. For each, identify
which is the “inner” and which is the “outer” function.

(a) csc x

The inner function is csc x, and the outer function is =x. Note that the outer function
always acts upon the inner function; in other words, the inner function is always
“plugged into” the outer function.

(b) sec 3x

Because 3x is plugged into secant, 3x is the inner function, and sec x is the outer.

(c) ln (x2 1 4)

The inner function is x2 1 4, and the outer function is ln x. Again, you are finding the
natural log of x2 1 4, so x2 1 4 is being plugged into lnx.

(d) 3sin x

The inner function is sin x, and the outer function is 3x. Here, the exponential function
is being raised to the sin x power, so sin x is being plugged into 3x. With this
terminology, the Chain Rule is much easier to translate and understand.

The Chain Rule: The derivative of f(g(x)), with respect to x, is f ′(g(x)) z g′(x).

Translation: In order to find the derivative of a composite function, take the derivative
of the outer function, leaving the inner function alone; then, multiply by the deriva-
tive of the inner function.
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NOTE
It is no coincidence that

chain rhymes with pain. You

will use the Chain Rule

often for the remainder of

this course, so be sure to

understand it, or the pain

will be relentless.

www.petersons.com



Now it is possible to find the derivative of f(x) 5 cos3x. Remember, cos3x is the same as
(cos x)3. The outer function is x3, so we use the power rule to take the derivative,
leaving the inner function, cos x, alone:

f ′(x) 5 3(cos x)2

But, we already said that wasn’t right! That’s because we weren’t finished. Now,
multiply that by the derivative of the inner function:

f ′(x) 5 3(cos x)2
z (2sinx)

f ′(x) 5 23cos2x sin x

Example 9: Find
d
dx

for each of the following:

(a) csc x

This expression can be rewritten (csc x)1/2. You already know the inner and outer
functions from Example 8. Thus, the derivative is as follows:

1
2

~csc x!21/2
z ~2csc x cot x!

= 2
cscxcotx

~2=cscx!

= 2
1
2=

cscx cot x

(b) sec 3x

The derivative of sec x is sec x tan x, so the derivative of sec 3x is as follows:

sec 3x tan 3x z (3), or

3sec 3x tan 3x

since 3 is the derivative of the inner function 3x.

(c) ln (x2 1 4)

The derivative of ln x is
1
x
, so this derivative will be

1
~x2 + 4!

times the derivative of

(x2 1 4): 1

42x +
z 2x 5

2x
x2 + 4

(d) 3sin x

Remember, the derivative of 3x is 3x
z (ln 3), so the derivative of 3sin x is as follows:

3sin x
z (ln 3) z (cos x)

(ln3)cosx 3sin x
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TIP
When applying the Chain

Rule, use the mantra, “Take

the derivative of the

outside, leaving the inside

alone, then multiply by the

derivative of the inside.” It

becomes automatic if you

say it enough.

TIP
Don’t forget to leave the

inner function alone when

you begin the Chain Rule!

For example,
d
dx

~tan 4x! Þ

sec2~4!. Instead, the

derivative is sec2~4x! z 4.
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EXERCISE 4

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

DO NOT USE A GRAPHING CALCULATOR FOR ANY OF THESE PROBLEMS.

In questions 1 through 6, find
d
dx

.

1. ln(7x3 1 2sin x)

2. x x ex33 + −

3. csc (arcsin x2)

4. 45ex

5. tan (cos(3x 1 4))

6. e6ln~arcsec ex
!

7. Given f is a continuous and differentiable function such that f and f ′ contain the
values given by the below table:

(a) Evaluate m′(2) if m(x) 5 (f(x))3.
(b) Evaluate g′(3) if g(x) 5 arctan (f(x)).
(c) Evaluate k′(0) if k(x) 5 f(ex).

8. Let h be a continuous and differentiable function defined on [0,2p]. Some function
values of h and h′ are given by the chart below:

If p(x) 5 sin2(h(2x)), evaluate p′ π
2

⎛
⎝

⎞
⎠

e
xe

rc
ise
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ANSWERS AND EXPLANATIONS

1. 1

7 2
21 2

21 2

7 23
2

2

3x x
x x

x x

x x+
+( ) =

+

+
•

sin
cos

cos

sin

2. Rewrite the expression as (x3 1 x 2 ex)1/3. The derivative will be

1
3

(x3 1 x 2 ex)22/3
z (3x2 1 1 2 ex), or

3 1

3

2

3 2 3
x e

x x e

x

x

+ −
+ −( ) /

3. 2csc (arcsin x2) cot (arcsin x2) z

1 2

1 2 2

•

− ( )
x

x
5

2
2

1

2 2

4

x x x

x

csc arcsin cot arcsin( ) ( )
−

. In this problem, the x2 is plugged into the

arcsin x function, which is then plugged into the csc x function. The Chain Rule is
applied twice.

4. 45ex

z (ln 4) z 5ex. When you derive 4u, you get 4u z (ln 4) z u′. The u is the inner
function and is left alone at first. Once the outer function is differentiated, you
multiply by the derivative of u, u′.

5. The Chain Rule is applied twice in this problem. Begin with the outermost
function (leaving the rest alone) and work your way inside:
sec2(cos (3x 1 4)) z (2sin(3x 1 4)) z 3 5 23sec2(cos (3x 1 4)) z sin (3x 1 4).

6. Using logarithmic properties, rewrite the expression as eln~arc sec ex
!
6

. Because ex

and ln x are inverse functions, they cancel each other out, and you get (arcsec ex)6.
The Chain Rule will be applied three times when you differentiate:

6(arcsec ex)5
z

1

1
2

e ex x( ) −
z ex

6ex~arcsec ex!

ex=~ex!2 2 1

6ex~arcsec ex!

=~ex!2 2 1

7. (a) m′(x) 5 3(f(x))2
z f ′(x), so m′(2) 5 3(f(2))2

z f ′(2) 5 3(21)2(6) 5 18

(b) g′(x) 5
1

1
2+ ( )( )f x

z f ′(x), so g′(3) 5
1

1 3 2+ ( )f
z f ′(3) 5

1

1 4+
z 4 5

4
5

(c) k′(x) 5 f ′(ex) z ex, so k′(0) 5 f ′(e0) z e0 5 f ′(1) z 1 5 1 z 1 5 1
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NOTE
Problem 6 uses the

logarithmic property

loga xn 5 n z loga x.

NOTE
It is not necessary to write

UexU in the arcsecant

derivative formula because

ex has no negative range

elements.
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8. The Chain Rule will have to be applied three times in this example. To make it
easier to visualize, we have underlined the “inner” functions to be left alone as we
find the derivative. Notice how the 2x is left alone until the very end.

p′(x) 5 2(sin (h(2x))) z cos (h(2x)) z h′(2x) z 2

Because 2x 5 2Sp

2D5 p, you can write:

p′Sp

2D 5 2(sin (h(p))) z cos (h(p)) z h′(p) z 2

p′Sp

2D 5 2(sin Sp

4D) z cos Sp

4D z (21) z 2

p′Sp

2D 5 2 z
2

2
z

2
2

z 22

p′Sp

2D 5 22

THE PRODUCT RULE
If asked to find the derivative of f(x) 5 sin x 1 cos x, you should have no trouble by now.
You wouldn’t need to furrow your brow and scratch your chin like a gorilla trying to
determine how to file its federal tax return. You’d know that f is the sum of two functions,
so the derivative is simply the sum of the individual funtions’ derivatives:

f ′(x) 5 cos x 2 sin x

Given the function g(x) 5 sin x cos x, you might be tempted to use the same strategy
and give the derivative g′(x) 5 (cos x)(2sin x), but this is not correct. Any time you
want to find the derivative of a product of two non-constant functions, you must apply
the Product Rule:

The Product Rule: If h(x) 5 f(x)g(x), then h′(x) 5 f(x)g′(x) 1 g(x)f ′(x).

Translation: To find the derivative of a product, differentiate one of the factors and
multiply by the other; then, reverse the process, and add the two results together.

For example, in order to differentiate g(x) 5 sin x cos x, you multiply sin x by the
derivative of cos x and add to that cos x times the derivative of sin x:

g′(x) 5 sin x (2sin x) 1 cos x (cos x)

g′(x) 5 cos2x 2 sin2x

g′(x) 5 cos 2x (by a double angle formula)

a
n
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s
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Example 10: Find
dy
dx

if y 5 cos x ln x2

Solution: Because you are given a product of two functions, apply the Product Rule.
I have denoted which derivatives to take below with a prime symbol (′). It’s not
wonderful notation, but it gets the point across:

y′ 5 cos x (lnx2)′ 1 ln x2 (cos x)′

y′5 cos x z
1

2x
z 2x 1 ln x2 (2sin x)

y′ 5
2cos x

x
2 sin x ln x2

Example 11: Find
dy
dx

using the Product Rule if y 5
arctan 2

4 2

x
e x−

Solution: You can rewrite the expression as the product

y 5 (arctan 2x)~e4x2

!

and apply the Product Rule as follows:

y′ 5 (arctan 2x)~e4x2

!′ 1 ~e4x2

!(arctan 2x)′

y′ 5 (arctan 2x)~e4x2

!(8x) 1 ~e4x2

! z
1

1 4 2+ x
z 2

y′ 5 8xe4x2

(arctan 2x) 1 2

1 4

4 2

2

e

x

x

+
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NOTE
To find the derivatives of

ln x2, arctan 2x, and e4x2

in

Examples 10 and 11, you

need to apply the

Chain Rule.
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EXERCISE 5

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

DO NOT USE A GRAPHING CALCULATOR FOR ANY OF THESE PROBLEMS.

1. Why don’t you have to use the Product Rule to find the derivative of y 5 7x?

2. Find
dy
dx

if y 5 x2 3x x+ sin

3. Find dp
dx

if p 5 sec xzarcsec x

4. Find
d
dx

((x2 1 3)4
z (2x3 1 5x)3)

5. Evaluate y′(x) if y 5 sin x cos x tan x

6. Evaluate h′(2) if h(x) 5 2x z log2x

7. Given functions f and g such that f(5) 5 1, f ′(5) 5 22, g(5) 5 4, and g′(5) 5
2
3

, if

k(x) 5 g(x) f x( )4 , evaluate k′(5).

ANSWERS AND EXPLANATIONS

1. The Product Rule must be applied when deriving the product of non-constant
functions. 7 is a constant. However, the Product Rule will work when finding
d
dx

(7x)—try it! Remember that the derivative of 7 is 0 since 7 is a constant.

2. dy
dx

x x x x x x

dy
dx

x x x

= +( )′ + + ( )′

= ⋅ +( ) ⋅ +−

2 2

2 1 2

3 3

1
2

3 3

sin sin

sin co
/

ss sin

cos

sin
sin

x x x x

dy
dx

x x

x x
x x x

( ) + + ⋅

=
+( )
+

+ +

3 2

3

2 3
2 3

2

3. These functions are inverses, not reciprocals, so their product is not 1.
dp
dx

x
x x

arc x x x=
−

+sec sec sec tan
2 1

4. If you wish, you can expand each of the polynomials and multiply them together;
only the Power Rule will be necessary, but you’ll be multiplying all day long. Best
to use the Power, Chain, and Product Rules all combined:

(x2 1 3)4
z 3(2x3 1 5x)2

z (6x2 1 5) 1 (2x3 1 5x)3
z 4(x2 1 3)3

z 2x

You can rewrite the expression to make it slightly more pretty, but that is not
necessary.

5. You can generalize the Product Rule to any number of factors. The key is to take
only one derivative at a time, leaving the other factors alone.

e
xe
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s
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y′ 5 sin x cos x (sec2x) 1 sin x (2sin x) tan x 1 (cos x) cos x tan x

y′ 5 sin x cos x sec2x 2 sin2x tan x 1 cos2x tan x

6. To find h′(2), find h′(x) and substitute 2 for x.

h′~x! 5 2x z
1

xln2
1 2 log2x

=
2

ln2
+ 2log2x

h′~2! 5
2

ln2
+ 2 log22

= 4.885

7. The function can be rewritten as

k(x) 5 g(x)(f(x))1/4

and now the Product Rule can be applied.

k′(x) 5 g(x) z
1
4

(f(x))23/4
z f ′(x) 1 (f(x))1/4

z g′(x)

k′(5) 5 g(5) z
1
4

(f(5))23/4
z f ′(5) 1 (f(5))1/4

z g′(5)

k′(5) 5 4 z
1
4

z (1) 23/4
z (22) 1 (1)1/4

z
2
3

k′(5) 5 22 1
2
3

5 2
4
3

THE QUOTIENT RULE
Just like products, quotients of functions require their own special method of differen-
tiation. Because multiplication and division are so closely related, you can use the
Product Rule to develop the Quotient Rule from scratch. In Example 12, your objective
will be to create the Quotient Rule.

Example 12: Use the Product Rule to find the derivative of y5
f x
g x

( )
( )

Solution: You must rewrite the quotient as a product before you can begin: y 5 f(x) z

(g(x))21. Now, apply the Product Rule and simplify completely.

y′ 5 f(x) z (2(g(x))22) z g′(x) 1 g(x)21
z f′(x)

y′5 2
f x g x

g x

( ) ′ ( )
( )( )2 1

′ ( )( )
( )

f x

g x

Multiply the second term by
g~x!

g~x!
to get common denominators and then combine the

terms.

y′ 5
g x f x f x g x

g x

( ) ′ ( ) − ( ) ′ ( )
( )( )2
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NOTE
On the AP test, either you

will be told what variable to

differentiate with respect

to, or it will be obvious.

TIP
The words top and bottom

refer to the fraction’s

numerator and

denominator, respectively.

If you refer to the

numerator of a fraction as

the top during math class,

your teacher may hit you in

the mouth with a hard

leather shoe.
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The Quotient Rule: If y 5
f x
g x

( )
( ) , then y′ 5

g x f x f x g x

g x

( ) ′ ( ) − ( ) ′ ( )
( )( )2

Translation: If a fraction is formed by two functions, the derivative is found by
multiplying the bottom by the derivative of the top minus the top times the derivative
of the bottom, all divided by the bottom squared. Some people use the following verbal
device to remember the Quotient Rule:

d
dx

d dHi
Ho

Ho Hi less Hi Ho
Ho Ho

⎛
⎝

⎞
⎠ =

Example 13: Find p′(t) if p(t) 5 3
5

2t
tcot

Solution: Applying the Quotient Rule, the derivative is as follows:

p′(t) 5
cot csc

cot

5 6 3 5 5

5

2 2

2

t t t t

t

• •− −( )

p′(t) 5
6 5 15 5

5

2 2

2

t t t t

t

cot csc

cot

+

Example 14: Find h′(e) if h(x) 5 arccot x z
32x

xln
⎛
⎝⎜

⎞
⎠⎟

Solution: This problem begins with the Product Rule.

h′(x) 5 arccot x
32 x

xln
⎛

⎝⎜
⎞

⎠⎟
′ 1

32 x

xln
⎛

⎝⎜
⎞

⎠⎟
(arccot x)′

Finding the derivative of
32 x

xln
⎛

⎝⎜
⎞

⎠⎟
will require the Quotient and Chain Rules.

′ ( ) = ⋅
( ) ⋅ − ⋅

+ −
+

⎛
⎝

⎞
⎠h x x

x
x

x x x

x x
x

arccot 
ln ln

ln ln

2 3 3 3 1
3 1

1

2 2

2

2

2

That sure isn’t pretty. Now find h′(e), and remember that ln e 5 1. That will remove
some of the grime.

′ ( ) = ⋅
⋅ − ⋅

+ −
+

⎛
⎝

⎞
⎠h x e e

e

e e
e

arccot 
2 3 3 3 1

1
3
1

1
1

2 2

2

2

2

ln

You can find the decimal value of this load using your calculator, but why put yourself
through that much agony? If you do a single thing wrong when entering it into your
calculator, you could lose those points you earned the hard way; be a heads-up test
taker—if simplifying isn’t worth it, leave the answer unsimplified.
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ALERT!
There are all kinds of ways

to screw up the Quotient

Rule. Often, people

concentrate so hard on

getting the numerator of

the Quotient Rule correct,

they forget to write the

denominator. Don’t forget

to square your bottom!
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EXERCISE 6

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE YOUR CALCULATOR ONLY FOR PROBLEM 4.

1. Find f ′(1) if f(x) 5
x x

x

2

33 1

ln

−

2. Prove that
d
dx

(tan x) 5 sec2x using the Quotient Rule.

3. Given y 5
csc2x

e x− , find
dy
dx

using two different methods.

4. If f(x) and g(x) are continuous and differentiable functions with some values given

by the table below, find h′(3) if h(x) 5
f x
g x
2

3
( )
( )

ANSWERS AND EXPLANATIONS

1. The derivative of the numerator will require the use of the Product Rule, so be
cautious.

2. You can rewrite tan x as sin
cos

x
x and use the Quotient Rule to find the derivative.
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NOTE
Remember from the graph

of ln x that ln 1 5 0.
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3. Method One: Quotient Rule

Certainly, simplification is possible, but the answer is quite messy with negative
exponents.

Method Two: Product Rule

Rewrite the expression as a product, and things are much easier.

Both solutions are equivalent, although it is not obvious to the naked eye. Given
a choice, Product Rule is clearly the way to go, even though the original problem
was written as a quotient.

4. You may begin by factoring
1
3

out of the expression to eliminate the 3 in the

denominator, but that is not required.

A WORD ABOUT RESPECTING VARIABLES
If asked to find the derivative of x, you would probably give an answer of 1. Technically,
however, the derivative of x is dx. (Similarly, the derivative of y is dy, etc.) The derivative
of x is only 1 when you are differentiating with respect to x. Examine more closely the

notation
dy
dx

that you have unknowingly used all this time. This notation literally means

“the derivative of y with respect to x.” The numerator contains the variable you are
differentiating, and the denominator contains the variable you are “respecting.” Using

this notation, the derivative of x with respect to x is
dx
dx

, or 1.

a
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Let’s look at a more complicated example. You know that the derivative of x3 (with
respect to x) is 3x2. Let’s be even more careful about the process and use the Chain
Rule. The derivative of x3 with respect to x is 3x2 times the derivative of what’s inside,

x, with respect to x:
dx
dx

. The final answer is 3x2
z
dx
dx

5 3x2
z 1 5 3x2. If the variable in

the expression matches the variable you are “respecting,” you differentiate like you
have in previous sections. When the variables don’t match, however, things get a little
more bizarre.

Example 15: Find
d
dx

(5y4), the derivative of 5y4 with respect to x.

Solution: Apply the Chain Rule to this expression: the y is the inner function,
substituted into x4. Thus, take the derivative of the outer function leaving y alone,

20y3

and then multiply by the derivative of the inside (y) with respect to x Sdy
dxD. Your final

answer is

20y3
z
dy
dx

It is very important to notice when you are differentiating with respect to variables
that don’t match those in the expression. This only happens rarely, but it is important
when it happens.

The television show The Simpsons used this concept of differentiation in the episode
where Bart cheats his way into a school for smart kids. The teacher asks the students

to determine what is funny about the derivative of
r3

3
. The derivative is (technically)

r2dr, or r z dr z r (hardy-har-har). In this problem, dr is the derivative of r because no

respecting variable was defined. Had the teacher asked for the derivative of
r3

3
with

respect to r, the joke would have been less funny, since that derivative is r2.

Example 16: Find the derivative of each with respect to x:

(a) t

The derivative of t with respect to x is written
dt
dx

(b) 7x3 sin x

This expression contains two different functions, so you need to use the Product Rule:

7x3 cos x 1 21x2 sin x. There is no fraction like the
dt
dx

from the last problem, because

you are taking the derivative with respect to the variable in the expression (they
match).
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TIP
Don’t forget:

da
db

is read

“the derivative of a with

respect to b.” Use this

notation a Þ b.

ALERT!
No math joke is really that

funny, so although the

Simpsons joke is pretty

amusing to us math geeks,

you risk serious physical

injury if you try to tell

it in public.

NOTE
The skill of differentiating

variables with respect to

other variables happens

most often in implicit

differentiation, related

rates, and differential

equations.
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(c) cos y2

This is a composite function and will require the Chain Rule: The y is plugged into x2,
which is plugged into cos x. The derivative, according to the Chain Rule, is 2sin y2

z 2y z
dy
dx

. Notice that you leave the y alone until the very end, as it is the innermost

function.

(d) 2xy

This is the product of 2x and y, so use the Product Rule: 2x z
dy
dx

1 y z 2. The derivative

of 2x with respect to x is simply 2.
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EXERCISE 7

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

DO NOT USE A GRAPHING CALCULATOR FOR ANY OF THESE PROBLEMS.

1. What is meant by
dg
dc

? Create an expression whose derivative contains
dg
dc

.

2. Find the derivative of each with respect to y:

(a) csc 2y
(b) ex1y

(c) cos (ln x) 1 xy2

ANSWERS AND EXPLANATIONS

1.
dg
dc

is the derivative of g with respect to c. This expression appears whenever you

differentiate an expression containing g’s with respect to c. For example, the

derivative of g2 with respect to c (mathematically,
d
dc

(g2) is 2g z
dg
dc

.

2. (a) 22csc 2y cot 2y: Don’t forget to leave the 2y alone as you find the derivative of
cosecant; finally, multiply by the derivative of 2y with respect to y, which is 2.

(b)
dx
dy

e x y+⎛
⎝⎜

⎞
⎠⎟

+1 : Remember, you are looking for the derivative of x with

respect to y in this problem.
(c) This problem requires the Chain Rule for the first term and the Product

Rule for the second:

− ( ) + ( ) +• •sin ln x
x

dx
dy

x y y
dx
dy

1
2 2

IMPLICIT DIFFERENTIATION
At this point in your long and prosperous calculus life, you are no longer intimidated by

questions such as “Find dy
dx

: y 5 2sin x 1 3x2.” Without a second thought (hopefully),

you would answer dy
dx

5 2cos x 1 6x. Sometimes, however, the questions are not solved

for a variable like the above problem was solved for y. In fact, some things you
differentiate aren’t even functions, like the above example is a function of x. In such
circumstances, you will employ implicit differentiation. In order to differentiate implic-
itly, you need to have a basic understanding of what it means to differentiate with
respect to a variable (the previous topic in this chapter).
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Steps for Success in Implicit Differentiation

(These steps assume that you are finding
dy
dx

, as it is your goal 85 percent of the time. If

other variables are used, adjust accordingly.)

1. Find the derivative of the entire equation with respect to x.

2. Solve for
dy
dx

.

3. If a specific solution is required, substitute in the corresponding x and y values.

Example 17: Find the equation of the tangent line to the circle
x2 1 y2 5 9 when x 5 1

Solution: In order to find the equation of a line, you need a point and a slope. It is
very simple to find the point. Substitute x 5 1 into the formula to find its correspond-
ing y value. This coordinate pair (1, 8 ) marks the point of tangency, as shown in the
figure below.

All that remains is to find the slope of the tangent line, which is given by the

derivative,
dy
dx

. You need to find this derivative implicitly, however. To do so, first find

the derivative of everything with respect to x:

2x 1 2y
dy
dx

5 0

To complete the problem, solve for
dy
dx

:

2y
dy
dx

5 22x

dy
dx

5 2
2x
2y

5 2
x
y

Hence, the derivative for any point (x,y) on the circle is given by the formula 2
x
y
.

Therefore, the slope of the tangent line at (1, 8 ) is 2
1
8

. Using point-slope form for

a line, the equation of the tangent line is

y 2 8 5 2
1
8

(x 2 1)
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ALERT!
You must be at least 18 to

purchase a book that

discusses “explicit”

differentiation.

ALERT!
Don’t forget to take the

derivative of the constant:
d
dx

(9) 5 0.
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Example 18: Find the equation of the normal line to sin (x) 1 exy 5 3 when x 5 p.

Solution: In order to find the slope of the normal line, you need to take the opposite
reciprocal of the slope of the tangent line (the derivative), since they are perpendicu-
lar. It is far from easy to solve this equation for y, so you should differentiate
implicitly. Again, start by finding the point on the normal line by plugging in x 5 p:

sin (p) 1 epy 5 3

0 1 epy 5 3

ln (epy) 5 ln (3)

py 5 ln 3

y 5
ln3
π

' .3496991526

Thus, the tangent and normal lines both pass through (p, .3496991526).

Now, find the derivative of the equation with respect to x to get the slope of the

tangent line,
dy
dx

:

cos x 1 exy
z Sy 1 x

dy
dxD 5 0

Distribute exy and solve for
dy
dx

:

cos x 1 yexy 1 xexy dy
dx

5 0

xexy dy
dx

5 2cos x 2 yexy

dy
dx

x ye
xe

xy

xy= − +cos

Plug in the coordinate (p, .3496991526) for (x,y) to get the slope of the tangent line
there:

If this is the slope of the tangent line at (p, .3496991526), then the slope of the normal
line is the negative reciprocal of 2.0052094021, or 191.9606091 Therefore, the equa-
tion of the normal line is

y 2 .350 5 191.961(x 2 p)

(You are allowed to round at the very end of the problem on the AP test.)
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NOTE
A normal line is

perpendicular to the

tangent line at the point of

tangency.

TIP
To keep resulting answers

accurate, you shouldn’t

round to .350 until the

problem is completely over.

TIP
You must use the Product

Rule to differentiate xy.
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EXERCISE 8

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR PROBLEM 4 ONLY.

1. Find
dy
dx

: ey2

1 3y 5 tan x.

2. What is the slope of the tangent line to ln (xy) 1 y2 5 2y at the point (e,1)?

3. Find d y

dx

2

2
if x2 2 y2 5 16.

4. Dennis Franz High School (“Home of the Ferocious Prairie Dogs”) has had a
top-notch track team ever since they installed their elliptical track. Its dimen-
sions, major axis length 536 feet and minor axis length 208 feet, are close to an
actual track. Below is a diagram of the Prairie Dogs’ track superimposed on a
coordinate plane. If the northern boundaries of DF High are linear and tangent to
the track at x 5 6250 feet, find the equations of the northern property lines.

ANSWERS AND EXPLANATIONS

1. Find the derivative with respect to x.

ey2

z 2y
dy
dx

1 3
dy
dx

5 sec2x

Now, solve for
dy
dx

. You’ll need to factor
dy
dx

out of both terms on the left side of the

equation.
dy
dx

~2y ey2

1 3! 5 sec2x

dy
dx

=
sec2 x

2yey2

+ 3
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2. First, find
d
dx

. Remember to use the Product Rule for
d
dx

(xy):

1
xy

z (x
dy
dx

1 y) 1 2y
dy
dx

5 2
dy
dx

Distribute
1
xy

and solve for
dy
dx

:

1
y

z
dy
dx

1
1
x
1 2y

dy
dx

5 2
dy
dx

1
y

z
dy
dx

1 2y
dy
dx

2 2
dy
dx

5 2
1
x

dy
dx

(
1
y

1 2y 2 2) 5 2
1
x

At this point, you can solve for dy
dx

, but there is no real need to do so in this

problem. You just want the derivative at (e,1), so plug in those values for x and y:

3. d y
dx

2

2 means the second derivative, so begin by finding dy
dx

, the first derivative:

2x 2 2y
dy
dx

5 0

dy
dx

=
x
y

Use the Quotient Rule to find the second derivative:

d y
dx

y x dy
dx

y

2

2 2=
−

You already know that dy
dx

5
x
y
, so plug it in:

d y
dx

y x x
y

y

2

2 2=
− i

Get common denominators for y and x
y

2
and simplify:
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When entering fractions
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www.petersons.com



Now, the original problem states that x2 2 y2 5 16, so y2 2 x2 5 216. Substitute
this, and you’re finished:

d y
dx y

2

2 3
16= −

4. Begin by creating the equation of the ellipse. Remember, standard form of an

ellipse is
x2

a2 +
y2

b2 = 1, where a and b are half the lengths of the axes. Therefore, the

track has the following equation:
x y x y2

2

2

2

2 2

268 104
1

71824 10816
1+ = + =,  or 

Now find the y that corresponds to both x 5 250 and x 5 2250:

62500
71824

+
y2

10816
= 1

y2 5 (1 2 .8701826687) z10816 5 1404.104255

y 5 37.47137914

Now, you have points (6250,37.471379). Find
dy
dx

at these points to get the slope

of the tangent lines. (Because the graph of an ellipse is y-symmetric, the slopes at
x 5 250 and x 5 2250 will be opposites.)

The property lines have equations y 2 37.414 5 21.006(x 2 250) and y 2 37.414
5 1.006(x 1 250).
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HANDS-ON ACTIVITY 4.1: APPROXIMATING DERIVATIVES
Occasionally, the AP writers can be not only tricky but maniacal as well. One such
example is their new practice of asking students to find derivatives without even giving
them a function.

1. A function w(t) is continuous; some of its values are listed in this table.

Draw one possible graph of w(t) for 0 ≤ t ≤ 1.

2. Although it likely won’t be exact, use a ruler to draw the tangent line to w(t) at
t 5 .95.

3. Describe why it is impossible to find the exact value of w′(t).

4. Draw the secant line connecting t 5 .9 and .95. Why might this secant line be an
important tool? What other secant lines could serve the same purpose?

5. Approximate w′(.95) using three different methods.

PART II: AP Calculus AB & BC Review152
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

www.petersons.com



6. If a different graph, f(t), were continuous on the interval [22,1], but you were

only given the function values for t 5 22, 2
3
2

, 21, 2
1
2

, …,
3
2

, and 2, explain how

you would approximate f ′(1).

SELECTED SOLUTIONS TO HANDS-ON ACTIVITY 4.1

3. In order to find the exact value of w′(t), you would need to know what rule defines
w(t), not just the resulting graph.

4. The secant line has a slope that is very close to that of the tangent line. Using the

very simple slope formula from algebra SDy
DxD, you can calculate the secant slope

and use it as an approximation for the derivative (tangent slope). Other secant
lines that are good tangent approximators include the secant connecting (.95,3.6)
to (1,3.7) and the secant line connecting (.9,3.4) to (1,3.7). All of these would be
good approximations.

5. (a) Using the secant line connecting (.9,3.4) to (.95,3.6):

m′(.95) '
3 6 3 4

95 9
. .
. .

−
−

m′(.95) ' 4

(b) Using the secant line connecting (.95,3.6) to (1,3.7):

m′(.95) '
3 7 3 6
1 95
. .

.
−

−
m′(.95) ' 2

(c) Using the secant line connecting (.9,3.4) to (1,3.7):

m′(.95) '
3 7 3 4

1 9
. .

.
−
−

m′(.95) ' 3

All of these are approximations, so the answers need not be the same.

6. You could find any of the following secant slopes: f f1 5
5

( )− ( ).
.

, f f1 5 1
5

.
.

( )− ( ) , or
f f1 5 5

1
. .( )− ( ) .
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EXERCISE 9

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE YOUR GRAPHING CALCULATOR TO ANSWER THE FOLLOWING
PROBLEMS.

Problems 1 through 4 refer to g(x) as defined by this graph:

1. Give values for g(2), g(3), and g(4). Of these, which can only be an approximation?

2. Approximate h′(2).

3. Approximate the average rate of change of g(x) on the interval [22,5].

4. Rank the following in numerical order from least to greatest: h′(21), h′(1), h′(2).

ANSWERS AND EXPLANATIONS

1. The graph makes it pretty clear that g(2) 5 1 and g(4) 5 2. You’ll have to
approximate g(3); according to the graph, g(3) ' .6.

2. The secant line connecting (1,2) and (2,1) is a good approximator; therefore,
g′(2) '

1 2
2 1
−( )
−( ) 5 21.

3. The average rate of change of g(x) is given by

g g5 2
5 2

( ) − −( )
− −( )

3 1 7
5 2

671
− −( )
− −( ) ≈

.
.

4. If you sketch tangent lines at these points, you’ll notice that the tangent line has
negative slope at x 5 2, zero slope at x 5 1, and positive slope at x 5 21. Although
you do not know what the slopes actually are, you still know that negatives , 0
, positives. Therefore, h′(2) , h′(1) , h′(21).
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exactly the same but may

still be correct; your answer
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TECHNOLOGY: FINDING NUMERICAL DERIVATIVES WITH THE
GRAPHING CALCULATOR
If you are a studious person and a friend of the environment, you have already read
Chapter 1, which discusses when you may and may not use a graphing calculator to
justify an answer. You should already know how to graph using the calculator, and you
learned how to solve equations using the calculator in Chapter 2. That leaves two topics,
and one of these is calculating a numerical derivative.

The TI-83 can evaluate a derivative at any point on its domain (cue bugle fanfare).
Unfortunately, it will not actually take the symbolic derivative (cue booing from studio

audience). For example, you cannot type
d
dx

(tan x) and expect the calculator to re-

spond “sec2x” (although some calculators, such as the TI-89, do have this capability).
The numerical differentiation function is called “nDeriv” and is found under the
[Math] button, option Number 8. To learn this technique, let’s revisit an old friend:
problem 1 in the Quotient Rule section.

Example 19: Find f ′(1) if f(x) 5
x x
x

2

33 1
ln

−
.

Solution: The correct syntax for a numerical derivative is

nDeriv(function of x, x, number at which to find derivative).

Be careful to type the function correctly; this one will require a whole bunch of
parentheses.

When you did this problem by hand, you got an answer of
1
2

. Note that the calculator’s

nDeriv result is not the exact answer, as the calculator only approximates it, although
it is a pretty darn good approximation. Since the AP test only requires three-decimal
accuracy, a truncated or rounded answer of .500 would have been fine, but the
complete calculator answer may have been marked incorrect, since the actual answer

is
1
2

and not .5000046667. Always take your calculator’s solutions with a grain of salt;

they’re usually close but not always right.
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Example 20: Use the calculator to find the following numerical derivatives:

(a) h′(0) if h(x) 5 3 x3 1 2.

When you type the nDeriv command, you get a very bizzare result. I got 300, as shown
below.

You should check this by hand, because it just feels wrong. You can rewrite h as h(x) 5

3x1/3 1 2, so h′(x) 5 3 z
1
3

x22/3 5
1

x2/3. Clearly, then, h′(0) is undefined, and the

derivative does not exist. (This is because h has a vertical tangent line at x 5 0, and
no derivatives exist at vertical tangent lines.) The calculator has unintentionally lied.

(b) g′(3) if g(x) 5 Ux 2 3U 2 1.

Below is the graph of g and the nDeriv command required to find g′(0).

Does something about these images make you uncomfortable? g has a sharp point at
(3,21), but the calculator reports that the derivative is 0. You know better than
that—no derivative exists at a sharp point, so the correct answer is g′(3) does not
exist.

These examples illustrate a very important point. The calculator is a great estimation
tool, but it cannot always replace good knowledge of where derivatives exist and how
to compute them. Be aware of the calculator’s limitations, and don’t accept the
calculator outputs as gospel truth.
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The cube root symbol is

found in the [Math] menu
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“abs” is found in the
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EXERCISE 10

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR ONLY FOR PROBLEMS 5 THROUGH 12.

1. Find dy
dx

: y 5 sin x cos =x.

2. Find
d
dx

(sec 3x ln(tan x)).

3. Determine the value of dy
dx

if x 5 0 for exy 1 cos y 5 1.

4. Write the equation of the tangent line to y 5
x

x

2 2
4 5

−
+

at x 5 0.

5. At what x-values does (3x2 1 2x)(x 2 1)4/5 have horizontal tangent lines? On what
intervals is the function differentiable?

6. Describe t(x) as completely as you can based on its graph, shown below.

7. If n(x) 5 (g(x))2 and p(x) 5 f(x)g(x), complete the chart below knowing that n′(2) 5

26 and p′(2) 5 23.
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8. If b(x) has the graph shown below with points of interest x1 and x2,

which of the following could be the graph of b′(x)?

9. If f(1) 5 1, f ′(1) 5 23, g(1) 5 4, and g′(1) 5 2
1
2

, find

(a) p′(1) if p(x) 5
f x

g x
( )
( )2

(b) h′(1) if h(x) 5 ( f x( ) )3

(c) j′(1) if j(x) 5 g(f(1))
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10. If m(x) is an even function differentiable at x 5 4 and m′(4) 5 0, determine which
of the following statements must be true and briefly justify your answers.

(a) m is continuous at x 5 4.
(b) lim

x→ +4
m(x) exists.

(c) x 5 4 is a root of m(x).
(d) m cannot have a point discontinuity at x 5 4.
(e) m′(0) 5 4.
(f) m′(4) 5 m′(24).
(g) The average rate of change of m(x) on [24,4] 5 0.

11. Given that the following graph represents an audience member’s heart rate (in
beats per minute) for the last 16 minutes of the new horror flick The Bloodening
(starring Whoopi Goldberg and Lassie), approximate the following values and
explain what they represent.

(a) h(9)
(b) h′(6)

(c) h h12 8
4

( ) − ( )

12. James’ Diabolical Challenge: A particle moves along the x-axis such that its
distance away from the origin is given by s(t) 5 t3 2 9t2 1 24t 2 7 (where t is in
seconds and s(t) is in millimeters).

(a) Find the average velocity of the particle on [1,3].
(b) How quickly is the particle moving at t 5 3, and in what direction is it

moving?
(c) When is the particle at rest?
(d) Graph s′(t) and give the intervals of time during which the particle is

moving to the right.
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ANSWERS AND EXPLANATIONS

1. The Product Rule should be your first plan of attack (the Chain Rule will follow
with cos =x):

y′ 5 sin x z 2sin =x z
1

2 x
1 cos =x z cos x

2. This problem is very similar to the last:

sec 3x z

1
tan x( ) z sec2x 1 ln(tan x) z 3sec 3x tan 3x

sec 3x sec
tan

tan ln tan
2

3 3x
x

x x+ ( )⎛
⎝⎜

⎞
⎠⎟

3. First, find the y that corresponds to x 5 0:

e0 + cos y = 1

1 + cos y = 1

y =
p

2
Now, use implicit differentiation, but remember to apply the Product Rule to xy:

4. Clearly, the tangent line will intersect the curve at (0,f(0)), or (0,2
2
5

). Use the

Quotient Rule to find the slope of the tangent line:

y′ 5
4 5 2 2 4

4 5

2

2

x x x

x

+( )( ) − −( )( )
+( )

y′(0) 5
0 8

25
− −( )

5
8
25

Therefore, the equation of the tangent line is y 1
2
5

5
8

25
x.

5. First, find the derivative using the Product Rule:

(3x2 1 2x)
4
5

(x 2 1)21/5 1 (x 2 1)4/5(6x 1 2)

Clearly, the derivative will not exist at x 5 1, because (x 2 1)21/5 would cause a
zero in the denominator. The function will have a horizontal tangent line when its
derivative is 0, so use the calculator to find when the derivative is 0.
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Horizontal tangent lines should occur when x 5 2.366 and x 5 .651; these results
are supported by the graph of the function below:

6. This is a large list of characteristics of t(x), although there are probably more
correct answers: t has jump discontinuities at x 5 23 and 3; t has no derivative at
x 5 23, 3, 21, and 1 (remember that no derivative exists at discontinuities or
sharp points); t′(x) 5 0 on (21,1); t′(x) 5 1 on (23,21); t′(x) 5 21 on (1,3); t
appears to be an even function; t′ is negative on (2`,23) ∪ (1,3); t′ is positive on
(23,21) ∪(3,`); sketch tangent lines and examine the slopes to see that this is
true; t is decreasing at a decreasing rate on (2`,3), increasing at a constant rate
on (23,21), constant on (21,1), decreasing at a constant rate on (1,3), and
increasing at an increasing rate on (3,`).

7. First, find the derivative of n(x) and use the fact that n′(2) 5 26:

n′(x) 5 2(g(x)) z g′(x)

n′(2) 5 2g(2)g′(2) 5 26

2g(2) z 1 5 26

g(2) 5 23

Now, you only need to find f ′(2) to complete the chart. Use the fact that
p′(2) 5 23:

p′(2) 5 f(2)g′(2) 1 g(2)f ′(2) 5 23

9 z 1 1 (23)f ′(2) 5 23

(23)f ′(2) 5 212

f ′(2) 5 4

8. Draw a succession of tangent lines to the graph, and examine the slope of the
tangent lines, as pictured here:

The slopes are positive on (2`,x1) ∪ (x2,`), so the derivative is positive there also.
Similarly, b′(x) will be negative on (x1,x2). Furthermore, b(x) will have horizontal
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tangent lines at x1 and x2, so derivatives there will be 0. All these characteristics
apply only to graph D.

9. (a) Use the Quotient Rule to find p′(1):

p′(1) 5
2 1 1 1 2 1

2 1
2

g f f g

g

( ) ′ ( ) − ( ) ′ ( )
( )( )

•

p′(1) 5
224 2 ~21!

~2z4!2 = 2
23
64

(b) Rewrite the function as h(x) 5 f(x)3/2, and then apply the Power Rule:

(c) Use the Chain Rule to find j′(1):

j′(1) 5 g′(f(1)) z f ′(1)

j′(1) 5 g′(1) z (23)

j′(1) 5 2
1
2

z 23 5
3
2

10. (a) True: Differentiability implies continuity.

(b) True: If continuous at x 5 4, the limit must exist.

(c) False: m′(4) 5 0; it doesn’t say that m(4) 5 0.

(d) True: If m is continuous, no discontinuity exists.

(e) False: This is wrong for so many reasons

(f) True: It is also true that m′(4) 5 2m′(24) since m is y-symmetric (draw a
picture to convince yourself).

(g) True: m′(4) 5 m′(24) 5 0 since the graph is y-symmetric.

11. (a) h(9) ' 100 bt/min, which is the audience member’s heart rate at t 5 9
minutes.

(b) h′(6) is the rate of change of the heart rate at t 5 6. The rate of change of a
rate is more commonly known as the acceleration. There is no formula in
evidence, so you’ll need to approximate the slope of the tangent line. Do so by
finding the slope of a nearby secant line. One good approximator is the secant
line connecting (4,115) and (6,103) (although it is not the only viable approxi-

mation). That slope is given by
103 2 115

6 2 4
' 26

bt

min
min

or 26 bt/min2 (the heart

rate is decelerating) .
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(c) This is the formula for average rate of change on [8,12], or the average rate of
change of the heart rate (average heart acceleration). There is no approxima-
tion here; your answer will be exact, as all necessary values are given exactly:

140 2 97
4

=
43
4

bt/min2

12. (a) In order to find velocity, you need to realize that velocity is the rate of change
of position. This makes sense; the rate at which an object’s position changes
tells you how fast that object is moving. So, you are trying to find the average
rate of change of the position:

s s3 1
3 1

( ) − ( )
−

11 2 9
2

5 1 mm/sec

(b) Here, you are trying to find the velocity (rate of change, or derivative, of
position). Thus, the velocity equation will be v(t) 5 3t2 2 18t 1 24, and v(3) 5

27 2 54 1 24 5 23 mm/sec. Because velocity is negative, the particle is
moving to the left instead of the right.

(c) The particle is not moving when its velocity is 0. So, set v(t) 5 3t2 2 18t 1 24
equal to 0 and use the calculator to solve the equation. The particle will be at
rest when t 5 2 and t 5 4 sec. Factoring or using the quadratic formula would
also have worked.

(d) s′(t) is the velocity of the particle, and a positive velocity implies that the
particle is moving to the right. Thus, you are simply reporting the intervals
on which s′(t) is positive, according to the graph.

The t-intercepts appear to be t 5 2 and 4, and that is verified by your work in
12(c), so the particle is moving right on (2`,2) ∪ (4,`).
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SUMMING IT UP
• The study of limits and continuity only sets the stage for derivatives and differ-

entiation. More than half of the questions on the test will involve derivatives in
some way or another

• The derivative of a function describes how fast and in what capacity a function is
changing at any instant.

• Trigonometric functions and their derivatives are all over the AP test.
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Advanced Topics in
Differentiation

OVERVIEW
• The derivative of an inverse function
• Hands-On Activity 5.1: Linear approximations
• L’Hôpital’s Rule (BC topic only)
• Parametric derivatives (BC topic only)
• Polar derivatives (BC topic only)
• Technology: Finding polar and parametric derivatives with

your calculator (BC topic only)
• Summing it up

The Power, Product, Quotient, and Chain Rules allow you to find the deriva-
tive of almost any expression or equation you will encounter. However, there
are a few exceptions to the rule. This chapter serves to iron out those excep-
tions and make you invincible in the land of derivatives. In addition, BC
students need to know how to differentiate polar, paramtetric, and vector-
valued equations, and these topics are included here.

THE DERIVATIVE OF AN INVERSE FUNCTION
Finding the inverse of a function is an important skill in mathematics (although
you most certainly never have to use this skill in, say, the french fry department
of the fast-food industry). Inverse functions are helpful for so many reasons; the
main reason, of course, is their power to cause other functions to disappear. How
do you solve the equation sec3x 5 8? Find the cube root of each side to cancel the
exponent and then take the arcsecant of each side to cancel the secant. (The
answer, by the way, is π

3
.) Functions this useful are bound to show up on the AP

exam, and you should know how to differentiate them.

Example 1: If f(x) 5 (3x 1 4)2, x f x≥ − ( )′ ( )−4
3

1 find .

Solution: Before you can find the derivative of the inverse, you need to find
the inverse function. Use the method outlined in Chapter 2 as follows:

x 5 (3y 1 4)2

x y

f x x x

− =

( ) = − = ⋅ −( )−

4 3

4
3

1
3

41

c
h

a
p

te
r5
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Now, find f x−( )′ ( )1 : f x x
x

− −( )′ ( ) = ⋅ =1 1 21
3

1
2

1
6

/

That was pretty easy, wasn’t it? However, as long as you’ve been in math classes,
you’ve experienced teachers’ uncanny ability to take easy things and make them much
more difficult—easy problems tend to leave you this uneasy feeling in the pit of your
stomach like you’re in a slasher movie, and the killer is right behind you, but you’re
afraid to turn around. In the case of inverse function differentiation, the killer takes
the form of functions for which you cannot easily find an inverse.

How can you find the derivative of a function’s inverse if you can’t even find the
inverse? You’ll need a formula based on a very simple characteristic of inverse func-
tions: f f x x− ( )( ) =1 . Take the derivative of the equation, using the Chain Rule, to get

f 8( f −1 (x)) z ( f −1 )8(x) 5 1

Now, solve the equation for ( f −1 )8(x):

f −( )1
8(x) 5

1
1′ ( )( )−f f x

This is an incredibly useful formula to memorize; it’s especially handy when you
cannot find an inverse function, as in the next example.

Example 2: Find ( g −1)8 (3) if g(x) 5 x5 1 3x 1 2.

Solution: If you try to find g21(x) by switching the x and y and solving for y (as in
Example 1), you get

x 5 y5 1 3y 1 2

in which, despite your best efforts and lots of sweat, you cannot solve for y. Because
you cannot easily find g −1 (x), you should resort to the Magnum P.I. formula:

( g −1)8(x) 5
1

1′ ( )( )−g g x , or in this case:

( g −1)8 (3)5
1

31′ ( )( )−g g

How are you going to find g −1(3) if you can’t find g −1(x)? Good question. Time to be

clever. If 3 is an input for g −1(x), then 3 must be an output of g(x), since the functions
are inverses. Therefore, we should find the domain element x that results in an output
of 3 for g(x):

x5 1 3x 1 2 5 3

x5 1 3x – 1 5 0
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Solve this equation on your calculator, and the result is x 5 .33198902969. Thus, the
point (.3319890296,3) falls on g(x), and resultingly, (3,.3319890296) belongs on

g −1(x). Did you miss it? You just found that g −1(3) 5 .3319890296. Return to the

formula, and plug in what you know—the rest is easy:

( g −1)8(3) 5
1

31′ ( )( )−g g

( g −1)8(3) 5
1

3319890296′ ( )g .

Because g8(x) 5 5x4 1 3, g8(.3319890296) 5 3.060738622 and

( g −1)8(3) 5
1

3 060738622
327

.
.≈

The process of finding derivatives of inverse functions becomes mechanical with
practice. Even after the millionth problem like this, it still excites me to find values of
an inverse function I don’t even know. What a rush!
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EXERCISE 1

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE YOUR GRAPHING CALCULATOR FOR PROBLEM 2 ONLY.

1. If g(x) 5 3 1x − 1 2,

(a) Evaluate g −1(4) without finding g −1(x).

(b) Find g −1(x), and use it to verify your answer to part (a).

2. If k(x) 5 4x3 1 2x 2 5, find k−( )1
8(4).

3. If h(x) is defined by the graph below, approximate h−( )1
8(2).

4. If m is a continuous and differentiable function with some values given by the

table below, evaluate m−( )1
8

1
2

⎛
⎝

⎞
⎠ .

ANSWERS AND EXPLANATIONS

1. (a) To find g −1(4), set g(x) 5 4 and solve for x.

3 1 2 4x − + =

x − =1 2
3

x = + =4
9

1 13
9
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(b) Switch x and y and solve for y to get g −1(x):

x y

x y

g x
x

g

= − +
− = −

=
−( ) +

=
−( ) + = +

−

−

3 1 2

2
3

1

2
3

1

4
4 2

3
1 4

9

1
2

2

1
2

2

( ) ,

( )

 so

11 13
9

=

2. According to the formula, (k21)8(4) 5
1

k8~k21~4!!
. Find k21(4) using the same

method as in 1(a):

4x3 1 2x – 5 5 4

4x3 1 2x – 9 5 0

k21(4) 5 1.183617895

Because k8(x) 5 12x2 1 2,
1

1 183617895′ ( )k . ' .053.

3. Again, the formula dictates that (h21)8(2) 5
1

h8~h21~2!!
. From the graph, you can

see that h21(2) 5 3 (the graph has an output of 2 when x 5 3), so the formula

becomes
1
3′ ( )h . You will have to approximate h8(3); the secant line connecting

(2.5,1.5) to (3,2) looks like the best candidate. That secant line slope is 2 1 5
3 2 5

−
−

.

.
5 1,

so a good (and thankfully simple) approximation is h8(3) 5 1. Therefore, you have

(h21)8(2) 5
1
3′ ( )h 5 1

1
1=

4. The Magnum P.I. formula again rears its grotesque head: (m21)8 −⎛
⎝

⎞
⎠

1
2 5

1
1
2

1′ −( )⎛
⎝⎜

⎞
⎠⎟

−m m . According to the table, m21 −⎛
⎝

⎞
⎠

1
2 5 21 (since m(21) 5 2

1
2

). Also

from the table, you see that m8(21) 5 22. Therefore, (m21)8 −⎛
⎝

⎞
⎠

1
2 5 2

1
2

.
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HANDS-ON ACTIVITY 5.1: LINEAR APPROXIMATIONS
Derivatives do so much. They report slopes of tangent lines, describe instantaneous
velocities, and illustrate rates of change. Tangent lines, based so closely on derivatives,
serve many similar purposes, but one of their most important characteristics is that
tangent lines tend to act like the functions they’re tangent to, at least around the point of
tangency.

1. Give the equation of the tangent line to f(x) 5
1
4

(x – 2)3 1 4 at x 5 3.

2. Graph f(x) and its tangent line on your calculator; draw the result below.

3. Zoom in three times on the point of tangency (using Zoom→Zoom in on the TI-83).
What relationship do you notice between the two graphs at this level of magnifi-
cation?

4. Return your graph to the standard viewing window (Zoom→standard). Calculate
the value of both functions at x 5 3.1 and x 5 6. What conclusions can you draw?

5. Describe the special property of tangent lines that is made clear in this activity;
make sure to note any drawbacks or weaknesses inherent in this method.

6. Use a tangent line (linear approximation) to estimate the value of f(5.12) if f(x) 5

3x2 – 7
3x

.
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SOLUTIONS TO HANDS-ON ACTIVITY 5.1

1. The tangent line has equation 3x – 4y 5 –8.

2.

3. Various stages of zooming are shown here:

The two graphs have very similar values the closer you zoom in to the point of
tangency. In fact, if you keep zooming in, it’s hard to tell the two graphs apart.

4. If you call the tangent line g(x), f(3.1) 5 4.33275 and g(3.1) 5 4.325. These values
are extremely close. However, f(6) 5 20 and g(6) 5 6.5. These values aren’t even
in the same ballpark. The clear conclusion: the tangent line only approximates
the function’s values near the point of tangency. Further away from this point, all
bets are off.

5. I drew this conclusion in number 4; clearly, I am an overachiever.

6. First, find the equation of the tangent line to f at x 5 5; because 5.12 is close to 5,
the function and the tangent line at x 5 5 will have similar values.

f 8(x) 5 6x 1 21x24

f 8(5) 5 30.0336

The tangent line—which passes through (5,74.944)—has slope 30.0336. Thus,
tangent line has the following equation:

y – 74.944 5 30.0336(x – 5)

Now, evaluate the tangent line for x 5 5.12 for your approximation, and you get
78.548.
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EXERCISE 2

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE YOUR CALCULATOR FOR ALL OF THESE PROBLEMS.

1. In the diagram below, the function f(x) meets its tangent line at the point (a,f(a)).
What is the equation of the linear approximation to f at x 5 a?

2. Use a linear approximation centered at 2 to estimate

j(2.14) if j(t) 5 2t3 – 1
2t

1 4ln t.

3. If h(0) 5 4 and h8(0) 5 –5, use a linear approximation to estimate h(.25).

4. If g(x) is a continuous and differentiable function and contains the values given
by the table below, estimate g(3.2) with a linear approximation.

ANSWERS AND EXPLANATIONS

1. The equation of the linear approximation is simply the equation of the tangent
line through the point (a, f(a)) with slope f 8(a): y 2 f(a) 5 f 8(a)(x 2 a).

2. The linear approximation is given by the equation of the tangent line to j at
(2,18.52258872). So, find the slope of the tangent line by calcuating the numerical
derivative.

j8(t) 5 6t2 1
2 4
3t t

+

j8(2) 5 24 1
1
4

1 2 5
105

4
The equation of the tangent line (linear approximator) is

y – 18.52258872 5
105

4
(x – 2)

Substitute x 5 2.14 to get an approximation of 22.198 for j(2.14).
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3. Begin by finding the equation of the tangent line to h when x 5 0 (since .25 is
close to 0, and all the information we have centers around 0). You already know
the slope of the line will be –5 and the point of tangency is (0,4), so the equation
of the line is y 5 –5x 1 4. The linear approximation for x 5 .25 is given by 25(.25)
1 4 5 2.75.

4. The best approximation for g(3.2) will be given by the tangent line constructed at

x 5 3. Clearly, the point of tangency is (3 1
2

, − ), but you’ll have to approximate the

derivative at x 5 3 using the secant line connecting 5
2

7
4

, −⎛
⎝

⎞
⎠ and (3 1

2
, − ). That

secant slope ∆
∆

y
x

is 5
2

. Therefore, the best linear approximation you can make is

y 1
1
2

5
5
2

(x – 3)

Evaluate this equation for x 5 3.2, and your approximation is 0.

L’HÔPITAL’S RULE (BC TOPIC ONLY)
L’Hôpital’s Rule may sound like the tyrannical rule of a French monarch, but it is
actually a way to calculate indeterminate limits. What is an indeterminate limit, you
ask? There are numerous forms that an indeterminate limit can take, but you should

concentrate on indeterminate forms 0
0

, 0 z `, and ∞
∞ . Until now, you were unable to

evaluate limits that ended with those results, but now, you will face no such restrictions.
Although L’Hôpital’s Rule is a BC topic, it is perhaps one of the easiest things in calculus
to apply and understand, and AP students are well served to learn it also.

To explore L’Hôpital’s Rule, we will revisit an example from the Special Limits section

of Chapter 3: lim sin
x

x
x→0

. Substitution resulted in 0
0

, which is indeterminate. None of

our other techniques (e.g., factoring, conjugate) applied to this problem either, so we
used the graph of sin x

x
to find the limit of 1. If you don’t have access to a graphing

calculator, however, this problem is a lot more difficult, as the graph is far from trivial
to draw. Enter L’Hôpital’s Rule.

L’Hôpital’s Rule: If f(x) 5 g(x) 5 0 or f(x) 5 g(x) 5 `, then lim lim
x a x a

f x
g x

f x
g x→ →

( )
( ) =

′ ( )
′ ( ) .

Translation: If you are trying to evaluate a limit and you end up with 0
0

or ∞
∞ , you

can take the derivatives of the numerator and denominator separately. The new
fraction will have the same limit as the original problem, so try and evaluate it. If you
get another indeterminate answer, you can repeat the process.

Example 3: Use L’Hôpital’s Rule to evaluate lim sin
x

x
x→0

.

Solution: As stated previously, substitution results in 0
0

. Apply L’Hôpital’s Rule by
deriving sin x and x (with respect to x):

lim sin lim cos
x x

x
x

x
→ →

=
0 0 1

a
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Note that sin x
x

and cos x
1

are not equal, but they will have the same limit as x

approaches 0. The new problem, lim
x→0

cosx, is very easy by substitution. Thanks to the

unit circle, you know cos 0 5 1, which is the answer you memorized “back in the day.”

Example 4: Evaluate lim cos
x

x
x→

−
0

1 .

Solution: Remember this one? It’s the other limit you memorized. Because substitu-

tion results in 0
0

, apply L’Hôpital’s Rule to get lim sin
x

x
→

−
0 1

. Evaluate the new limit by

substitution, and you get 0
1

, or 0. (Another answer you probably expected. If you
didn’t expect it, it probably feels like Christmas.)

Example 5: Evaluate lim
x

xxe
→∞

− .

Solution: If you substitute, you get ` z 0, which is an indeterminate form, but you
need a fraction to use L’Hôpital and his fabulous rule. However, you can rewrite the

expression as x
ex . Substitution now results in ∞

∞ , and it’s time to whip out L’Hôpital;

after differentiating, you get

lim
x xe→∞

1

Substitution results in 1
e∞ or 1

∞ , which is 0, according to our special limit rules from

Chapter 3.

Example 6: Evaluate lim
x

x
x x→∞

−
+ −

4 2
3 5 3

2

2 using L’Hôpital’s Rule.

Solution: You should be able to get the answer simply by looking at the problem—it’s
a limit at infinity of a rational function. So, you should compare the degrees of the
numerator and denominator. Because the degrees are equal, the limit is the quotient
of the leading coefficients: − 2

3
. You can verify this with L’Hôpital. (Substitution

results in ∞
∞ , so L’Hôpital’s Rule is allowed.) First, find the derivatives as you have

done:

lim
x

x
x→∞

−
+

4
6 5

Substitution still results in ∞
∞ , so apply L’Hôpital’s a second time.

lim
x→∞

− = −4
6

2
3
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many times L’Hôpital’s Rule
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EXERCISE 3

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY NOT USE YOUR GRAPHING CALCULATOR FOR THESE.

Evaluate the following limits.

1. lim
x→0

arcsin x
x2

2. lim
x

x x
x→

− + −
−7 2

3 9
49

3. lim cos
x

x x
x→

+
+0 2 1

4. lim
lnx

xe
x→

− −
1

1 1

5. lim
x→0

x2 cot x

6. lim
x→∞

1 1+⎛
⎝

⎞
⎠x x (Hint: use natural log)

ANSWERS AND EXPLANATIONS

1. Substitution results in 0
0

, so L’Hôpital it to get

lim lim
x x

x
x→ →

− =
−0

2

0 2

1
1

2
1

2 1

Now, substitution will work, and the answer is 1
2

.

2. The substitution of x 5 7 results in 0
0

, so use L’Hôpital’s Rule; you should get

lim

/

x

x

x→

−−( ) +
−7

1 21
2

3 1

2
. At this point, it is no longer illegal to substitute 7; in fact,

doing so results in the following:

1
2

1
2

1

2 7

•

•

+
−

5
4

14
5

56− = −

e
xe

rc
ise

s
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3. Were you fooled? L’Hôpital’s Rule is not applicable to this problem, because

substitution results in 1
1

, so the limit is equal to 1. Remember to apply L’Hôpital’s

Rule only in cases of indeterminate limits.

4. Déjà vu all over again! Indeterminate form 0
0

makes its encore appearance.
L’Hôpital is waiting in the wings to tackle this problem like Kevin Costner in The
Bodyguard:

lim
x

xe

x
→

−

1

1

1

lim
x

xxe
→

−

1

1

Substitution results in 1 z 1 5 1.

5. This limit is of indeterminate form 0 z `. In order to apply L’Hôpital’s Rule, you’ll
need a fraction. Because tan x and cot x are reciprocals, you can rewrite the limit

as lim
tanx

x
x→0

2
. Now, the indeterminate form 0

0
occurs, so you know what to do:

lim
secx

x
x→0 2

2

Substitution results in 0
1

, which, of course, is 0.

6. This one is a bit tricky, although you hopefully recognize it from the special limits
section; the answer is supposed to be e. In order to find the answer, we make the
crazy assumption that there is an answer, and we call it y:

y 5 lim
x→∞ 1 1+⎛

⎝
⎞
⎠x

x

Here’s where the hint comes in. Take the natural log of both sides of this
equation:

ln y 5 ln lim
x

x

x→∞
+⎛

⎝
⎞
⎠1 1

You can pull that limit out of the natural log (don’t worry so much about why you
can) and bring the x exponent down using log properties:

ln y 5 lim
x→∞

x ln 1 1+⎛
⎝

⎞
⎠x
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`
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chance you may see this
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www.petersons.com



This limit is the indeterminate form ` z 0, so you can apply L’Hôpital’s Rule as

soon as you make it a fraction. If you rewrite x as
1
1
x

(which is not too obvious to

most people), you get the indeterminate form 0
0

, so apply L’Hôpital’s Rule:

ln y 5 lim
ln

x

x

x
→∞

+( )1 1

1

ln y 5 lim
x

x x

x
→∞

+( ) −

−( )
1 1 1

1

2

2

i

ln y 5
lim
x

x
→∞ +

1

1 1

Finally, substitution is not illegal, and you can find the limit:

ln y 5 1

However, your original goal was to find the limit expressed as y, so you’ll have to
solve this equation for y by writing e to the power of both sides of the equation:

eln y 5 e1

y 5 e

This is the answer we expected, although I don’t know that we expected the
massive amount of work required.

PARAMETRIC DERIVATIVES (BC TOPIC ONLY)
If you are not yet convinced that derivatives are not only useful but also more fun than
your cousin last Thanksgiving when he had the stomach flu, you need only wait until the
next chapter. At that point, you will learn that derivatives can serve all kinds of
purposes, most of which even have applications in the real world. Because of the
extreme handiness of derivatives, it is important that you, the BC student, can
differentiate all kinds of equations; specifically, you should be able to find derivatives of
polar, parametric, and vector equations and be able to interpret these derivatives.
However, one thing at a time; we will start with parametric equations.

In order to find the derivative, dy
dx

, of a parametrically defined relation, we find the
derivatives of the x and y components separately with respect to t and write them as
a quotient as follows:

dy
dx

dy
dt
dx
dt

=

a
n

sw
e

rs
e

xe
rc

ise
s
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If it’s a second derivative you’re looking for, the formula is a little different. The
second derivative is the derivative of the first derivative with respect to t divided by
the derivative of the x component only with respect to t:

d y
dx

d
dt

dy
dx

dx
dt

2

2 =

⎛
⎝

⎞
⎠

More simply, d y
dx

dy
dx
x

2

2 =
′

′

Example 7: Find the derivative, dy
dx

, and the second derivative, d y
dx

2

2 , of the paramet-

ric equations x 5 3cos θ , y 5 2sin θ .

Solution: The derivatives, dy
dθ

5 –3sin θ and dy
dθ

5 2cos θ , are pretty simple to find,

and it’s only a matter of one more step to get dy
dx

:

dy
dx

dy
d
dx
d

dy
dx

= = −

= −

θ

θ

θ
θ

θ

2
3

2
3

cos
sin

cot .

In order to find the second derivative, find the derivative of the expression above, with

respect to u and divide it by dx
dθ :

d y
dx

2

2

22
3
3

= −

csc

sin

θ

θ

d y
dx

2

2
32

9
= − csc θ

Example 8: Find the derivative of the parametric equations in Example 7 by a
different method.

Solution: You can rewrite this set of parametric equations in rectangular form using the

method described in Chapter 2. Because of the Mamma Theorem (cos2x 1 sin2x 5 1), the

equivalent rectangular form is x y2 2

9 4
+ 5 1. In order to find dy

dx
in this equation, you’ll

have to use implicit differentiation:

2
9

1
2

0

2
9

2

4
9

x y dy
dx

dy
dx

x
y

dy
dx

x
y

+ =

= −

= −

i i

i
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Because you know the values of x and y, substitute them into dy
dx

:

dy
dx
dy
dx

= −

= −

12
18
2
3

cos
sin

cot

θ
θ

θ

which matches the answer we got in Example 7.

Example 9: Find the equation of the tangent line to the parametric curve defined by

x 5 arcsin t, y 5 e3t, when t 5
1
2

.

Solution: As always, we need a point and a slope in order to find the equation of a

line. When t 5
1
2

, we get the corresponding point (arcsin 1
2 4

3
2

3
2, , ,  or  e eπ . (You

may use your calculator to find the corresponding decimals, but remember not to
round anything until the problem is completely over.) To find the slope of the tangent

line, you need to calculate dy
dx

:

dy
dx

e

t

e t
t

t=

−

= −3
1

1

3 1
3

2

3 2

When t 5
1
2

, the derivative is approximately 17.696, which leads to the tangent line

equation of

y – e
3
2 5 17.696 x −⎛

⎝⎜
⎞
⎠⎟

1
2

, or

y 2 8.342 5 17.696 (x 2 .707)

Vector-valued equations are very similar to parametric equations. Because vector
equations are already defined in terms of x and y components, we follow the same

procedure to find dy
dx

. However, vector problems sometimes require us to find vectors

that represent rate of change. This topic is discussed in detail in the next chapter in
the section entitled “Motion in the Plane.”
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NOTE
We converted the

parametric equations in

Example 8 to rectangular

form in the problem set for

parametric equations in

Chapter 2. Check back if

you cannot remember how

to convert.

TIP
1

=2
is equivalent to

=2
2

;

the latter is rationalized.
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EXERCISE 4

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE YOUR GRAPHING CALCULATOR ONLY FOR PROBLEM 5.

1. What is the derivative of the parametric curve defined by x 5 tant, y 5 cot2t?

2. Find the derivative of the parametrically defined curve x 5 1 1 2t, y 5 2 2 t2

using two different methods.

3. Find d y
dx

2

2 when t 5 2 for the parametric curve defined by the equations x 5 e3t,

y 5 t2e3t.

4. If a parametric curve is defined by

x t t t= + + −
3

2

3
3 5 11 and

y t t t= − − +
3 2

3 2
2 5

(a) At what point(s) does the curve have horizontal tangent lines?
(b) At what point(s) is the curve nondifferentiable?

5. The position of a crazed lizard, as it runs left and right along the top of a hot brick
wall, is defined parametrically as x 5 2et, y 5 t3 – 4t 1 7 for t ≥ 0 (t is in seconds).
Rank the following values of t from least to greatest in terms of how fast the
lizard was moving at those moments: t 5 0, .5, 1, 2, 3.

ANSWERS AND EXPLANATIONS

1. Because dy
dt

5 –csc2t and dx
dt

5 sec2t,

dy
dx

t
t

t
t

= − = −csc
sec

cos
sin

2

2

2

2

dy
dx

t= − cot2

2. Method One: dy
dx

dy
dt
dx
dt

=

dy
dx

t t= − = −2
2
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TIP
Your calculator can find

points on a parametric

graph based on t and

calculate
dy
dt

,
dx
dt

, and
dy
dx

.

Instructions are given in the

technology section at the

end of the chapter.

TIP
Even though problems 1

through 4 would be

calculator-inactive

questions, you may want to

use your calculator to

check your work as you

progress. Make sure you

don’t rely on the calculator

to complete these.
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Method Two: Convert to rectangular form first

Begin by solving either x or y for t and substituting it into the other equation.

Because x 5 1 1 2t, t 5
x − 1

2
, and you can substitute:

y 5 2 – t2

y 5 2 1
4

2 12− − +( )x x

Now, take the derivative with respect to x:

dy
dx

5 2
1
2

x 1
1
2

This answer doesn’t seem to match the one above, but it actually does; the
difference is that this solution is in terms of x, whereas the preceding solution
was in terms of t. To see that they are equal, remember that x 5 1 1 2t and
substitute:

dy
dx

5 2
1
2

~1 1 2t! 1
1
2

dy
dx

5 2
1
2

2t 1
1
2

5 2t

3. First, you need to find dy
dx

. Don’t forget to use the Product Rule when differenti-
ating t2e3t:

dy
dx

e t te
e

t t

t= +3 2
3

3 2 3

3

dy
dx

t t t t= + = +3 2
3

2
3

2
2

Now, to find the second derivative, divide d
dt

dy
dx

⎛
⎝⎜

⎞
⎠⎟ by dy

dt
:

d y
dx

2

2 5
2 2

3
3 3

t

e t

+

The final answer is the derivative evaluated at t 5 2: 4 2
3

3 6

+

e
. It’s ugly, but it’s

right. More simplification can be done, but it’s not necessary and not recom-
mended.

4. (a) First find dy
dx

as you have done numerous times already:

dy
dx 5

t t
t t

2

2
2

6 5
− −

+ +

dy
dx

t t
t t

=
−( ) +( )
+( ) +( )

2 1
5 1
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Horizontal tangent lines have a slope of 0; the derivative will only have a

value of 0 when t 5 2. The point that corresponds with t 5 2 is 41
3

5
3

,⎛
⎝

⎞
⎠ .

(b) dy
dx

does not exist when t 5 –1 or –5, because both values cause a 0 in the

denominator. While the graphing calculator shows a definite sharp point
when t 5 –1,

the target line is vertical when t 525. The points corresponding to these

values are −⎛
⎝

⎞
⎠

40
3

37
6

, (for t 5 –1) and − −⎛
⎝

⎞
⎠

8
3

235
6

, (for t 5 –5).

5. The derivative of the parametric curve will be

dy
dx 5

3 4
2

2t
et
−

Rather than substitute each t value in by hand, use your calculator to evaluate
each. You should get the following values: dy

dx
(.5) ≈ –.986, dy

dx
(0) 5 –2,

dy
dx

(1) ≈ –.184, dy
dx

(2) ≈ .541, and dy
dx

(3) ≈ .573. Remember that the derivative is

the rate of change, so these numbers are the rate of change of the position of the
lizard, or its velocity. Negative velocity indicates that the lizard is running to the
left, positive velocity indicates running to the right. However, when speed is the
issue, direction does not matter, so the lizard was moving the fastest at t 5 0. The
correct order is: t 5 0, t 5 .5, t 5 3, t 5 2, t 5 1.

POLAR DERIVATIVES (BC TOPIC ONLY)
One of the defining qualities of polar equations is their similarity to parametric
equations. Remember that any polar function r 5 f(u) can be expressed parametrically
by x 5 rcos u, y 5 rsin u. Therefore, you differentiate polar equations using essentially
the same method outlined for parametric equations:

dy
dx 5

dy
d
dx
d

θ

θ

The derivative of the y component divided by the derivative of the x component, both
with respect to u, as both should contain u’s.

The only difference between this and the other formula is that the independent
variable is θ instead of t, the typical parameter in parametric equations. While the
mathematics involved is not too difficult, there are a lot of places to make mistakes;
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NOTE
Speed is defined as the

absolute value of velocity.
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this is the only thing that makes polar differentiation tricky. Make sure to proceed
slowly and cautiously.

Example 10: Find the slope of the tangent line to r 5 2 1 3cos u if u 5
π
3

.

Solution: First, express r parametrically as x 5 rcosu and y 5 rsinu:

x 5 (2 1 3cos u)cos u y 5 (2 1 3cos u)sin u

x 5 2cos u 1 3cos2u y 5 2sin u 1 3cos u sin u

Now, differentiate to get
dx
du

5 –2sin u – 6cos u sin u. You’ll have to use the Product

Rule to find
dy
du

:

dy
du

5 2cos u 1 3(cos2u – sin2u)

dy
du

5 2cos u 1 3cos 2u

To find the derivative at u 5
π
3

, substitute that into dy
dx

:

dy
dx

r= ′ ( ) = +
− −θ θ θ

θ θ θ
2 3 2

2 6
cos cos

sin cos sin

′ ⎛
⎝

⎞
⎠ =

−

− − ⎛
⎝⎜

⎞
⎠⎟

r π
3

2 1
2

3
2

3 3 3
2

i

′ ⎛
⎝

⎞
⎠ ≈r π

3
106.

No particular step of this problem is difficult, but a single incorrect sign could throw
off all your calculations.

Example 11: At what values of θ, 0 ≤ θ ≤ π
2

, does r 5 2cos (3 θ) have vertical or

horizontal tangent lines?

Solution: Questions regarding tangent lines lead you right to the derivative; begin
with parametric representation: x 5 2cos (3 θ) cos θ, y 5 2cos (3 θ) sin θ) . Now take

the derivative of each with respect to θ in order to build dy
dx

; each will require the
Product Rule:

dx
du

5 –2cos (3 u) sin u – cos u 6sin(3 u)

dy
du

5 –2cos (3 u) cos u – sin u 6sin(3 u)

Remember, horizontal tangents occur when the numerator of the slope is 0 (but the
denominator isn’t), and vertical tangents occur when the denominator of the slope is 0
(but the numerator isn’t). Use your calculator to solve these equations (but you’ll have
to set it back into rectangular mode first). dx

dθ equals 0 at θ 5 0, .912, and π
2

; the

derivative will not exist at these points due to vertical tangent lines. dy
dθ

equals 0 at u

5 .284 and 1.103; the derivative will be zero for these values, indicating horizontal
tangent lines.
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NOTE
cos 2u 5 cos2u 2 sin2u

according to trigonometric

double angle formulas.

Check Chapter 2 if you

don’t remember these.

TIP
If

dx
du

and
dy
du

are 0 at the

same time, you cannot

draw any conclusions

concerning horizontal and

vertical asymptotes.

www.petersons.com



EXERCISE 5

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE YOUR GRAPHING CALCULATOR FOR PROBLEMS 3 AND 4.

1. If r(u) 5 1 1 sin u, where is r 8(u) defined on [0,2p]?

2. Find the equation of the tangent line to r 5 tan u when u 5
11

6
π .

3. If r(u) 5 3 – sin (3u), at what values of u is r 8(u) 5 1?

4. Find the slopes of the tangent lines to r 5 a z sin(2u) (a . 0) at the four points
furthest from the origin (as indicated in the graph below).

ANSWERS AND EXPLANATIONS

1. First, convert the polar equation to rectangular equations using the formulas
x = r(u)cosu and y = r(u)sinu. We have r(u) = 1 + sinu. So,

x r

y r

= ( )
= +( )
= +

= ( )
= +( )

θ θ

θ θ
θ θ θ

θ θ

θ

cos

sin cos

cos sin cos

sin

sin si

1

1 nn

sin sin

θ

θ θ= + 2
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Now, calculate the derivatives of the x- and y-components:
dy
du

5 cos u 1 2sin u cos

u and
dx
du

5 –sin u 1 cos 2u. The derivative, dy
dx

, will be defined wherever dx
dθ Þ 0,

so set it equal to zero to find these points:

–sin u 1 cos 2u 5 0

– sin u 1 (1 – 2sin2u) 5 0

2sin2u 1 sin u – 1 5 0

(2sin u – 1)(sin u 1 1) 5 0

u 5
π π
6

5
6

, , and 3
2
π

The first two values correspond to vertical tangent lines, and the final value
corresponds to a sharp point on the graph, (as shown in the graph below).

2. In parametric form, r 5 tan θ becomes x 5 tan θ cos θ 5 sin θ, and y 5 tan

θ sin θ. Use these to find the rectangular coordinates of the point of tangency

(when θ 5
11

6
π ). If you plug θ 5

11
6
π into both, you get the coordinate

− ( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1
2

1
2 3

, . Now, you need to find the slope of the tangent line. To do so, find

the derivatives of x and y (using Product Rule for y8):

x8 5 cos θ

y8 5 tan θ cos θ 1 sin θ sec2 θ
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xe
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Therefore, dy
dx

11
6
π⎛

⎝
⎞
⎠ 5

′
′
⎛
⎝

⎞
⎠ =y

x
11

6
π

− −1
3

3
2

1
2

4
3

3
2

i i

− −1
2

2
3

3
2

− = −7
6

2
3

7
3 3

i

Therefore, the equation of the tangent line is as follows:

y x− = − +⎛
⎝

⎞
⎠

1
2 3

7
3 3

1
2

That was truly an ugly problem, but doing it without your calculator toughened
you up some—admit it.

3. Once again, it is important to express the polar equation in parametric form:
x 5 3 cos u 2 sin 3u cos u, y 5 3 sin u 2 sin 3u sin u. Take the derivatives of each

to get dy
dx

5
′
′

y
x

below:

dy
dx

= − −
− + −
3 3 3 3
3 3 3 3
cos sin cos cos sin
sin sin sin cos cos

θ θ θ θ θ
θ θ θ θ θ

You want to find when that big, ugly thing equals one, so carefully type it into
your calculator and solve that equation.

There are four solutions, according to the graph below, and they are θ 5 1.834,
2.699, 3.142 (or p), and 5.678.
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TIP
Even though your graphs

are done in polar mode, all

equation-solving with the

calculator (using

x-intercepts) requires that

you switch back to

rectangular mode first.
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4. You have to decide what points will be the furthest from the origin; in other
words, what’s the largest a z sin(2 u) can be? To start with, sin (2 u) can be no
larger than 1 and no smaller than –1 (the range of sin x). Therefore, the graph of
a z sin(2 u) can be no further than a z 1 5 a units from the origin. (Note that a
distance of –a from the origin is the same, just in the opposite direction.) Set the
equation equal to 6a to find out which values of u give these maximum distances:

a z sin(2 u) 5 6a

arcsin(sin(2 u)) 5 arcsin(61)

2 u 5
π π π π
2

3
2

5
2

7
2

, , ,

u 5
π π π π
4

3
4

5
4

7
4

, , ,

So, you need to find the derivatives at these values. Note that the derivatives will
not change regardless of a’s value. To convince yourself of this, you may want to
draw a couple of graphs with different a values. There’s no shame in using your
calculator to evaluate these derivatives since this is a calculator-active question.
(If you’re not sure how to do that, make sure to read the technology section at the

end of the chapter.) The derivative is 1 for θ 5
3
4
π and 7

4
π , and the derivative is

–1 for θ 5
π
4

and 5
4
π .

TECHNOLOGY: FINDING POLAR AND PARAMETRIC
DERIVATIVES WITH YOUR CALCULATOR (BC TOPIC ONLY)
Evaluating polar and parametric derivatives aren’t the most difficult topics you’ll
encounter in AP Calculus. However, when the heat is on during the AP test and you’re
searching for that needle-in-a-haystack error you committed that is causing your
answer to be mortally and inexplicably wrong, these derivatives can be pretty difficult.
As you have seen in this chapter, even relatively simple polar equations can have long
and yucky derivatives. There is good news—you can use your calculator to find these
derivatives, and the process is very simple. To prove it to you, we’ll revisit Example 9
from earlier in the chapter, with our new calculator buddies tucked snugly in our sweaty
palms.

Example 12: Find the equation of the tangent line to the parametric curve defined by
x 5 arcsin t, y 5 e3t, when t 5

1
2

.

Solution: Our overall approach will remain the same. We still need a point and a
slope in order to construct a line. Make sure your calculator is in parametric mode
([Mode]→“Par”) and graph the equation. (You may want to adjust the graph’s
[window] to see it better; I used a window of x 5 [–2,2] and y 5 [–1,15].) The point of

tangency occurs (according to the problem) when t 5
1
2

. To find this point in

rectangular coordinates, press [2nd]→[Trace]→“value” and input t 5
1
2

. The point of

tangency is (.707,8.342), just as we got previously.
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In order to find the derivative when t 5
1
2

, go back to the [Calc] menu and this time

select dy
dx

. Enter 1
2

for t as you did last time, and dy
dx

5 17.696.

The equation of the tangent line, then, is

y – 8.342 5 17.696(x – .707)

Polar derivatives are just as easy with the calculator. Who’s up for reruns? Let’s enjoy
Example 10 a second time, this time with our lil’ computing buddy by our side.

Example 13: Find the slope of the tangent line to r 5 2 1 3cos θ if θ 5
π
3

.

Solution: Make sure to set the calculator to Polar mode ([Mode]→“pol”) and graph
the equation. Because this graph has trigonometric equations, it’s a good idea to
choose [Zoom]→“Ztrig” (window settings that are friendly to trigonometric graphs).
Much like Example 11, you proceed to the [Calc] menu ([2nd]→[Trace]) and select
dy
dx

, the derivative. The calculator then prompts you to input u; type in π
3

(as shown

below), and the derivative appears as if by magic: dy
dx

≈ .115.

It’s worth repeating that you must know how to calculate points of tangency and
derivatives without a calculator, although no one would argue that the calculator
doesn’t make it significantly easier.
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NOTE
Your calculator can find

points of tangency for polar

graphs, too. This (like

everything else) is also

found in the [Calc] menu.
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EXERCISE 6

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR PROBLEMS 4 THROUGH 8 ONLY.

1. Use a linear approximation at x 5
1
2

to estimate m(.502) if m(x) 5
2 32

3
x x

x
− .

2. Evaluate lim
x

x x
x→∞

+ + −
−( )

3 2 5 2
5 7

2

.

*3. Find dy
dx

at u 5
7
6
π for the polar equation r 5 sin u cos u.

*4. At what values of t does dy
dx

5
1
2

for the parametric function defined by x 5 2 1

t2, y 5 3 – t?

*5. If f(x) 5 2tan x 1 x3 and g(x) is a continuous, origin-symmetric function that
contains the following values:

Estimate lim
x

f x
g x→

( )
( )0

.

*6. Find the equation of the vertical tangent line (in rectangular form) to the curve
defined by the parametric equations x 5 e t sin t, y 5 2t 1 1, 0 ≤ t , 2p.

7. If k(x) 5 2x3 1 x 1 2, what is the equation of the tangent line to k–1(x) when x 5

4.3?

*8. At what rectangular coordinates do the tangent lines to r 5 sin2u at u =
p

6
and

u =
2p

5
intersect? (Note: Answer this as you would a free response question. Show

all work, and make sure to include the setup for any answers you give based on
calculator work.)

9. James’ Diabolical Challenge: Let f(x) 5
x
ex

2

, x ≤ 0.

(a) Evaluate f–1(0).
(b) Find (f–1) 8 (0).

*(c) What is lim
x

f x
→∞

( ) ?

*a BC-only question.
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ANSWERS AND EXPLANATIONS

1. We have to begin by finding the equation of the tangent line to m at x 5
1
2

.

We determine the point of tangency by calculating mS1
2D:

1
2

3
2

1
8

1
1
8

8
−

=
−

= −

The point of tangency, therefore, is 1
2

8, −⎛
⎝

⎞
⎠ . The slope of the tangent line will, as

always, be given by the derivative, so use the Quotient Rule to find it:

′( ) =
−( ) − −( )( )

( )
m x

x x x x x

x

3 2 2

3 2

4 3 2 3 3

′( ) =
− +

=
− +

m x
x x

x

x

x

2 6 2 64 3

6 3

′⎛⎝⎜
⎞
⎠⎟

=
− +

= =m
1
2

1 6
1
8

5
1
8

40

Therefore, the equation of the tangent line is y x+ = −⎛
⎝

⎞
⎠8 40 1

2 .

Last step: Substitute x 5 .502 into the tangent line to get the linear
approximation:

y 1 8 5 40 (.502 – .5)

y 1 8 5 .08

y 5 –7.92

(If you plug the answer into the original equation, mS1
2D 5 –8, so this approxi-

mation is relatively close.)

2. L’Hôpital’s Rule is too cumbersome for this problem. Notice that you have a
rational function with the same degree x x=( ) in the numerator and denomi-
nator. Thus, the limit at infinity will be the ratio of the numerator’s and denomi-
nator’s leading coefficients: 3

5
.
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3. In order to find dy
dx

, you first must express the equation parametrically: x 5 sinu

cos2u, y 5 sin2u cosu. Remember that dy
dx

is basically ′
′

y
x

. You’ll need to use the
Product Rule to get x8 and y8:

x8 5 sinu(cos2 u)8 1 cos2u (sin u)8

x8 5 –2cos u sin2u 1 cos3u

y8 5 sin2u (cos u)8 1 cos u (sin2u)8

y8 5 –sin3u 1 2cos2usinu

dy
dx

=
− +
− +

sin cos sin

cos sin cos

3 2

2 3

2

2

θ θ θ
θ θ θ

Now, evaluate dy
dx

for θ 5
7
6
π :

dy
dx

=
+ −

− − −

• •

• •

1
8

2 3
4

1
2

2 3
2

1
4

27
8

Of course, there is no need to simplify this answer, and doing so drastically
increases your chances of making a mistake. If you simplifed further and want to
know if you got it right, use a calculator to evaluate your expression; it should
equal 2.887.

4. First, find dy
dx

:

dy
dx

y
x

=
′
′

dy
dx t

=
−1
2

Clearly, the derivative will equal
1
2

whenever t 5 21.

5. If you try to evaluate the limit via substitution, you will get indeterminate form
0
0

, so you should default to L’Hôpital’s Rule and find lim
x

f x
g x→

′ ( )
′ ( )0

. Simple differen-

tiation yields f 8(x) 5 2sec2x 1 3x2, so f 8(0) 5 2 z 1 1 0 5 2. To complete the

problem, however, you’ll also need g8(0), and that will require some estimation.

Because g is origin symmetric, you automatically know that g(.1) 5 –.492 and

g(.2) 5 –.942. You should use one of the following secant lines to estimate the

derivative: from x 5 –.1 to .1, from x 5 –.1 to 0, or from 0 to .1. If you choose the

secant line from –.1 to 0, the secant slope is
0 493
0 1

4 93−
− −( ) =.

.
. .

Therefore, lim
.

.
x

f x
g x→

′ ( )
′ ( ) = − ≈ −

0

2
4 93

406
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6. The slopes of all tangent lines, vertical or not, are furnished by dy
dx

, so begin by
finding it:

dy
dx e t e tt t

=
+
2

cos sin
A vertical asymptote will occur when the denominator is 0 but the numerator is
not. This numerator is always 2, so you need only determine where the denomi-
nator is 0. You can use your calculator to solve this, but the problem is pretty easy
without the calculator:

et(cos t 1 sin t) 5 0

cos t 1 sin t 5 0

cos t 5 –sin t

t = 3
4

7
4

π π,

However, this is not the answer to the question. Instead, you need to give the
rectangular equations of the vertical tangent lines that occur at these values of t.
To do so, use the [2nd]→[Trace]→“value” function of your calculator. When t 5
3
4
π , the corresponding rectangular coordinate is (7.460,5.712); when t 5

7
4
π , the

corresponding coordinate is (2172.641,11.996). Therefore, the equations of the
vertical tangent lines are x 5 7.460 and x 5 –172.641.

7. You’ll need, as always, a point and a slope to form a line. You cannot find k21(x)
algebraically, so you’ll need to use the Magnum P.I. formula to find the derivative
of the inverse function and, hence, the slope of the tangent line:

k
k k

−
−( )′ ( ) =

′ ( )( )
1

1
4 3

1

4 3
.

.

(k21)8(4.3) =
1

8900107776′ ( )k .

k−( )′ ( ) ≈1 4 3 174. .

Now that you have the point and the slope, it is a trivial pursuit to write the
equation of the line (although I always have trouble with those entertainment
questions):

y – .890 5 .174(x – 4.3)

8. Use the calculator’s [2nd]→[Trace]→“value” and [2nd]→[Trace]“
dy
dx

” functions to

calculate the points of tangency and derivatives for each line. The tangent lines
should be

y – .125 5 1.0392309 (x – .21650635), for u 5
π
6

, and

y – .8602387 5 –1.235663(x – .2795085), for u 5
2
5
π

To find the intersection of these lines, solve both for y and set them equal to each
other:

1.0392309(x – .21650635) 1 .125 5 –1.235663(x – .2795085) 1 .8602387
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(cos t 1 sin t) being equal

to 0 in problem 6 because

et never equals 0 (the
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“intersection” feature of

your calculator on the

free-response portion of the

test, so use the equation

solving feature of the

calculator instead.
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You can now solve the equation on your calculator by setting the above equation
equal to 0 and finding the root:

1.0392309(x – .21650635) 1 .125 1 1.235663(x – .2795085) – .8602387 5 0

x 5 .57392439

Substitute this value into either line’s equation to get the corresponding y-value,
and the resulting coordinate is (.574, .496).

9. (a) To find f21 at a specific x, set f equal to x and solve:

x
e
x

x

x

2

2

0

0
0

=

=
=

Therefore, f–1(0) 5 0.

(b) This requires the inverse function derivative formula. Apply the informa-
tion from 9(a), and the formula becomes

f
f

−( )′ ( ) =
′( )

1 0
1

0

If you find f 8(x) with the Quotient Rule, you get

′( ) =
−

f x
xe x e

e

x x

x

2 2

2

′( ) =
−

f x
x x

e x

2 2

Therefore, f 8(0) 5 0; substitute this into the inverse function derivative
formula:

f −( )′ ( ) =1 0 1
0

(f21)8(0) is undefined; the inverse function is not differentiable there due to
a vertical tangent line.

(c) To find this limit, you must apply L’Hôpital’s Rule twice (due to the pres-

ence of indeterminate form
`

`
):

lim
x x

x

e→∞

2

lim
x xe→∞

= ∞ =2 2 0

a
n

sw
e

rs
e

xe
rc

ise
s

Chapter 5: Advanced Topics in Differentiation 193
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

www.petersons.com



SUMMING IT UP
• The Power, Product, Quotient, and Chain Rules allow you to find the derivative in

almost any expression or equation you will encounter.

• Inverse functions are helpful in their power to cause other functions to disappear.

• Linear approximations are the first step in a more complicated process known as
Euler’s Method. Whereas approximations are on both the AB and BC tests,
Euler’s Method appears only on the BC test.

• When applying L’Hopital’s Rule, find the derivatives of the numerator and de-
nominator separately. Do not use the Quotient Rule to find the derivative of the
entire fraction.

• L’Hopital’s Rule is for use only with indeterminate limits.

• Even though your graphs are done in polar mode, all equation-solving with the
calculator (using x-intercepts) requires that you switch back to rectangular mode
first.

PART II: AP Calculus AB & BC Review194
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

www.petersons.com



Applications of the
Derivative

OVERVIEW
• Related rates
• Hands-On Activity 6.1: Rolle’s and mean value theorems
• Hands-On Activity 6.2: The first derivative test
• Concavity
• Motion
• Motion in the plane (BC topic only)
• Optimization
• Technology: Modeling a particle’s movement with a

graphing calculator
• Summing it up

By this time, you are beginning to form an opinion about derivatives. Either
you like them or you don’t. Hopefully, the two of you are at least on speaking
terms. If you are, you are going to be very impressed by the things derivatives
can do. They can even help you in the real world, which sometimes surprises
math students. Before we get into these topics, it’s time to decide whether or
not you are a derivative fan.

You Might Love Derivatives If...
• You have an oversized foam hand that reads “Derivatives #1!”

• When your friend flipped a coin the other day, you said, “That’s what I call
a rate of change.” And no one laughed but you.

• You love it when people go off on tangents.

• You took up skiing so you could learn more about slopes.

• You loudly commented at the grocery store the other day that, “This
express line looks more like a linear approximation.”

• You always respond to chain letters because they remind you of the Chain
Rule.

• You have a giant tattoo of the Quotient Rule on your back.

RELATED RATES
You already know that a function or equation shows a clear relationship
between the variables involved. For example, in the linear equation y 5 3x 2 2,
each ordered pair has an x that is 2 less than 3 times as large as y. What you may

c
h

a
p

te
r6
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not know is that when you find the derivative of such an equation with respect to time,
you find another relationship—one between the rates of change of the variables. Back to
our equation: If you find the derivative of y 5 3x 2 2 with respect to t, you get

dy

dt

dx

dt
= ⎛

⎝
⎞
⎠3

This means that y is changing at a rate 3 times faster than x is changing. This makes

sense, because the derivative, dy
dx

, is
3
1

. For every one unit you travel to the right, you

must travel up 3 to stay on the graph. These types of problems are called related rates
(for obvious reasons).

As we progress through the following examples, we will be closely following the plan
below. Get used to the chronology of these steps—the method of solving related rates
problems always follows the same pattern.

5 Steps to Success with Related Rates
Identify which rate you are trying to find and what information is given to you.

Find an equation that relates the variables to one another if you’re not given one.

Eliminate extra variables, if at all possible, by substituting in for them (see
Example 3).

Find the derivative of the equation with respect to t.

Plug in what you know, and solve for the required rate.

Example 1: My brother, Dave, and I recently went golfing. After a promising start, he
landed 3 consecutive balls in the lake in front of the second green. As the first ball
entered the water, it caused a multitude of ripples in the form of concentric circles

emanating from the point of impact at a steady rate of
3
4

ft/sec.

(a) What was the rate of change of the area of the outermost ripple when its radius
was 3 feet?

This question concerns area and radius; both of these elements are contained by the
formula for area of a circle: A 5 pr2. To find the relationship between the rates, find
the derivative with respect to t:

dA

dt
r

dr

dt
= 2π

You are trying to find dA
dt , the rate of increase of A. You know that dr

dt 5
3
4

according

to the given information, and the problem prompts you that r 5 3 in this instance.
Substitute these values into the equation to solve:
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Of all the topics in AP

Calculus, students often

forget how to do related

rates by test time. Take

some extra time and make

sure that your
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of change of y with respect

to time, and
dx
dt

is the rate

of change of x with respect

to time.
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dA

dt
= ( ) =•2 3

3

4

9

2
π π

ft2/sec

(b) What was the rate of change of the golf club he threw with a mighty initial velocity
after drowning the third ball? No one knows, but everyone knew to stay out of the
way.

As Example 1 illustrates, make sure that you include the correct units in your final
answer when units are included in the problem. Following are the most commonly
requested rates (assuming that the problem includes meters and seconds): area
(m2/sec), volume (m3/sec), length or velocity (m/sec), and acceleration (m/sec2). If the
problem contains units other than meters and seconds, the format is still the same.

Example 2: While painting my house and atop a 25-foot ladder, I was horrified to
discover that the ladder began sliding away from the base of my home at a constant
rate of 2 ft/sec (don’t ask me how I knew that, I just did). At what rate was the top of
the ladder carrying me, screaming like a 2-year-old child, toward the ground when the
base of the ladder was already 17 feet away from the house?

2 m/sec

25
y

x

Solution: You first need to set up a relationship that contains your given information
and what you need to find. The right triangle made by the ladder and my house
contains all of this information (although you wouldn’t have to have the same vari-
ables, of course), so by the Pythagorean Theorem:

y2 1 x2 5 252

Notice that the values of x and y will change as the ladder slides, but the ladder will
always be 25 feet long, so I can use this constant rather than a third variable.

Now, find the derivative with respect to t:

2y z
dy
dt

1 2xz
dx

dt
5 0

The base of the ladder is sliding away from the house at 2 ft/sec, so
dx

dt
5 2; the

problem also states that x 5 17. You’ll have to use the Pythagorean Theorem to find
the value of y for this specific value of x:

y2 1 x2 5 25

y2 1 (17)2 5 252

y 5 336
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ALERT!
If something is decreasing

or becoming smaller, its

rate of change will be

negative.

ALERT!
You can only insert a

constant into your primary

equation in related rates if

that constant cannot

change throughout the

problem. For example, the

ladder is constant in

Example 2.

ALERT!
Don’t forget to take the

derivative of the constant,

252, to get 0.

www.petersons.com



Now, you have all the variables in question except for dy
dt

, the rate that you are trying

to find. Substitute all your values into the derivative you found earlier to find dy
dt

:

2 336 2 17 2 0( ) + ( )( ) =dy

dt

dy

dt
' 21.855 ft/sec

Notice that the length of y is decreasing, since the ladder is sliding downward;
therefore, dy

dt
must be negative.

A few years ago, I had to undergo massive nasal surgery, the focus of which was to
scrape out all of my sinus cavities to remove disgusting “mucous cysts” that had
gathered there like college students waiting for a party. I wrote the next problem soon
after that experience. It was, at the time, the worst thing that could happen. (This
problem appeared on my Web site as it was just getting started.)

Example 3: The nightmare has come to pass. All of Kelley’s extensive surgeries and
nasal passage scrapings have (unfortunately) gone awry, and he sits in the ear, nose,
and throat doctor’s office waiting area spewing bloody nose drippings into a conical
paper cup at the rate of 2.5 in3/min. The cup is being held with the vertex down and
has a height of 4 inches and a base of 3 inches. How fast is the mucous level rising in
the cup when the “liquid” is 2 inches deep?

Solution: You should first establish what you know: a cone’s volume is V 5 pr2h,
dV
dt 5 2.5, height of the cone is 4, and the diameter of the base is 3, which makes the

radius of the base, r, equal to
3
2

. (You also know that the mucous itself will be in the

shape of a cone since it is in a conical container.) What’s even more important is what
you don’t know. You don’t know the radius of the mucous, and you don’t know its rate
of change. Therefore, you should try to eliminate the variable r from the volume
equation. Why include a variable you know nothing about? To do so is the most
complicated part of this problem. You need to use similar triangles. Below is a
cross-section of the cup.

1.5

r 4

h

Two similar right triangles can be formed. Look at the set of overlapping triangles on
the right. The smaller triangle (representing mucous) has unknown height and ra-
dius, whereas the larger triangle (the cup) has height 4 and radius 1.5. This allows
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when compared to the
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difficulty in related rates is
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you to set up a proportion, since corresponding sides of similar triangles are in
proportion.

4 3
2

h r
=

Solve this proportion for r and you get r 5
3
8
h . If you substitute this for r into the

volume equation, the problem of knowing nothing about r is completely solved.

V 5
1

3
2π r h

V 5
1

3

3

8

2

π h
h⎛

⎝
⎞
⎠

V 5
3

64
3π h

Now, find the derivative with respect to t to get rolling:

dV

dt
h

dh

dt
= 9

64
2π 

and substitute in all the information you know to solve for
dh

dt
, the value requested by

the problem:

2 5
9
64

2 2. = ( )π dh

dt

dh

dt
' 1.415 in/min

My cup, it overfloweth.
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EXERCISE 1

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR PROBLEMS 2 THROUGH 4.

1. A particle moves along the path y 5 x3 2 3x2 1 2. If the particle’s horizontal rate
of change when x 5 4 seconds is 23 ft/sec, what is its vertical rate of change at
that instant?

2. If a spherical balloon is being deflated at a rate of 5 in3/sec, at what rate is the
radius of the balloon decreasing when r 5 5 in?

3. Last week, I accidentally dropped a cube into a vat of nuclear waste, setting off a
chain reaction of events that eventually caused the cube to possess super powers,
among them the ability to eat rocks. As the cube amassed these super powers, it
swelled at a rate of 7 in/sec. At what rate was the surface area of Super Cube
changing when one of its sides was 2 feet long?

4. During a reality show presentation, one of the celebrities displays her athletic
prowess by skydiving out of a hovering helicopter 100 feet away from a cliff. If her
position, in feet, is given by s(t) 5 216t2 1 15,840, find the rate of change of the
angle of depression (no pun intended) in degrees/sec at t 5 30.9 seconds for a
viewer standing at the edge of the cliff, assuming that his head is 600 feet above
the floor of the valley below.

ANSWERS AND EXPLANATIONS

1. The equation is already given, so find the derivative with respect to t and
substitute:

dy

dt
x

dx

dt
x

dx

dt
= −3 62

dy

dt
= ( ) −( ) − ( ) −( )3 4 3 6 4 32

5

dy

dt
5 272 ft/sec

BC students note:
  dy

dt
dx
dt

= −
−

=72
3

24 , which is also
dy

dx
when x 5 4.
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A fall from a helicopter 3

miles in the sky is not only

dangerous but nearly

impossible. It should only be
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professional or someone
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2. You need to know the volume of a sphere. Find its derivative with respect to t and
plug in the given information:

V 5
4
3
pr3

dV

dt
5 4pr2 dr

dt

25 5 4p(5)2 dr

dt

dr

dt
5 2.016 in/sec

Notice that you have to make dV
dt negative because the volume is decreasing.

3. The surface area of a cube is the sum of the areas of its sides. The sides are all
squares, so the surface area is S 5 6x2, where x is the length of a side. Now find
the derivative and substitute:

dS

dt
x

dx

dt
= 12

dS

dt
5 12(24)(7)

dS

dt
5 2,016 in2/sec

Note that you use 24 inches instead of 2 feet for x, since the rest of the problem is
to be given in terms of inches.

4. Begin by drawing a picture.

a
n

sw
e

rs
e

xe
rc

ise
s

Chapter 6: Applications of the Derivative 201
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

www.petersons.com



The horizontal distance between the spectator and Angela will remain fixed, but
the vertical distance will change dramatically. You need to use a variable to label
any length that can change; here we used x. You’ll need an equation that contains
u, since your goal is to find d

dt
θ . The perfect choice is tangent, and the equation

should be tan u 5 x
100 . Now, find its derivative with respect to t:

sec2 1
100

θ θd
dt

dx
dt

=

You still need to find u and dx
dt to finish this problem. To find x, you first must

find s(t) when t 5 30.9, so plug 30.9 into the position equation:

s(t) 5 216(30.9)2 1 15,840 5 563.04

You can tell by looking at the diagram that x 5 600 2 s(t), so at the instant that
t 5 30.9, x 5 600 2 563.04 5 36.96. Finally, we can find u (in degrees as asked):

tan .θ = =x
100

36 96
100

u 5 20.28431249°

Now you need to find dx
dt . We just said x 5 600 2 s(t), so find the derivative with

respect to t when t 5 30.9:
dx

dt
5 2s′(t)

dx

dt
5 2(232t) 5 32(30.9)

dx

dt
5 988.8 ft/sec

All of the required information is finally available, so substitute and finish this
problem:

sec2(20.28431249) d
dt

θ
5

1
100

(988.8)

d
dt

θ
5 8.700 deg/sec
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HANDS-ON ACTIVITY 6.1: ROLLE’S AND MEAN
VALUE THEOREMS
The following activity will help you uncover two of the most foundational theorems of
differential calculus. Rolle’s Theorem is one of those rare calculus theorems that makes
a lot of sense right away. The Mean Value Theorem is not very difficult either, and it
usually appears on theAP test pretty frequently. With your deep conceptual understand-
ing of derivatives, you should have no problem at all understanding.

1. Let’s say that you have the continuous and differentiable function f(x) 5 x3 2 6x2

1 12x 2 5. Draw the portion of the graph indicated by the axes below (x 5 [0,4]).

40

5

2. Draw the secant line that connects x 5 1 to x 5 3 on the graph of f, and calculate
the slope of the secant line.

3. Are there any places on the graph of f where the tangent line to the graph
appears to be parallel to the secant line you’ve drawn? How many times does this
happen on [0,3]? Draw these tangent lines that appear to be parallel to the secant
line.

4. What does it mean geometrically if those tangent lines are parallel to the secant
line?

5. Write your conclusion to problem 4 as a mathematical formula. If you solve this
for x (you’ll have to use your calculator), you will find the x values for the tangent
lines. What are they?
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Some students confuse the

Mean Value Theorem with

the Intermediate Value

Theorem. They are similar

only in that they are both

existence theorems, in that

they guarantee the

existence of something.
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6. Time to be generic. Given a continuous, differentiable function g(x) on the inter-
val [a,b], complete the following:

• Give the slope of the secant line from x 5 a to x 5 b.

• Give the slope of the tangent line to g(x) at any point on its domain.

Use your answers above to fill in the blanks and complete the Mean Value
Theorem:

Mean Value Theorem: Given a function g(x) that is continuous and differen-
tiable on a closed interval [a,b], there exists at least one x on [a,b] for which _____,
the slope of the secant line, equals ______, the slope of the tangent line.

7. Illustrate the Mean Value Theorem graphically using the graph below of g on
[a,b].

8. Translate the Mean Value Theorem into a statement about rates of change.

9. Rolle’s Theorem is a specific case of the Mean Value Theorem, which applies
whenever g(a) 5 g(b). What is the slope of the secant line for such a function?
What is guaranteed by the Mean Value Theorem as a result, and what does that
mean geometrically?

10. Fill in the blanks to complete the theorem:

Rolle’s Theorem: Given a function f(x) that is continuous and differentiable on
the closed interval [a,b] and ____ 5 ____, then there exists at least one x on [a,b]
such that ____________.

11. Draw a function g(x) on the axes below that satisfies Rolle’s Theorem on [a,b] but
satisfies it more than one time.

a b
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SELECTED SOLUTIONS TO HANDS-ON ACTIVITY 6.1

2. The slope of the secant line is f f( ) ( )3 1
3 1

4 2
3 1

1−
− = −

− = .

3. There are two places on [0,3] where the tangent lines appear to be parallel—one
falls nearly midway between x 5 1 and 2 and another between x 5 2 and 3.

secant line

4. It means that they share the same slope.

5. The formula should state that the secant and tangent slopes are the same:

f f
f x

3 1

3 1
( ) − ( )

−
= ′( )

The left-hand formula is the secant slope, and the derivative on the right repre-
sents the tangent slope. You already know the secant slope, so f ′(x) 5 1. Find f ′(x)
and solve using your calculator; you should get x ' 1.423 and x ' 2.577.

6. The secant slope is g b g a
b a

( ) − ( )
−

, and the tangent slope is g′(x).

Mean Value Theorem: ...there exists at least one x on [a,b] for which
g b g a

b a
( ) ( )−

−
equals g′(x).

7. Estimate on the graph where the secant and tangent lines appear to be parallel.

secant line

tangent line

8. At least once on the interval [a,b], the instantaneous rate of change equals the
average rate of change for that interval.
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9. The slope of the secant line is 0, so the Mean Value Theorem guarantees that
somewhere on [a,b], there will be a horizontal tangent line. Geometrically, this
means that the graph reaches a maximum or a minimum somewhere between a
and b, assuming, of course, that the function is not merely a horizontal line
connecting (a,f(a)) to (b,f(b)).

10. Rolle’s Theorem: ...[a,b] and f(a) 5 f(b), then there exists at least one x on [a,b]
such that f ′(x) 5 0.

11.

a b
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EXERCISE 2

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR PROBLEM 5 ONLY.

1. Determine if each of the following statements is true or false. If true, justify your
answer. If false, provide a counter example.

If f(x) is a continuous function on [a,b], and f(a) 5 f(b), then ...

(a) f has an absolute maximim and an absolute minimum.
(b) There exists a c, a ≥ c ≥ b, such that f ′(c) 5 0.

2. During vacation, Jennifer is en route to her brother’s house. Unbeknownst to her,
two policemen are stationed two miles apart along the road, which has a posted
speed limit of 55 mph. The first clocks her at 50 mph as she passes, and the
second measures her speed at 55 mph but pulls her over anyway. When she asks
why she got pulled over, he responds, “It took you 90 seconds to travel 2 miles.”
Why is she guilty of speeding according to the Mean Value Theorem?

3. Given g(x) as defined by the graph below, and g(b) 5 g(c).

a c b

g(x )

(a) How many times does g(x) satisfy the Mean Value Theorem on [a,b]?
(b) What conclusions, if any, can be drawn about g(x) using Rolle’s Theorem?

4. At what value(s) of x is the Mean Value Theorem satisfied for m(x) 5 x3 2
5
2

x2 2

2x 1 1 on [22,4]?

5. If h′(0) satisfies the Mean Value Theorem for h(x) 5 ln (sin x 11) on [2 π
4 ,b], find

the smallest possible value of b.

e
xe

rc
ise

s
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ANSWERS AND EXPLANATIONS

1. (a) True: This value is guaranteed by the Extreme Value Theorem; the function
need only be continuous on a closed interval.

(b) False: It may sound like Rolle’s Theorem, but Rolle’s Theorem includes the
guarantee that the function is differentiable on [a,b]; the diagram below
shows one possible graph of f for which there is no horizontal tangent line
on the interval.

a b

f (x )

2. You can figure out Jennifer’s average speed for the two miles between the police;
think back to the old, familiar formula d 5 rt (distance 5 rate z time). Her rate

will be given by r 5
d
t
. Your units are hours, so 90 seconds has to be rewritten in

terms of hours. Because there are 3,600 seconds in an hour, 90 seconds represents
90

3 600, of an hour, or 1
40 . Clearly, d 5 2 from the information given. Therefore, you

can find the average rate of speed:

r 5
2
1
40

5 80 mph

The Mean Value Theorem says that on a closed interval, your instantaneous rate
of change (in this case, velocity) must equal the average rate of change (average
speed) at least once. Therefore, ol’ leadfoot Jenny had to have traveled 80 mph at
least once, and the policeman can ticket her.

3. (a) The tangent line must be parallel to the secant line (shown dotted in the
diagram below) four times in that interval at approximately the places
marked below.

a b

(b) Rolle’s Theorem ensures that g′(x) 5 0 at least once between x 5 c and x 5

b. In fact, g′(x) 5 0 twice on the interval, although you may not be able to
justify that visually until later in this chapter.
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In fact, Jennifer probably

went a whole lot faster

than 80 mph when she
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4. The Mean Value Theorem states that at some point c between 22 and 4,

m′(c) 5
m m4 2

4 2
( ) − −( )

− −( )
Once you find m′(c) and evaluate the fraction, you can solve for c:

3c2 2 5c 2 2 5
17 13

6

− −( )

3c2 2 5c 2 2 5 5

3c2 2 5c 2 7 5 0

This doesn’t factor, so you need to resort to the quadratic formula. The solutions
are c 5 5 109

6
± . However, only the solutions on the interval [22,4] count. Without

a calculator, how can you tell if either of these fall in the interval? Well, 109 is
between 100 (10) and 121 (11). If you evaluate the solutions with these
estimations in place, both answers fall within the interval, so both values of c are
correct.

5. If the Mean Value Theorem is satisfied at h′(0), then the average rate of change
on the interval must be equal to that value; that value is

h′(0) 5
cos

sin
0

0 1+ 5 1

Therefore, all you need to do is to find the average value and set it equal to 1 in
order to find b:

h b h
b

( ) − −( )
− =

π

π
4

4

1–

ln sin ln sinb
b

+( ) − ( ) +( )
+ − =

1 1
1 04

4

– π

π

Once you set this gigantic equation equal to zero, you can use your calculator to
solve, and b ' 1.07313.
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HANDS-ON ACTIVITY 6.2: THE FIRST DERIVATIVE TEST
You might suspect that there is some kind of relationship between functions and their
derivatives. Sometimes, late at night, they show up holding hands, insisting that they
are “just friends.” It’s just as you suspect—derivatives can always tell what a function is
doing—they have this connection that other people envy and yearn for. You’ll learn more
about this connection in the following activity.

1. Graph the function f(x) 5 x3 2
5
2

x2 2 2x 1 1 on the axes below.

2. Your goal in this exercise will be to describe where f is increasing and decreasing
without depending on its graph. In other words, you want to describe the direc-
tion of f. Important fact: If a graph changes direction, the change will occur at a
critical number, a number at which the derivative either equals zero or is unde-
fined. What are the critical numbers for f?

3. What relationship do you see between the critical numbers and the direction of f?

4. The line graph below is called a wiggle graph. It is used in conjuction with critical
numbers to describe a function’s direction. Label the graph below by marking off
the critical numbers you found in problem 2 above. They should break the wiggle
graph into three separate segments.

5. Pick a number from each of the three segments of the wiggle graph and plug each
separately into the derivative. If the result is negative, write a “2” above the
corresponding segment of the wiggle graph; if the result is positive, denote it with
a “1”.

6. What relationship do you see between the wiggle graph you have constructed and
the graph of f?
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TIP
The relationships between a

function and its derivatives

are all over the AP test. This

is one of the most essential

concepts in AP Calculus, so

make sure to understand

it—it’s not that hard,

actually.

ALERT!
A graph is not guaranteed

to change direction just

because it has a critical

number there. However, if

the graph changes

direction, it needs to

happen at a critical

number.

TIP
Whenever you use a wiggle

graph, it is important to

label it correctly. We will

use this graph with critical

numbers that came from

f ′(x), so the wiggle graph

must be labeled f ′.
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7. Complete this statement based on your results: If a function f is increasing on an
interval, then its derivative f ′ will be ___________ there. However, if a function is
decreasing, it’s derivative will be ___________.

8. Consider the simple function g(x) 5 x2. Construct a wiggle graph for it, and give
the intervals for which g is increasing.

9. Graph y 5 x2 and draw two tangent lines to the graph—one on the interval
(2`,0) and one on (0,`). How do the slopes of these tangent lines support your
wiggle graph?

10. How could you tell from the wiggle graph of p(x) 5 x2 that x 5 0 was a relative
minimum?

11. In general, how can you tell where a relative maximum or minimum occurs using
only a wiggle graph?

12. Form the wiggle graph for h(x) 5
1
x2. What are the relative extrema (relative

maximums or minimums) for the graph? Why?

SELECTED SOLUTIONS TO HANDS-ON ACTIVITY 6.2

2. To find critical numbers, you must first find the derivative: f ′(x) 5 3x2 2 5x 2 2.
Critical numbers occur wherever this is zero or is undefined. By factoring, you

can see that f ′(x) 5 0 when x 5 2
1
3

and x 5 2.

3. At the x-values that represent the critical numbers, the graph seems to change
direction.

4.

5. You can choose any number from each of the intervals; the numbers 21, 0, and 3
are good, simple choices. Plug each into the derivative: f ′(21) 5 6, f ′(0) 5 22, and
f ′(3) 5 10. Therefore, mark the intervals left to right as positive, negative, and
positive:
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NOTE
Creating a wiggle graph is

a very easy thing to do. If

you are confused by the

directions, flip back and

forth between the solutions,

and it should be clear.

NOTE
It makes sense to call

maximums and minimums

extrema points, because

the graph takes on its most

extreme values there.
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Let the meaning of the diagram sink in. You can easily calculate that f ′(21) is

positive. That means that any value on the interval (`,2
1
3

) will return a positive

value if substituted into the derivative. Likewise, any number in the interval

(2
1
3

,2) will return a negative value when substituted into the derivative, accord-

ing to the wiggle graph.

6. Whenever the wiggle graph is positive, f is increasing, and when the graph
wiggles negative, f is decreasing.

7. positive, negative

8. g will be increasing on (0,`), since g′ is positive on that interval:

9. Whenever the graph is decreasing (in this case (2`,0)), the tangent lines on the
graph will have a negative slope. When the graph is increasing, the tangent lines
have a positive slope. The wiggle graph is based on the derivative, which is
defined by the slope of the tangent line.

positive
slope

negative
slope

10. The wiggle graph shows that the derivative changes from negative to positive at
x 5 0, which means that g changes from decreasing to increasing to x 5 0. If a
graph suddenly stops decreasing and begins increasing, the point at which it
stopped must be a minimum—draw it!

relative minimum
of g

g increasingg decreasing

11. When the derivative changes sign, the function changes direction. Therefore, if a
wiggle graph changes from 1 to 2 or vice versa, a relative extrema point has
occurred.
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NOTE
A relative maximum is

different from an absolute

maximum. A relative

maximum appears as a

little “hump” on the graph.

At the crest of that hump,

the graph is at a

maximum—at least relative

to the points directly

around it. A relative

minimum appears as a

“valley” in the graph.

TIP
The wiggle graph you

created in problem 5

corresponds exactly with

the graph of f ′(x). If you

graph f ′(x), you’ll notice

that it is a parabola that is

negative on S2
1
3
,2D but

positive elsewhere. The

wiggle graph is simply a

one-dimensional

representation of the

derivative’s graph.
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12. You can rewrite h as x22; therefore, h′(x) 5 22x23, or −2
3x

. The derivative never
equals zero; however, h′ is undefined when x 5 0. Therefore, x 5 0 is a critical
number for h. The wiggle graph looks like the following:

It looks like x 5 0 should be a relative maximum, because the function changes
from increasing to decreasing there. However, x 5 0 is not in the domain of the
original function h! x 5 0 cannot be a maximum on a graph if it’s not even in the
domain. This is because h(x) has a vertical asymptote at x 5 0. Thus, x 5 0 is not
an extrema point. Because it was the only critical number (and all extrema must
occur at critical numbers), there are no extrema on h.
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EXERCISE 3

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

DO NOT USE A GRAPHING CALCULATOR FOR THESE PROBLEMS.

1. Draw the graph of a function, b(x), that has a relative minimum at x 5 23 when
b′(23) does not exist.

2. Give the x-values at which each of the following functions have relative extrema,
and classify those extrema. Justify your answers with wiggle graphs.

(a) y
x x

x
= − −

+
2 9 5

3

2

(b) y
e

x

x

=
+2 1

ln

3. Given the graph below of m′(x), the derivative of m(x), describe and classify the
relative extrema of m(x).

4. Below are the graphs of two functions, g(x) and g′(x). Which is which, and why?

5. If f(x) is defined as follows:
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(a) Find all points of discontinuity on f(x).
(b) Determine if f ′(p) exists.
(c) On what intervals is f increasing?

ANSWERS AND EXPLANATIONS

1.

2. (a) The derivative, using the Quotient Rule, is

x x x x

x

+( ) −( ) − − −( )
+( )

3 4 9 2 9 5

3

2

2

′ = + − − + +
+( )

y
x x x x

x

4 3 27 2 9 5

3

2 2

2

′ = + −
+( )

y x x
x

2 12 22
3

2

2

The critical numbers occur where the numerator and denominator equal 0.
Clearly, the denominator is 0 when x 5 23. Set the numerator equal to 0, and
use the quadratic formula to get x 5 23 6 20 . Plug test points from each
interval into the derivative, and you get this wiggle graph:

This graph has a relative maximum at x 5 23 2 20 and a relative mini-
mum at 23 1 20 .

(b) First, realize that the domain of this function is x . 0, because that is the
domain of the denominator. Once again, critical numbers occur wherever the
numerator or denominator of the derivative equals zero. The numerator is
the natural exponential function, which never equals zero (its range is (0,`)).
However, the denominator equals 0 when x 5 1. Therefore, x 5 1 is the only
critical number. The resulting wiggle graph looks like the following:

However, there is no relative minimum at x 5 1, even though the direction
of the function changes. Because x 5 1 is not in the domain of the function,
it cannot be an extrema point. In fact, x 5 1 is a vertical asymptote for this
function. There are no extrema points for this function.
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3. The derivative changes from negative to positive at x ' 2 .8, meaning that the
original function m changes from decreasing to increasing. Therefore, m has a
relative minimum there. Using similar reasoning, m has a relative maximum at
x 5 7. There are no extrema points when x 5 4, even though the derivative equals
0 there (making it a critical number); the derivative doesn’t actually change signs
around x 5 4, so the function does not change direction.

4. The dotted function is g(x). Note that whenever the dotted function reaches a
relative maximum or minimum, the other graph has a value of 0 (an x-intercept
occurs). Furthermore, whenever the dotted function is increasing, the solid func-
tion is positive (above the x-axis) and vice versa.

5. (a) The only possible point of discontinuity of f is at x 5 p—if the two graphs do
not meet at that point, there will be a jump discontinuity. If you substitute x
5 p into each of the two pieces of the function, they both result in an output
of 0, making f continuous on its entire domain [0,2p].

(b) These two functions could meet in a sharp point, causing a cusp, and no
derivative would exist. To determine if a cusp occurs, you undertake a
process similar to 5(a). To be continuous, both pieces had to have the same
function value. To be differentiable, both pieces must have the same
derivative at x 5 p. The derivatives are as follows:

d

dx
(sin x cos x) 5 cos2x 2 sin2x

d

dx
(sin2x) 5 2sin x cos x

When x 5 p, the first rule has a derivative of 1, and the second has a
derivative of 0. Because these derivatives do not match, no derivative exists
on f when x 5 p.

(c) In order to determine direction, you need to set the derivatives found in 5(b)
equal to zero and complete a wiggle graph. Because the first rule of the
piecewise-defined function pertains only to [0,p), the wiggle graph on the
same interval will be based on its derivative. Therefore, the interval [0,p) has
critical numbers π

4 and 3
4
π . Similarly, you set 2sin x cos x 5 0 and plot the

resulting critical numbers only on the interval [p,2p]. These critical numbers
are p, 3

2
π , and 2p. The final wiggle graph looks like the following:
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Therefore, f is increasing on (0, π
4 ) ∪ ( 3

4
π , 3

2
π ). In case you are skeptical,

here’s the graph of f:

CONCAVITY
Two of the major characteristics used to describe graphs are direction and concavity. You
have already used the sign of the first derivative to determine the direction of a function,
and in this section, you will use the sign of the second derivative to determine the
concavity of the original function. In 1955, prison wardens all over the world introduced
fluoride into the drinking water of their prisons in a coordinated effort to reduce “con”
cavities, but their efforts proved to be in vain. Thus, concavity still pervades functions
worldwide.

Concavity describes the curviness of a curve. Consider the mouths on the faces drawn
below:

− −+ +

The smile on a happy face is described as concave up, whereas the frown is concave
down. Notice that frown and down rhyme. It is also said that milk poured into a
concave up curve stays there, whereas milk poured on a concave down curve will
splatter on your mom’s clean floor and make her angry. In this mnemonic device, a
cup should be concave up.

Notice the signs that constitute the eyes of the faces; these signs remind us of the
most important fact concerning concavity: If a function, f(x), is concave down on an
interval, then the second derivative, f ′′(x), will be negative there. Similarly, if a
function is concave up, its second derivative will be positive.

This is hauntingly similar to our work with direction and the first derivative. In that
case, the sign of the first derivative indicated direction. Concavity, on the other hand,
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is dictated by the sign of the second derivative. This relationship is explored by the
diagram below:

The sign of a function describes the direction of the function one step “above” it, and
that same sign describes the concavity of the function two steps “above.”

Example 4: On what intervals is the graph of the function g(x) 5 x3 2 2x2 2 4x 1 2
concave down?

Solution: The concavity of a function is based on the sign of its second derivative, so
you need to begin by finding g′′(x):

g′(x) 5 3x2 2 4x 2 4

g′′(x) 5 6x 2 4

Here, you need to find critical numbers again, just as you did when you found
direction. This time, the critical numbers occur when the second derivative is either

zero or undefined. The only critical number is x 5
2
3

. Use this to create a second

derivative wiggle graph, and make sure to label it g′′. Choose test numbers from both
of the intervals and make sure to plug them into the second derivative, as it is the sign
of the second derivative that provides the information you are seeking. The wiggle
graph looks like the following when you are finished:

The graph of g(x) is concave down on (2`, 2
3).

In the preceding example, the graph changed from concave down to concave up at the
point (2

3,2
34
27 ). The change of concavity makes this a point of inflection, much as a

change of direction caused points to become extrema points.
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Example 5: Given the graph below of h′(x), the derivative of h(x), describe the
concavity of h(x).

Solution: Not only does the h′′(x) describe the concavity of h(x), but it also describes
the direction of the h′(x). (Since h′(x) is one step “above” h′′(x).) From the graph, you
can tell that h′(x) is increasing on (22,2) ∪ (3.5,`) and decreasing on (2`,22) ∪
(2,3.5). Therefore, h′′(x) will be negative on (2`,22) ∪ (2,3.5) and positive on
(22,2) ∪ (3.5,`), as indicated on the concavity wiggle graph below:

Without having seen a graph of h(x), we can draw from the concavity wiggle graph
that h is concave up on (22,2) ∪ (3.5,`) and concave down on (2`,22) ∪ (2,3.5).
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EXERCISE 4

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR PROBLEMS 3 AND 4.

1. Describe the concavity of the generic linear function y 5 ax 1 b, and interpret
your answer.

2. On what intervals is the function g(x) 5 sin cos
sin
2x x

x concave up on the interval
[0,2p]?

3. Given the differentiable graph of f ′′(x) below, answer the following questions:

(a) Describe the concavity of f(x).
(b) At what x-values will f ′(x) have its absolute maximum and absolute

minimum values?
(c) Will f ′′′(0) be positive or negative? What about f(4)(0)?
(d) On what intervals will f ′(x) be concave down?

4. Given the below graph of h′(x), describe the concavity of h(x), given h(x) is
continuous.

PART II: AP Calculus AB & BC Review220
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

www.petersons.com



ANSWERS AND EXPLANATIONS

1. The concavity of a function is described by its second derivative, so find that first:

y′ 5 a

y′′ 5 0

It is difficult to interpret a value of zero in the second derivative. In this case, it
is because a line by itself does not have any concavity. However, a second
derivative of 0 does not always mean that no concavity exists (see problem 4).

2. It’s necessary, again, to find the second derivative. Instead of using the Quotient
Rule, use a double angle formula to simplify the fraction first:

g(x) 5
2sin cos cos

sin

x x x

x

•
5 2cos2x

g′(x) 5 24cos x sin x

g′′(x) 5 24(cos2x 2 sin2x)

Set the second derivative equal to 0, and solve to get critical numbers of π
4 , 3

4
π ,

5
4
π , and 7

4
π . Use these and test points from each interval to construct the

following wiggle graph for concavity:

Therefore, g(x) will be concave up on the intervals ( π
4 , 3

4
π ) and ( 5

4
π , 7

4
π ).

3. (a) f ′′(x) is negative on (23,21), so f(x) will be concave down there. However, f(x)
will be concave up on (21,5), since f ′′(x) is positive on that interval.

(b) Because f ′′(x) is negative on (23,21), you know that f ′(x) is decreasing on
that interval. However, f ′(x) will be increasing on the interval (21,5) by the
same reasoning. Notice that the graph changes from decreasing to increas-
ing at x 5 21, so a relative minimum will occur there. That relative
minimum will also be the absolute minimum of the graph, because the
graph only increases once you pass that point. Because the graph increases
for the remainder of its domain, the absolute maximum of the graph will
occur at x 5 5, which is the last defined point on the graph.

(c) The third derivative of f describes the direction of the second derivative of f.
You are given the graph of the second derivative, and at x 5 0, f ′′(x) is
increasing, so f ′′′(0) will be positive. On the other hand, f(4)(x) describes the
concavity of f ′′(x), and the graph of f ′′(x) is concave down at x 5 0. There-
fore, f(4)(0) will be negative.

(d) The signs of f ′′′(x) will describe the concavity of f ′(x). How do you determine
the signs for f ′′′(x)? Remember that it describes the direction of f ′′(x).
Because f ′′(x) decreases on (23,22) ∪ (2,5) and increases on (22,2), you can
construct the following wiggle graph of f ′′′(x):
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Therefore, f ′(x) will be concave down on (2`,22) ∪ (2,`).

4. This requires some thinking. The graph tells you that h(x) is some function whose
derivative is consistently 4 until x 5 2, and then the derivative suddenly changes
to 24. What kind of a function has a constant derivative? A linear function. For
example, if y 5 4x 1 3, then y′ 5 4. However, what sort of linear function
suddenly changes derivative? Consider the absolute value graph pictured below:

2

The slope of the curve is 4 until x 5 2, at which point the slope turns into its
opposite, 24. The graph of h(x) is concave down on its entire interval.

MOTION
Calculus has its long, threatening talons in just about every aspect of day-to-day life;
luckily, most of us are blissfully ignorant of it and unaware of it stalking us, waiting
until we go to sleep, and then messing with our stuff—like putting CDs in the wrong
cases and breaking all the points off your pencils on test day. But not even calculus can
hide its influence in the topic of motion. Because a derivative describes a rate of change,
we have already seen its influence many times and alluded to this very moment:
describing how a derivative affects a position equation.

Important Facts About Position Equations
A position equation is typically denoted as s(t) or x(t); for any time t, its output is the
object’s position relative to something else. For example, output may represent how far
a projectile is off the ground or how far away a particle is from the origin.

The derivative of position, s′(t) or v(t), gives the velocity of the object. In other words,
v(t) tells how fast the object is moving and in what direction. For example, if we are
discussing a ball thrown into the air and v(3 seconds) 5 24 ft/sec, when time equals 3,
the ball is traveling at a rate of 4 ft/sec downward.

The derivative of velocity, v′(t) or a(t), gives the acceleration of the object. This ties in
directly to the section you just completed. If an object has positive acceleration, then
the position equation (two derivatives “above” a(t)) must be concave up, and the
velocity equation (one derivative “above” a(t)) must be increasing.

The most common motion questions on the AP test focus on the motion of a particle on
a line, usually horizontal (although the direction of the line doesn’t matter). For

PART II: AP Calculus AB & BC Review222
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

TIP
A relative extrema point is

the highest or lowest value

in a small interval of the

graph. An absolute

extrema point is the highest

or lowest point on the

entire domain of the graph.

Absolute extrema can

occur at relative extrema

or endpoints, if the function

has them.

NOTE
A position equation

describes an object’s

motion by giving its position

at any time.

www.petersons.com



example, consider a particle moving along the x-axis whose position at any time t is
given by s(t) 5 t3 2 10t2 1 25t 21, t .0. The graph of the position equation looks like

s(t )

but the particle itself never leaves the x-axis. Let’s look at this problem in depth to
better understand a typical particle motion problem.

Example 6: If the position (in feet) of a particle moving horizontally along the x-axis
is given by the equation s(t) 5 t3 2 10t2 1 25t, t . 0 seconds, answer the following:

(a) Evaluate s(1), s(4), and s(5), and interpret your results.

By simple substitution, s(1) 5 16, s(4) 5 4, and s(5) 5 0. In other words, when 1
second has elapsed, the particle is 16 feet to the right of the origin, but 3 seconds later
at t 5 5, the particle is back to the origin.

(b) At what time(s) is the particle temporarily not moving, and why?

The particle will be temporarily stopped when its velocity equals 0—this makes a lot
of sense, doesn’t it? Since the derivative of position is velocity, take the derivative and
set it equal to 0:

v(t) 5 s′(t) 5 3t2 2 20t 1 25 5 0

Now, factor the quadratic equation to complete the solution:

(3t 2 5)(t 2 5) 5 0

t 5
5
3

, 5

Therefore, at these two moments, the particle is stopped because it is in the process of
changing direction. (Remember, part (a) showed you that it changed direction between
t 5 1 and t 5 4.)

(c) On what interval of time is the particle moving backward?

The particle moves backward when it has negative velocity. Therefore, we will draw a
velocity (first derivative) wiggle graph. We already know the critical numbers from
part (b), so all that remains is to choose some test points from among the intervals.
Because v(.5) is positive, v(3) is negative, and v(6) is positive (of course you wouldn’t
have to pick the same test points), you get the following wiggle graph:
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Therefore, the particle is moving backward on ( 5
3

,5). This makes sense if you consider
the graph of s(t). Remember, this position graph tells how far the particle is away from
the origin. On the interval ( 5

3
,5), the particle’s distance from the origin is decreasing,

indicating backward movement. It should be no surprise that the velocity is negative
then, since velocity is the derivative of that graph, and derivatives have a nasty habit
of describing the direction of things.

(d) How far does the particle travel in its first 4 seconds of motion?

You may be tempted to answer 4 feet, since s(4) 5 4; however, that is what’s called the
displacement of the particle. The displacement is the net change in position. Because
s(0) 5 0 and s(4) 5 4, no matter what happened in between, the particle ended up a
total of 4 units from where it started. However, the problem doesn’t ask for displace-
ment—it asks for total distance traveled. We need to measure how far it swung out to
the right of the origin when it changed direction at t 5

5
3

and then how far back
toward the origin it came. We already know s(0) 5 0, but it is essential to know that
s( 5

3
) ' 18.518518518, because it tells us that the particle traveled 18.518518518 feet

in the first 12
3 seconds. At this point, the particle changes direction and ends up 4 feet

from the origin. In the return trip, then, it traveled 18.518518518 2 4 5 14.518518518
feet. The total distance it traveled was 18.518518518 1 14.518518518 '33.037 feet.

The other type of motion problem the AP test enjoys inflicting upon you is the dreaded
trajectory problem. Did you know that anything thrown, kicked, fired, or otherwise
similarly propelled follows a predetermined position equation on the earth? It’s true,
neglecting air resistance of course. The generic projectile position equation is

s(t) 5 2
g

2
t2 1 v0t 1 h0

where g is the gravitational acceleration constant (32 ft/sec2 in the English system
and 9.8 m/sec2 in the metric), v0 is the object’s initial velocity, and h0 is the object’s
initial height. It is probably a good idea to memorize this equation in case you ever
need it, although the questions typically asked for this sort of problem are extremely
similar to those asked in Example 6.

PART II: AP Calculus AB & BC Review224
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

NOTE
Air resistance has been

neglected for so long in

theoretical mathematics

that it is rumored to have

joined a 12-step program.

www.petersons.com



EXERCISE 5

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR BOTH OF THESE PROBLEMS.

1. A very neurotic particle moves up and down the y-axis according to the position
equation y 5 (t2 2 6t 1 8) z sin t, t . 0, where position is in centimeters and time
is in seconds. Knowing this, answer the following questions:

(a) When is the particle moving down on the interval [0,5]?
(b) At what values of t is the particle moving at a rate equal to the average

rate of change for the particle on the interval [0,5]?
(c) At what time(s) is the particle exactly 2 cm away from the origin on the

interval [0,5]?
(d) What is the acceleration of the particle the first time it comes to rest?

2. The practice of shooting bullets into the air—for whatever purpose—is extremely
dangerous. Assuming that a hunting rifle discharges a bullet with an initial
velocity of 3,000 ft/sec from a height of 6 feet, answer the following questions
(neglecting wind resistance):

(a) How high will the bullet travel at its peak?
(b) How long will it take the bullet to hit the ground?
(c) At what speed will the bullet be traveling when it slams into the ground,

assuming that it hits nothing in its path?
(d) What vertical distance does the bullet travel in the first 100 seconds?

ANSWERS AND EXPLANATIONS

1. (a) The particle is moving down when its position equation is decreasing—when
the velocity is negative. You should make a first derivative wiggle graph, so
begin by finding the critical numbers of the derivative:

v(t) 5 (t2 2 6t 1 8)(cos t) 1 (2t 2 6)(sin t) 5 0
It’s best to solve this using your graphing calculator. The solutions are t 5

.738, 2.499, and 3.613. The wiggle graph is

Therefore, the particle is moving down on (.738,2.499) ∪ (3.613,5).

(b) The average rate of change of the particle will be y y5 0
5

( )− ( )
5 2.5753545648

cm/sec. To determine when the particle travels this speed, set the velocity
equal to this value and solve with your calculator. This is actually the
Mean Value Theorem in disguise; we know at least one t will satisfy the
requirements in the question, but it turns out that the instantaneous rate
of change equals the average rate of change three times, when t 5 .813,
2.335, and 3.770 sec.

(c) The particle will be two cm away from the origin when its position is 2 (two
cm above) or 22 (2 cm below). So, you need to solve both the equations
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(t2 2 6t 1 8)sin t 5 2 and (t2 2 6t 1 8)sin t 5 22 with your calculator. The
solutions are t 5 .333, 1.234, and 4.732 sec.

(d) The particle first comes to rest at its first critical number, t 5 .73821769.
To find acceleration, you need to differentiate the velocity and substitute in
the critical number. Rather than doing this by hand, why not use the
graphing calculator and the nDeriv function? You would type the following
on your TI-83: nDeriv((x2 2 6x 1 8)(cos (x)) 1 (2x 2 6)(sin (x)),x,.73821769).
The resulting acceleration is 28.116 cm/sec2.

2. (a) You will need to apply the projectile position equation. The initial height and
velocity are stated by the problem, and since the question uses English
system units (feet), you should use g 5 32 ft/sec2 as the acceleration due to
gravity. You put your left foot in, you take your left foot out, you put your left
foot in, shake it all about, and the position equation is

s(t) 5 216t2 1 3,000t 1 6
The bullet will reach its peak at the maximum of the position equation (since
it is an upside-down parabola, there will be only one extrema point). To find
the t value at which the peak occurs, find the derivative and set it equal to 0
(since the bullet will have a velocity of 0 at its highest point before it begins to
fall toward the ground):

v(t) 5 s′(t) 5 232t 1 3,000 5 0
t 5 93.75 seconds
This, however, is not the answer. The height the bullet reaches at this point is
the solution: 140,631 feet, or 26.635 miles.

(b) The bullet will hit the ground when s(t) 5 0—literally, when the bullet is 0
feet off of the ground. So, set the position equation equal to 0, and solve (if
you use the calculator, you’ll have to ZoomOut a few times before the graph
appears—these are big numbers). The bullet will remain in the air 187.502
seconds, or 3.125 minutes.

(c) U s′(187.502) U 5 3,000.064 ft/sec (since speed is the absolute value of
velocity, the answer is not negative). The bullet will hit at a speed slightly
greater than that at which it was fired. Therefore, being hit by a bullet that
was fired into the air will have the same impact as being hit by a bullet at
point-blank range.

(d) You already know that the bullet travels 140,631 feet in the first 93.75
seconds. Because s(100) 5 140,006, the bullet falls 140,631 2 140,006 5

625 feet between t 5 93.75 and t 5 100. Therefore, the bullet travels a total
vertical distance of 140,631 feet up 1 625 feet down 5 141,256 feet.

MOTION IN THE PLANE (BC TOPIC ONLY)
Although these questions are less frequent, the AP test sometimes contains questions
concerning movement along a parametrically defined or vector path. Vector defined
functions are quite easy to differentiate, making this topic relatively simple in the grand
scheme of BC topics. Before you read on, you should look back at the introduction to
vector functions in Chapter 2.

In order to differentiate a vector function s 5 f(t)i 1 g(t)j, find the derivatives of the
components separately:

d

dt
(s) 5 f ′(t)i 1 g′(t)j
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Vector position equations work similarly to the position equations we just discussed.
The velocity vector is given by the first derivative of the position equation, and the
acceleration vector is given by the second.

Example 7: A particle moves in the plane such that the position vector from the origin
to the particle is

s 5 (cos t sin 2t)i 1 (2t 1 1)j, for all t on the interval [0,2p]

(a) Find the velocity and acceleration vectors for any time t.

To find the velocity vector, take the derivative of the x and y components separately:

v 5 (2cos t cos 2t 2 sin t sin 2t)i 1 2j

In order to find the acceleration vector, take the derivative again:

a 5 (24cos t sin 2t 2 2sin t cos 2t 2 2sin t cos 2t 2 cos t sin 2t)i

(b) What is the velocity vector when t 5
π
2 , and what is the speed of the particle

there?

Plug t 5
π
2 into the velocity vector to get the specific answer for that value of t:

v 5 (0 z 21 2 1 z 0)i 1 2jv 5 2j

The graph and its velocity vector at t 5
π
2 are shown below. The velocity vector has no

horizontal component because the graph is changing direction at that point (kind of
like a sideways extrema point).

The speed of the particle is given by the norm of the velocity vector. Remember, you
find the norm with the equation

v = ⎛
⎝

⎞
⎠ + ⎛

⎝
⎞
⎠

dx

dt

dy

dt

2 2

In this case v = + =0 2 22 .
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EXERCISE 6

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE YOUR GRAPHING CALCULATOR FOR PART (B) OF PROBLEM 1 AND
ALL OF PROBLEMS 2 AND 3.

1. A particle moves along the graph defined by x 5 cos t, y 5 cos 3t, for t on the
interval [0,2p].

(a) What is the velocity vector, v, when t 5
7p

4
?

(b) Draw the path of the particle on the coordinate plane, and indicate the

direction the particle moves. Draw the velocity vector for t 5
7p

4
.

(c) What is the magnitude of the acceleration when t 5
7p

4
?

2. A particle moves along a continuous and differentiable path that includes the
coordinates (x,y) below for the corresponding values of t:

Approximate the speed of the particle at t 5 3.

3. Create a position equation in vector form for a particle whose speed is 15 when
t 5 1.

ANSWERS AND EXPLANATIONS

1. (a) The general position vector is given by s 5 (cos t)i 1 (cos 3t)j. Therefore, the
velocity vector will be v 5 (2sin t)i 1 (23sin 3t)j. The velocity vector when

t 5
7p

4
will be v 5

2
2

⎛
⎝⎜

⎞
⎠⎟

i 1
3 2

2
⎛
⎝⎜

⎞
⎠⎟

j, since 3 7
4
π⎛

⎝
⎞
⎠ 5

21
4

π , which is cotermi-

nal with 5
4
π .
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(b)

The graph proceeds from (1,1) to (21,21) on [0,π] and then returns to
(1,1) on [π,2π].

(c) The magnitude of the acceleration is found by calculating the norm of the
acceleration, much like the speed is the magnitude (norm) of the velocity.
Therefore, you should begin by finding the acceleration vector by differenti-
ating the velocity vector:

a 5 (2cos t)i 1 (29cos 3t)j

The magnitude of the acceleration is the norm of that vector, so calculate it

when t 5
7p

4
:

a = −⎛
⎝

⎞
⎠ + −⎛

⎝
⎞
⎠cos cos

7

4
9

21

4

2 2π π

a = + •
1

2
81

1

2

a = 41

2. Recall the generic formula for speed as the norm of velocity: v = ( ) + ( )dx
dt

dy
dt

2 2
.

Because you do not have the position vector, you cannot find v. However, you can

use slopes of secant lines to approximate
dx
dt

and
dy
dt

:

dx
dt

≈ −
− =5 02 4 91

3 2 5
22. .

.
.

dy
dt

≈ −
− =4 73 4 35

3 2 5 76. .
. .

Therefore, v = + ≈. . .22 76 7912 2 .
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3. From the given information, we know that

dx
dt

dy
dt

⎛
⎝

⎞
⎠ + ⎛

⎝⎜
⎞
⎠⎟ =

2 2

15

so therefore,

dx
dt

dy
dt

⎛
⎝

⎞
⎠ + ⎛

⎝⎜
⎞
⎠⎟ =

2 2

225

There are numerous approaches to take, but we will discuss the easiest. Because

we can do anything we like (as long as it works), we’ll set
dx
dt

5 15 and
dy
dt

5 0.

Notice that the sum of their squares equals our goal. Next, we need an expression
for x whose derivative, evaluated at 1, is 15. What about x 5 15

2 t2? The trick is
taking half of the number you want to end up with and using it as the coefficient,
since the Power Rule dictates that you will multiply by 2: x′ 5 2 z

15
2 t 5 15t.

Clearly, this has a value of 15 when t 5 1. You can use any constant for your y
component, since its derivative will be 0. One possible answer for this problem,
therefore, is s 5 ( 15

2 t2)i 1 19j. Check it to convince yourself that it’s right.

OPTIMIZATION
Optimization, like related rates, is one of the most useful topics in calculus because of its
direct tie to real-world applications. However, just like related rates, it is one of the
topics many students forget about by test time. There are many theories that could
account for this forgetfulness in students. One theory is that related rates and optimi-
zation, unlike many other calculus topics, require students to follow a strict algorithm in
order to arrive at a correct answer (you must proceed from one step to the next, and
there are fewer alternative solutions possible than in other calculus topics).

Another less widely held theory is that the concepts of related rates and optimization
are imprinted on smaller “memory molecules” than other calculus topics. These
smaller molecules are, then, shaken loose from the brain and escape through small
lesions in its surface every time you sneeze. I, myself, am torn as to which is actually
true, but it does explain the common student phrase “Good luck on the AP Calculus
test, and try not to sneeze,” which has puzzled scholars for decades.

Optimization is the process of finding an optimal value, either maximum or minimum,
under strict conditions. You may be asked to minimize area, maximize volume,
minimize cost, or maximize profit, just to name a few applications. But, we will start
out with a simpler example.

Example 8: What two positive real numbers give the smallest possible product if one
number is two less than three times the other?

Solution: The first step in an optimization problem is to design an equation that
represents what you are actually trying to optimize. In this case, you want the
minimum product of two numbers.
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We will set up the equation

P 5 xy

which simply means that some product P is equal to two different numbers, x and y,
multiplied. We want a minimum value for P. One problem stands in our way. Optimi-
zation problems require a single variable in the expression. We have two variables, so
we need to go back to the original problem for more information. There is another
relationship between the variables: one (it doesn’t matter which) is two less than
three times the other, so we can write:

y 5 3x 2 2

Now, substitute this y value into our original equation for P to get

P 5 x z (3x 2 2) 5 3x2 2 2x

We now have an equation for the product in a single variable! Do you realize how
wonderful that is? We already know how to find a maximum or minimum—take the
derivative and construct a wiggle graph:

P′ 5 6x 2 2 5 0

x = =2
6

1
3

From the wiggle graph, it is simple to see that the function P will have a minimum
when x 5

1
3

. What is the corresponding y? Plug it back into our secondary equation

y 5 3x 2 2:

y 5 3 1
3

⎛
⎝

⎞
⎠ 2 2

y 5 1 2 2 5 21

Therefore, the numbers 21 and 1
3

have the smallest possible product, given our
initial defining condition of one being two less than three times the other (21 is 2 less
than 3 z

1
3

).

To be honest, this looks like a complicated process, but the method is really quite
straightforward and repetitive.

3 Steps for Success with Optimization Problems
Write an equation that represents what you are trying to maximize or minimize
(this is called the primary equation).

If more than one variable is present, use other information in the problem (in the
form of secondary equations like y 5 3x 2 2 in Example 8) to eliminate the excess
variables.

Find the derivative of your primary equation so that you can identify the critical
numbers and draw a wiggle graph to find the answer.
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If you remember these steps, you are well on your way to succeeding at optimization
problems.

Example 9: What point on the graph of y 5 sin x is the closest to (0,1)?

Solution: You are trying to minimize distance, so use the distance formula as your
primary equation:

D x x y y= −( ) + −( )2 1

2

2 1

2

Although it doesn’t matter which is which, we’ll set (x1,y1) equal to the stationary
point (0,1) and set (x2,y2) equal to the point on the graph of sine (x, sin x). Substitute
these points in to get

D x x= + −( )2 2
1sin

D x x x= + − +2 2 2 1sin sin

Time to find the derivative and set it equal to zero to find critical numbers:

′ = + −
+ − +

=D x x x x
x x x

1
2

2 2 2
2 1

0
2 2

sin cos cos
sin sin

The critical number will be x 5 .4787224241. You have to graph the derivative to find
this value, so while you have D′ on your calculator screen, notice that it is negative
before the critical number and positive after. Therefore, x 5 .4787224241 is a mini-
mum. (This is a quick calculator shortcut for constructing wiggle graphs without the
tedious test point substitution.) In order to finish the problem, however, we need to
give the coordinate that is closest to sin x, so plug x into sin x to get the y value. The
final answer is (.479,.461).

Example 10: You have invented a new and delicious beverage called Schwop!, which
tastes inexplicably like cotton balls. Deemed the least refreshing drink in the known
universe, it is nonetheless flying off the shelves. If you wish each cylindrical can of
Schwop! to contain 100 in3 of beverage, what height must each can be to minimize the
amount of aluminum you use to manufacture the cans?
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Solution: Each can is made up of a rectangle and two circles (you can’t forget the top
and bottom of the can!), as shown below:

The construction of a can of Schwop!

You first need to write an equation representing what you want to minimize (alumi-
num), which in this case is the surface area of the can plus the area of the top and
bottom of the can:

A 5 2prh 1 2pr2

Danger! There are two variables present. To rectify this, use the other information
given by the problem—the volume of Schwop! in each can:

V 5 pr2h 5 100

You can solve this for h to eliminate that pesky extra variable:

h
r

= 100
2π

Substitute back into the original equation to get

A r
r

r

A
r

r

= ⎛
⎝

⎞
⎠ +

= +

2 100 2

200 2

2
2

2

π
π

π

π
As is typical of optimization problems, the hardest part was finding the equation; now,

find the derivative and set up a wiggle graph:

′ = − +A
r

r200 42 π

r 5 2.515397996 inches

This is the radius of the smallest possible can. Be careful—the problem does not ask
for this value. It asks for the height that corresponds to it. That height is

h =
( )

100
2 515397996

2π .
5 5.031 inches
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EXERCISE 7

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR PROBLEMS 2 THROUGH 4.

1. (A classic maximization problem) Farmer Rogendoger breeds cows that can’t
swim. “Nonbuoyant cows just taste better, dadgum it,” he insists (and it’s best not
to question him further). Because the cows are landlocked, it saves him fence
costs. If Rogendoger sets up a rectangular pasture that is bordered on one side by
a river (which requires no fence, for obvious reasons), what is the maximum area
he can enclose with 1,000 feet of fence? (Food for thought: How does he prevent
cattle theft by riverboat-riding marauders?)

2. What point(s) on the graph of y 5 cot x is closest to the coordinate pair (p,0)?

3. Find the maximum area of a rectangle that has two vertices on the x-axis and two
vertices on the graph of y 5 x2 2 8.

4. To celebrate our first anniversary, I am commissioning the construction of a
four-inch-tall box made of precious metals to give to my bride, Lisa. The jewelry
box will have rectangular sides and an open top. The longer sides of the box will
be made of gold, at a cost of $300/in2; the shorter sides will be made of platinum,
at a cost of $550/in2. (Let’s call it practical, not cheap, that the shorter sides are
more expensive). The bottom will be made of plywood, at a cost of $.02/in2. What
dimensions provide me with the lowest cost if I am adamant that the box have a
volume of 50 in3?

ANSWERS AND EXPLANATIONS

1. You should begin this problem with a diagram, including all relevant informa-
tion, like so:
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You want to maximize the area, so your primary equation must be the area of the
rectangle: A 5 xy. However, there are two variables, so consider the secondary
equation based on the limited amount of fence: 2x 1 y 5 1,000 (it’s not 2x 1 2y
because you don’t need to fence the river). Solve the secondary equation for y to
get y 5 1,000 2 2x and substitute that into the area equation:

A 5 x (1,000 2 2x) 5 1,000x 2 2x2

Now, find the maximum of this equation through the usual channels:

A′ 5 1,000 2 4x 5 0

4x 5 1,000

x 5 250

The optimum value for x is 250, and the corresponding y will be

y 5 1,000 2 2(250) 5 500

Therefore, the maximum area is 500 z 250 5 125,000 ft2. As far as the riverboat
marauders, answers may vary.

2. This is similar to Example 9, so there’s no need to go into a great deal of detail
here. Use the same process with points (p,0) and (x, cot x):

D x x= −( ) + ( )π 2 2
cot

′ = ⋅
−( ) −

−( ) + ( )
D

x x x

x x

1
2

2 2 2

2 2

π

π

cot csc

cot

There are two critical numbers to worry about, since only two of them are close to
(p,0): 2.163306396 and 4.119878911. (Don’t forget that p is also a critical number
since cot x is undefined there.)

In order to figure out which is closer, you’ll need to plug them both into the
distance formula. Remember, we have designed this formula to tell us how far
away something is from (p,0) merely by substituting in the x value. It turns out
that they both are a distance of 1.187534573 units away, so both are correct
answers. The problem does ask for points however, so plug both x values (don’t
round until the very end!) into cot x to get your final answer of (2.163,2.673) and
(4.120,.673), shown below.
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3. You should again begin by drawing a picture:

Because the parabola is y-symmetric, our rectangle should be, too, in order to
maximize area. The width of the rectangle in the diagram is 2x, and its length is
2f(x), if we set f(x) 5 x2 2 8. This is because f(x) will be negative, and you don’t
want a negative length. Your overall goal is to maximize area, so your equation
should be the area of a rectangle:

A 5 l z w
A 5 2(x2 2 8)(2x) 5 22x3 1 16x

Only one variable is in the equation, so proceed as planned, and critically
wiggle:

A′5 26x2 1 16 5 0

x = ± 8
3

Therefore, 8
3

is the optimum value for x, so the maximum width of the

rectangle is 2 8
3

2
3

4
⎛
⎝⎜

⎞
⎠⎟

= . The corresponding length will be

l = − ⎛
⎝⎜

⎞
⎠⎟

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=8
3

8 16
3

2

. Finally, the maximum area will be

A = ⋅ = ≈16
3

2
3

64
3

2
3

17 4194 . .

4. Below is a graphic representation of the box in question:

y
x
wood

4 PP
G

G

As drawn, the side toward you and in the back are the larger, gold sides, and the
left and right sides are the smaller, platinum sides. In addition, x represents the
length of the gold side and y represents the length of the platinum side. As stated
in the problem, the height of the box is 4 inches. Remember that your overall goal
is to find the minimum cost, so you need to design a cost equation based on how
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expensive the box will be to create. To do so, find the area of each side of the box,
and multiply it by how expensive the materials would be for that side. For
example, the side facing you is made of gold and has an area of 4x. Therefore, the
cost of the side will be 4x z 300. There are two of those sides, so you multiply by
two to get 2,400x. Finally, add in the platinum sides and the bottom to get

C 5 2,400x 1 4,400y 1 xy(.02)

Something’s wrong—there are two variables. Time to use the last bit of informa-
tion from the problem: the box must have a volume of 50 in3. That is written as

4xy 5 50. If you solve for y, you get y 5
25
2x

. Substitute this back into the cost

equation to get

C 5 2,400x 1 4,400 z
25
2x

+
25
2 S 2

100D
C = 2,400x + 55,000x21 +

1
4

Take the derivative and do the wiggle thing:

C′5 2,400 2
55,000

x2 5 0

55,000
x2 5 2,400

2,400x2 5 55,000

x = ± 275
12

Only the positive answer makes sense (your box cannot have a negative length
without ripping apart time and space, creating a black hole, and swallowing
everyone within 2 light years in its diabolical gaping open top).

Therefore, the optimal value for x will be 4.787135539, which makes the optimal
value for y

y = ≈
•

25

2 4 787135539
2 611

.
.

Therefore, the dimensions providing the lowest cost are 4.787 in 3 2.611 in 3 4
in. (By the way, the lowest cost will be nearly $23,000. Do you think I still need to
buy a card?)

TECHNOLOGY: MODELING A PARTICLE’S MOVEMENT WITH
A GRAPHING CALCULATOR
The TI-83 includes a neat feature that allows you to view particle motion problems quite
simply. If you are an AB student, you’ll need to delve into the world of parametric
equations (just for a second, and it won’t hurt a bit—I promise). Although a lot of
information can be gathered from a particle’s position equation, nothing beats seeing
the particle running back and forth across the x-axis, working up particle sweat and
checking its particle pulse. Let’s revisit Example 6 from our not-too-distant past to see
how this works.
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Example 11: If a particle moves along the x-axis according to position equation s(t) 5

t3 2 10t2 1 25t, how many times does the particle change direction for t ≥ 0?

Solution: Switch your calculator to parametric mode. This is done by pressing
[Mode], arrowing down to the “Par” option, and pressing [Enter]. Notice that the “Y5”
screen has changed; every equation now requires an x and a y component to graph. In
the “X1T 5” line, type the position equation, pressing [x,t,u] for each variable. In the
“Y1T 5” line, type 0—this ensures that the particle will always have a height of 0 and
never leave the x-axis. Finally, use the arrows to make your way to the little “\” symbol
next to “X1T” 5. This chooses what the graph will look like. Pressing [Enter] twice on
this symbol changes it to “2O”. Your calculator screen should look like the graphic
below before you continue:

Now, press the [Window] button. Make sure your “Tmin” value is 0, since the problem
requires that t ≥ 0. A good value for “Tmax” is 10. Now, press [Graph]. The little
particle should zip off to the right, turn around, and then move off to the right
again—this time forever. Thus, it changed direction twice. If the particle moved off the
screen, you can always increase the “Xmin” and “Xmax” values of the graph.

You may be wondering how mind-bogglingly useful this trick is in the grand scheme of
things. The answer is “not very.” However, if you’ve had difficulty imagining the
movement of a particle on a horizontal axis, this exercise can be very enlightening. If
the particle is moving on the y-axis, reverse the values you typed, making the “X1T”
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value 0 and the “Y1T” the equation. If the particle’s movement is not restricted to a
line, the process is even easier, as demonstrated in the next example.

Example 12: Cleverly instruct your calculator to model the motion of a cannonball
whose position equation is s(t) 5 216t2 1 20t.

Solution: Set your calculator back to “Func” mode by pressing the [Mode] button and
type the above equation on the “Y5” screen. (This time, the variables will be x’s
instead of t’s, but that won’t affect the graph one bit.) Make sure to arrow over to the
“\” symbol, and change it to a “2O”. Go ahead and [Graph] the equation. You may
want to adjust the window a little bit. The graph below (with the cannonball in
mid-air) has the following settings: Xmin 5 0, Xmax 5 1.5, Ymin 5 0, Ymax 5 7.
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EXERCISE 8

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR PROBLEMS 7 THROUGH 12.

1. Draw the graph of a function, g, that satisfies the following conditions: g has
domain [25,8], g has relative minima at x 5 23 and x 5 4, g has relative maxima
at x 5 21 and x 5 6, g has its absolute maximum at x 5 25, and g’s absolute
minimum occurs at x 5 4.

2. The graphs of h(x), h′(x), and h′′(x) are given below. Determine which graph is
which, and justify your answer.

B

C

A

3. Draw the graph of f(x) based on the following chart of the signs of f’s derivatives,
given that f is continuous, a , b , c , d , e, and f(a) 5 f(e) 5 0. (Note: DNE
means “does not exist.”)

4. Below is a graph of a car’s velocity. Answer the following questions based on the
graph.
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(a) On what intervals is the car moving forward?
(b) When is the car’s speed the greatest?
(c) When is the car decelerating?

5. A particle moves along the y-axis according to the continuous, differentiable curve
s(t), which contains the values given in the table below.

What is the approximate velocity of the particle at t 5 5?

6. Below is a graph of h′′(x). Answer the following questions based on the graph.

(a) On what intervals is h concave up?
(b) On what intervals is h′ concave down?
(c) What are the inflection points of h′?

7. If a particle moves along the x-axis according to the position equation s(t) 5 t4 2

4t2 1 3 (for t ≥ 0). If s is measured in feet and t in seconds, answer the following
questions:

(a) What is the value of t guaranteed by the Mean Value Theorem for the
interval [0,3]?

(b) What is the particle’s velocity and acceleration when t 5 3?
(c) When is the particle moving forward?

8. (For fans of the movie Willie Wonka and the Chocolate Factory): Naughty chil-
dren. No one will listen to Mr. Wonka’s instructions. Now Violet has gone and
chewed the three-course-meal gum, and she’s begun to turn blue. In fact, she’s
swelling to the size of a giant blueberry! If her torso swells such that her radius
is increasing at a constant rate of 2 in/sec, at what rate is the surface area of her
berry body increasing when her radius is 36 feet?

9. What is the volume of the largest right circular cylinder that can be inscribed in
a sphere of radius 4 feet?
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10. Two cars move on straight roads that are at a 50° angle to each other, as pictured
below.

If car A moves at a constant rate of 40 mph, car B moves at a constant rate of 35
mph, and they started from the intersection at the same time, what is the rate of
change of the distance between the cars once car A has traveled 25 miles? (Hint:
the Law of Cosines)

*11. A particle moves along the path defined by x 5 cos t, y 5 sin 2t.

(a) Find the acceleration vector for the particle at t 5
7p

6
.

(b) When is the speed of the particle
1
2

?

12. James’ Diabolical Challenge: You are contracted to build an animal cage for
the Discovery Channel. One of the sides of the cage will be a river, with the
remaining boundaries being constructed of fencing. You are given 400 feet of
fence and are required to incorporate at least 100 feet of coastline. You can build
either a rectangular fence or a semicircular one. Find the dimensions of the cage
that give the greatest area, and justify your answer mathematically.

*a BC-only problem
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ANSWERS AND EXPLANATIONS

1. There are numerous possible solutions to this problem, but they all look very
similar. Remember, relative extrema are little “hills and valleys” in the graph,
and absolute extrema (guaranteed by the Extreme Value Theorem) are the
highest and lowest points on a closed interval. Also, remember that absolute
extrema must occur either at a relative extrema (like x 5 4) or at an endpoint
(like x 5 25).

2. Graph B is h(x), graph C is h′(x), and graph A is h′′(x). Notice that C has a value
of 0 each time B has a relative extrema point. Furthermore, C is positive when-
ever B is increasing and negative when B is decreasing. Notice that A is negative
whenever B is concave down and positive whenever B is concave up. (Therefore,
A has a value of 0, or an x-intercept, each time B has an inflection point, and each
time C has an extrema point.) You don’t need to apply every one of these
connections—just enough to differentiate (no pun intended) among the three.

3. Let’s take the interval a , x , b as an example. On that interval, both f ′(x) and
f ′′(x) are negative. Therefore, f(x) will be decreasing and concave down. There’s
only one way to draw such a curve, and it looks like the following:

You know that f is continuous, but no derivative exists at x 5 b and x 5 d. As you
draw the graph, you can tell that no derivative exists because both values of x
result in a cusp. A correct graph looks something like the following:

a b ec d

4. (a) The car’s moving forward whenever its velocity is positive. We are given the
graph of velocity, and it is positive on (0,8). The car’s velocity is clearly
decreasing on (6,10), but the velocity is not negative until t . 8.
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(b) Because speed is the absolute value of velocity, the direction of the car is
irrelevant. Therefore, the speed of the car is greatest at t 5 10. The speed
there is a little more than 3, whereas the top speed the car reached while
traveling forward was at t 5 6, when the speed and velocity were both 3.

(c) Acceleration is based on the second derivative. The car will decelerate when
the position function is concave down and when the velocity function is
decreasing. Therefore, the car is decelerating on (6,10). This may confuse
you, since the car is traveling its fastest at t 5 10. The magnitude (absolute
value) of the car’s acceleration there is actually pretty high, but the car still
is traveling backward, so the acceleration is becoming more and more
negative (technically decelerating).

5. The question is asking you to approximate s′(5). To do so, calculate the slope of
the secant line connecting the points (3,9) and (5,11)—this is the best approxima-
tion we can use. Therefore, s′(5) ' 1.

6. (a) h is concave up whenever h′′ is positive, so the answer is (b,d) ∪ (f,`).

(b) In order to determine the concavity of h′, you need to move “down” two
derivatives to h′′′ (since the signs of the second derivative of a function
describe its concavity). You also know that the signs of h′′′ will describe the
direction of h′′. The question is essentially asking you where h′′′ is negative,
and that will happen wherever h′′ is decreasing. Therefore, the answer is
(0,a) ∪ (c,e).

(c) The inflection points of h′ occur whenever h′′′ equals 0 and the concavity
actually changes (much like an extrema point is where the derivative
equals 0 and the direction changes). You also know that h′′′ describes the
direction of h′′. Therefore, whenever h′′ changes direction, h′ will have an
inflection point: x 5 a, x 5 c, and x 5 e.

7. (a) The Mean Value Theorem states that there exists some c on the interval such
that

′ ( ) = ( ) − ( )
−s c

s s3 0
3 0

In other words, there exists a tangent line at some c that has the same slope
as the secant line over the entire interval.

4c3 2 8c 5
48 2 3

3
4c3 2 8c 5 15

c ' 1.975

(b) The velocity is the first derivative of position, and acceleration is the
second:

v(t) 5 s′(t) 5 4t3 2 8t
v(3) 5 84 ft/sec

a(t) 5 v′(t) 5 12t2 2 8
a(3) 5 100 ft/sec2
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(c) The particle is moving forward whenever its first derivative is positive, so
construct a wiggle graph for v:

v(t) 5 4t3 2 8t 5 0
4t(t2 2 2) 5 0

Critical numbers: t 5 0, 6=2

According to the wiggle graph, the particle is moving forward on the
interval ~=2,`!. Don’t forget that the original problem stipulates t ≥ 0.
Without that restriction, the answer would also have included ~2=2,0!.

8. This is a related rates problem. Begin with the formula for surface area of a
sphere, and take the derivative with respect to time:

S 5 4pr2

dS
dt

5 8pr
dr
dt

Now, plug in the given information to solve for
dS
dt

:

dS
dt

5 8p(36)(2) 5 576p in2/sec

9. Your ultimate goal is to maximize the volume of a cylinder, so your primary
equation should be the following formula:

V 5 pr2h

However, you have two variables, and it’s going to require some cleverness to
eliminate one of them. Below is a diagram of our situation. On it is drawn a
triangle, which connects the center of the sphere to the intersection point of the

cylinder and sphere to a point on the cylinder at height
h
2

.

4

r

222

By the Pythagorean Theorem, you have

r2 1
h2

4
5 16
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Solve this equation for r2 to eliminate the r2 in the primary equation:

r2 5 16 2
h2

4
Substitute this into the primary equation, and you can use the familiar methods
to maximize the volume:

V 5 p(16 2
h2

4
) h

V 5 16ph 2
p

4
h3

V ′ 5 16p 2
3p

4
h2 5 0

h 5 4.618802154 ft

The wiggle graph verifies that 4.618802154 is the maximum height. The corre-
sponding radius will be

r = −16 4 618802154
4

2.

r 5 3.265986324

so the maximum volume is V 5 pr2h ' 154.778 ft3.

10. The first question to be answered in this related rates dilemma is how much time
has passed if the first car has traveled 25 miles. A simple proportion helps you to
figure this out. If a car travels 40 miles in an hour (60 minutes), then how many
minutes, m, does it require to travel 25 miles?

40
60

25=
m

40m 5 1500

m 5 37.5 minutes

Now you can figure out how far car B has traveled using the same method:

35
60 37 5

= d
.

60d 5 1312.5

d 5 21.875 miles

With all this fabulous information, you can construct the diagram below.
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It is quite easy to figure out z using the Law of Cosines:

z2 5 252 1 21.8752 2 2(25)(21.875)cos 50

z 5 20.01166352 miles

To tie this problem up into a nice bundle, you should use the Law of Cosines
(since the triangle is oblique—not a right triangle) and derive with respect to t:

z2 5 x2 1 y2 2 2xy cos 50

2 2 2 2 50 50 2z dz
dt

x dx
dt

y dy
dt

x dy
dt

y dx
dt

= + − −(cos ) ( cos )

2(20.01166352) dz
dt

=

2(25)(40) 1 2(21.875)(35) 2 2(25)(cos 50)(35) 2 (21.875)(cos 50)(2)(40)
dz
dt

' 32.019 mph

11. (a) The position vector is given by s 5 (cos t)i 1 (sin 2t)j. Take two derivatives to
get the acceleration vector: a 5 (2cos t)i 1 (24sin 2t)j. The acceleration

vector at t 5
7p

6
will be

a 5 (2cos
7p

6
)i 1 (24sin

7p

3
)j

a 5
=3

2
i 2 2=3j

(b) First, find the velocity vector by taking the derivative of position:
v 5 (2sin t)i 1 (2cos 2t)j

The speed of the particle is given by the norm of the velocity vector, so set

its norm equal to
1
2

and solve for t:

v = + =sin cos2 24 2 1
2

t t

sin2t 1 4cos22t 5
1
4

If you try to solve this equation by graphing, you’ll see that the graph never
crosses the x-axis, so there are no solutions. The particle never travels at a

speed of
1
2

.

12. This problem asks you to find the maximum area, with the condition that a
non-fenced coastline be used (ignore the 100 feet of coastline requirement for
now). Below are the two cages whose area you want to maximize:
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Here are the optimization problems, one at a time:

Rectangular cage:

You want to maximize area, so it is your primary equation:

A 5 xy

You also know that 2x 1 y 5 400, so use that information to eliminate a variable
by solving for x or y:

2x 1 y 5 400

y 5 400 2 2x

Now, substitute back into the area equation to find the maximum:

A 5 x(400 2 2x)

A 5 400x 2 2x2

A′ 5 400 2 4x 5 0

x 5 100

y 5 400 2 2(100) 5 200

Therefore, the maximum dimensions of the rectangular cage are 100 ft 3 200 ft,
for an area of 20,000 ft2. (By the way, this meets the 100 ft coastline requirement
without any trouble at all. See? I told you not to worry about it!)

Semicircular fence:

This problem does not require the process of optimization at all. If you know that

the circumference of the semicircle is 400, then pr 5 400 and r 5
400
p

. Therefore,

the enclosed area will be

A r

A

=

=

π

π
π

2

2

2
160 000

2
,

A ' 25,464.791 ft2

You should definitely go with the semicircular fence. You get more than 5,000 ft2

extra space.
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SUMMING IT UP
• If something is decreasing or becoming smaller, the rate of change will be

negative.

• You can only insert a constant into your primary equation in related rates if that
constant cannot change throughout the problem.

• Some students confuse the Mean Value Theorem with the Intermediate Value
Theorem. They are similar only in that they are both existence theorems, in that
they guarantee the existence of something.

• Two of the major characteristics used to describe graphs are direction and con-
cavity.

• Optimization is the process of finding an optimal value, either maximum or
minimum, under strict conditions. You may be asked to minimize area, maximize
volume, minimize cost, or maximize profit, just to name a few applications.
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Integration

OVERVIEW
• Basic antiderivatives
• Hands-On Activity 7.1: Approximating area with Riemann

sums
• The trapezoidal rule
• The fundamental theorem of calculus
• Hands-On Activity 7.2: Accumulation functions
• The Mean Value Theorem for Integration, average value of

a function
• U-Substitution
• Integrating inverse trigonometric functions
• Technology: Evaluating definite integrals with your

graphing calculator
• Summing it up

Now that you know just about everything there is to know about taking
derivatives, it’s time to pull the rug out from under you. The third major topic
of calculus (limits and derivatives being the first two) is integration, or antid-
ifferentiation. That’s right, Mr. Prefix; anti- means “the opposite of,” so it’s
time to explore the process of derivatives reversed. Previously, you would be

asked to find
d
dx

(x3); clearly, the answer is 3x2. Now, you’ll be given 3x2 and

required to come up with the antiderivative, x3.

But, it’s never that easy, is it? As a matter of fact, x3 1 1 is also an antideriva-
tive of 3x2! So is x3 2 14. Therefore, we say that the antiderivative of 3x2 is x3

1 C, where C can be any number at all. But, we’re getting ahead of ourselves.
Let’s jump right in—the water’s fine.

BASIC ANTIDERIVATIVES
Just as the notation dy

dx
or y′ indicated to you that differentiation was neces-

sary, the notation

cos x dx∫
indicates the same for integration. The above is read “the integral (or an-
tiderivative) of f(x) with respect to x.” Respecting variables in differentiation
was sometimes a complicated procedure. Remember implicit differentiation

c
h
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and related rates? Luckily, respecting variables is not nearly as difficult in integra-
tion; you just have to make sure the dx gets multiplied by everything in the integral.
But, enough talk—let’s get down to business.

Think back for a moment: The Power Rule (one of your earliest and dearest calculus
friends) dealt with deriving simple expressions—a single variable to a constant power.
There is an equivalent rule for integrating, so we’ll call it (get this) the Power Rule for
Integration. Clever, eh?

The Power Rule for Integration: If a is a constant, ∫ = + +
+

x dx x
a

Ca
a 1

1
.

Translation: In order to find the integral of xa, add 1 to the exponent and divide the
term by the new exponent.

Example 1: Evaluate x dx3∫ .

Solution: Add one to the exponent (1 1 3 5 4), and divide by the new exponent, 4:
x C

4

4
+ .

More about that weird C now. It is called the constant of integration. It is simply a real
number, and we have no idea exactly what that number is (for now). However, x4

4
2+ ,

x4

4
1 113.4, and x4

4
2 p all have a derivative of x3 (since the derivative of the

constant is 0). Therefore, when we write “1 C” at the end of an antiderivative, we are
admitting that there may have been a constant there, but we do not know it.

Now, let’s discuss the two major properties of integrals; both of them are very similar
to derivatives:

1. a f x dx a f x dx⋅ ( ) = ( )∫ ∫
If a constant or coefficient is present in your integral, you may ignore it, like you
did with derivatives. In fact, you may pull the constant completely out of the
integral.

2. f x g x dx f x dx g x dx( ) ± ( )( ) = ( ) ± ( )∫∫∫
If an integral contains numerous terms being added or subtracted, then these
terms can be split apart into separate integrals. In differentiation, given the

problem
d
dx

(x3 2 5x), you could find the derivatives of the terms separately:

3x2 2 5. The same goes for integration. For example,

x x dx x dx x dx Cx x3 5 3 5
4 6

4 6

+( ) = + = + +∫ ∫ ∫
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NOTE
When deriving xb, you

multiplied by b and

subtracted 1 from the

power. When integrating xb,

you add 1 to the power

and divide. The processes

are complete opposites of

each other.

NOTE
It is not always impossible to

find C. In fact, it is

sometimes incorrect to

write “1 C”. For now,

however, make it a habit to

automatically add the

“1 C” when you integrate.

You’ll learn more about the

exceptions later.

www.petersons.com



In Example 2, we’ll apply these properties of integration to some more complex
integration problems.

Example 2: Evaluate the following antiderivatives:

(a)
5

3 2x
dx∫

This expression can be rewritten as

5
3

2x dx–∫

The
5
3

is merely a coefficient, so we can apply the first rule of antiderivatives and pull

it out of the integral:

5
3

2x dx–∫
Now, apply the power rule for integrals, but make sure to add 1 to the original power
of 22.

5
3 1

5
3

1
• +

+

x C

x C

–

–

–

(b) x x dx– 3 4( )∫
This integral must first be rewritten as

*(x1/2 2 3x4)dx

Because the two terms are being added, we can split the above into two separate
integrals (and pull out the coefficients):

*x1/2dx 2 3*x4dx

Now, apply the Power Rule for Integration:

x x C
3 2 5

3
2

3
5– +

2
3

3
5

3 2 5x x C– +

The
3
2

power is the result of adding 1 to the original exponent S1
2D.
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coefficients out of integrals.

For example, it would be

incorrect to rewrite *
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sure to stop writing the *

and dx symbols. They only

hang around until you’re

done integrating. When

their work is done, they

vanish.
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(c) 7 52

5 3
x x
x

dx+∫ /

Again, rewriting the integral is the first order of business. Instead of one fraction,
rewrite as the sum of two fractions with the same denominator. Also, apply the
integration properties:

7 5
2

5 3 5 3
x

x
dx

x

x
dx+∫ ∫

Remember way back to algebra and exponent properties: x

x
x

a

b
a b= – . Therefore,

x

x
x x

2

5 3
2 5 3 1 3= =– , and x

x

x

x
x x

5 3

1

5 3
1 5 3 2 3= = =– – . Use this to rewrite the

problem as

7*x1/3dx 1 5*x22/3dx

and apply the Power Rule for Integrals to get

7 3
4 5 3

1
4 3 1 3⋅ + ⋅ +x x C

21
4 154 3 1 3x x C+ +

Do you see the shortcut for integrating fractional exponents? When you integrate x1/3,

instead of writing the step
x 4 3

4
3

, remember that dividing by
4
3

is the same as

multiplying by
3
4

. Therefore, the answer is 3
4

4 3x C+ .

Well, the Power Rule for Integrals is all well and good, but there is one instance in
which it is completely useless. Consider the integral:

1
x

dx∫
This can be rewritten as *x21dx, but if you try to integrate, you get x C

0

0 + , and the

zero in the denominator spoils everything. How, then, are you to integrate
1
x
? Believe

it or not, you already know the answer to this—you just have to dig it out of your
long-term memory. Remember, integration is the opposite of differentiation, so the

expression that has the derivative of
1
x

will be the integral of
1
x
. You learned in Chapter

4 that
d

dx
x

x
1

1
n ( ) = . Therefore,

1
1

x
dx x C= +∫ n 

(You need to use the absolute value signs since ln x has domain (0,`)—the function
wouldn’t know what to do with negative inputs.)
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Integrals is relatively easy, it

is also easy to make

mistakes when the

exponents are fractions or

have negative powers.

Be careful.

www.petersons.com



If you have forgotten the large list of derivatives you were to have memorized, it’s
time to refresh your memory. Only two of the integrals look a little different from their
derivatives. We have already looked at the first:

1
x

dx∫ (its integral has that unexpected absolute value). One other problem shows a

slight difference in its absolute values:

dx

x x
x C

2 1−
= +∫ arcsec

You see arcsec x so infrequently on the test, it’s hardly worth mentioning, but it is
important. In addition, we will take a closer look at inverse trigonometric and expo-
nential integrals a little later in this chapter. Here are a few problems to get you
brushed up on the throwback integrals.

Example 3: Evaluate the following integrals:

(a) *2sin x dx

This problem asks, “What has a derivative of 2sin x?” The answer is, of course, cos x

1 C, since
d
dx

(cos x 1 C) 5 2sin x. If the problem had been *sin x dx, the answer

would have been 2cos x 1 C, since
d
dx

(2cos x 1 C) 5 2(2sin x) 5 sin x.

(b)
1
2sin x

dx∫
First, rewrite this problem as *csc2 x dx. What has a derivative of csc2 x? Well,
d
dx

(cot x) 5 2csc2 x, and that’s only off by a negative sign. Therefore, add a negative

sign to cot x to account for the missing sign, and the answer is

*csc2 x dx 5 2cot x 1 C

(c)
1

1 2−
∫

x
dx

This is simply the derivative of arcsin x, so the answer is arcsin x 1 C.

(d) *ex dx

If the derivative of ex is ex, then *ex dx 5 ex 1 C.
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NOTE
You need to learn a

technique called

u-substitution before we

can get too hot and heavy

into integration. That’s later,

though.

TIP
If you’re not sure that your

integral is correct, take its

derivative to check and

see if you get the original

problem. Because

integration and

differentiation are inverses,

they should cancel each

other out.
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EXERCISE 1

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

DO NOT USE A GRAPHING CALCULATOR FOR ANY OF THESE PROBLEMS.

Evaluate each of the following integrals.

1.
2
3

53
7

23x
x

x dx− +⎛
⎝

⎞
⎠∫

2. bx dxa∫ , if a and b are real numbers

3. x
x

dx2
2 3

4

7
π +⎛

⎝⎜
⎞
⎠⎟∫

4. *(x2 2 1)(x 1 2)dx

5. 2 3 34 2

3

m m m

m
dm

+ +∫ –

6.
sin

cos

x dx

x

 
2∫

7. – tan –2 1x dx( )∫
8. x x

x x

2

2

1 1

1

–

–

+∫
ANSWERS AND EXPLANATIONS

1. Begin by splitting the integral into pieces and rewriting it so that you can apply
the Power Rule for Integrals:

2
3

53 7 2 3x dx x dx x dx– − + ∫∫∫
It’s ready to be power ruled, so go to it:

2
3 4

5
6

3
5

4 6
5 3• •

−

−
+ +x x

x C–

x

x

x
C

4

6

5 3

6
5

6

3
5

+ + +

2. Because b is a coefficient, it can be pulled out of the integral.

b * xadx

b
x
a

C
a

•

+

+
+

1

1

b
a

x Ca

+
++

1
1
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3. Rewrite this integral before starting, and remember that 2p is just a constant, so
the Power Rule for Integrals still applies (just like it did to the a exponent in
problem 2).

x dx x dx2 2 34
7

π + −∫∫
x

x C
2 1

1 3

2 1
12
7

π

π

+

+
+ +

4. Before you can integrate, you need to multiply the binomials together. There is no
Product Rule for Integration (which makes things tricky later) but for now, we
can avoid the problem by multiplying.

*(x3 1 2x2 2 x 2 2)dx

x x x x C
4 3 2

4
2
3 2

2+ +– –

5. You can begin by writing each of the terms of the numerator over the denomina-
tor. This is a long step, and if you can do it in your head, you are encouraged to do
so—carefully! So that you can see exactly what’s happening, the step is included:

2 3 34

3

2

3 3 3
m

m

m

m

m

m m
dx+ +

⎛

⎝⎜
⎞

⎠⎟∫ –

*(2m 1 3m21 2 m22 1 3m23)dx

m x
m m

C2
2

3
1 3

2
+ + +ln – 

6. This problem looks pretty complicated, but if you are clever (and who doesn’t like
being clever now and again?), it becomes quite easy. The trick is to rewrite the
fraction as follows:

sin
cos cos

x
x x

dx•∫ 1

If you multiply those two fractions together, you still get
sin

cos

x

x2 , so we haven’t

actually changed anything’s value. However, now we can rewrite
sin
cos

x
x

as tan x

and
1

cos x
as sec x:

* tan x sec x dx

Perhaps you’ll remember it better if it’s written this way:

* sec x tan x dx

You know that is the derivative of sec x, so the final answer is

sec x 1 C

7. That negative sign looks like it’s just beggin’ to get factored out, so we’ll oblige it
(and bring it out of the integral as the coefficient 21):

2* (tan2 x 1 1)dx
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Now that looks familiar. In fact, it is most of the Pappa Theorem! (Remember
your Pappa: tan2 x 1 1 5 sec2 x.) Therefore, we’ll use a Pappa substitution to
rewrite it:

2* sec2 x dx

Because tan x has a derivative of sec2x, the answer is

2tan x 1 C

8. Even though this looks ugly, begin the same way you did with problem 5—write
each term of the numerator over the denominator:

x x

x x x x
dx

2

2 2

1

1

1

1

−
−

+
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∫

The first gigantic fraction simplifies to 1, making things much, much happier in
the world:

1
1

12
+

−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∫

x x
dx

The integral of 1 is simply x (since
d
dx

(x) 5 1), and the other term is the derivative

of arcsec x (don’t forget the absolute value signs we discussed earlier in this
section):

x x C+ +arcsec 

HANDS-ON ACTIVITY 7.1: APPROXIMATING AREA WITH
RIEMANN SUMS
There is an essential calculus tie between the integral and the area that is captured
beneath a graph. You may, in fact, already know what it is. If you do, well, pin a rose on
your nose. Those of you who don’t know will be kept in the dark for a couple of sections
so that some suspense will build (I am nothing if not a showman). For now, let’s focus on
using archaic and simplistic means to estimating the area “under” a curve. (The means
are so simplistic that some students are actually disappointed. “This is calculus?” they
ask, brows furrowed and tears forming in the corners of their eyes. My advice: embrace
the easy. Just because a lot of calculus is tricky, not all of it has to be.) By the way, you
may use your calculator freely on this activity.

1. Draw the graph of f~x! = 2
1

10
x2 + 3 on the axes below.
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2. We are going to approximate the area between f and the x-axis from x 5 0 to x 5

4 using rectangles (the method of Riemann sums). This is not the entire area in
the first quadrant, just most of it. Draw four inscribed rectangles of width 1 on
the interval [0,4] on your graph above.

3. What are the heights of each of the four rectangles? What is the total area of the
rectangles? This area, although not the same as the area beneath the curve, is an
approximation for that area called the lower sum.

4. The actual area between f and the x-axis on the interval [0,4] is
28
3

. Why is one

area greater?

5. How could you get a better approximation for the area beneath the curve if you
still used inscribed rectangles?

6. On the axes below, graph f again. This time, draw four rectangles of width 1 that
circumscribe the graph. Use the area of the circumscribed rectangles to approxi-
mate the area beneath the curve. This approximation is called the upper sum.

7. Compare the approximation you got in number 6 to the actual area.

8. On the axes below, graph f again, and this time draw four rectangles of width one
such that the height of each rectangle is given by the midpoint of each interval.
The approximate area is called the midpoint sum.

9. Now you have found an inscribed sum, a circumscribed sum, and a midpoint sum.
Explain what is likely meant by each of the remaining sums, and draw a sample
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NOTE
We are not really finding

the area “under” a curve.

For most graphs, there is

infinite area under the

curve. Instead, we will be

calculating the area

between the given curve

and the x-axis. Keep that in

the back of your mind.

NOTE
Consider only the

endpoints’ heights when

drawing the inscribed and

circumscribed rectangles

because you can compare

their heights very easily.

Choose the lower of the

two heights for the

inscribed and the larger of

the two heights to draw

circumscribed rectangles.
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rectangle on [a,b] that you would use with the technique to approximate the area
beneath g.

10. Use 5 rectangles of equal width and the technique of midpoint sums to approxi-
mate the area beneath the curve h(x) 5 x3 2 2x2 2 5x 1 7 on [0,4].

Hint: To figure out the width, Dx, of n rectangles on the interval [a,b], use the
formula ∆x b a

n= − .

SELECTED SOLUTIONS TO HANDS-ON ACTIVITY 7.1

2. The rectangles cannot cross the graph since they are inscribed. Thus, look at the
endpoints of each interval, and choose the lower of the two endpoints’ heights.
That will be the height of the inscribed rectangle for that interval.
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Every rectangle below

the x-axis counts as

negative area.
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3. The heights of the four rectangles are f(1) 5 2.9, f(2) 5 2.6, f(3) 5 2.1, and f(4) 5

1.4. The area of each rectangle is height z width, and each of the widths is 1.
Therefore, the total combined area is 2.9 z 1 1 2.6 z 1 1 2.1 z 1 1 1.4 z 1 5 9.

4. The actual area is 9
1
3

. Our area approximation is less than the actual area

because it excludes little slivers of area between the curve and the rectangles.
The most area is omitted on the interval [3,4]. Thus, the approximation is lower,
hence the term lower sums.

5. If you used more rectangles, the approximation would be much better. In fact, the
more rectangles you used, the less space would be omitted and the closer the
approximation.

6. In order to draw rectangles that circumscribe the graph, look at each interval
separately and choose the higher endpoint height—it will give the height for that
rectangle.

The rectangles’ total area will be 3 z 1 1 2.9 z 1 1 2.6 z 1 1 2.1 z 1 5 10.6

7. This area is too large, which was expected (upper sum). The rectangles contain
more area than the curve. In fact, the error in the circumscribed rectangle
method was greater than the error in the inscribed rectangle method.

8. In this case, the heights of the rectangles will be given by the function values of

the midpoints of the following intervals: f 1
2( ) , f 3

2( ) , f 5
2( ) , and f 7

2( ) .

The widths of the rectangles are still 1, so the total Riemann midpoint sum is 1 z

2.975 1 1 z 2.775 1 1 z 2.375 1 1 z 1.775 5 9.9.
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9. The rectangle in a right-hand sum has the same height as the function at the
right-hand endpoint of each interval. Similarly, a left-hand sum rectangle has the
height of the function at the left-hand endpoint on each interval.

10. According to the given formula, each rectangle will have width ∆x = =−4 0
5

4
5 , as

pictured in the below graph.

The five intervals in this graph are S0,
4
5D, S4

5
,
8
5D, S8

5
,
12
5 D, S12

5
,
16
5 D, and S16

5
,4D.

Because you’re doing midpoint sums, you should draw rectangles whose heights

are given by the function values of the midpoints of those intervals: hS2
5D, hS6

5D,

h(2), hS14
5 D, and hS18

5 D. The total area of these rectangles (and it’s no sin to use

your calculator to help you out here) is

4
5

4 744
4
5

152
4
5

3
4
5

728
4
5

9 736 8 48• • • • •+ − + − + − + =. . . . .
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TIP
The right-hand sum is not

always the same as the

lower sum and vice versa.

That is only true if the graph

is monotonic decreasing, as

g is in problem 9.

TIP
Because the width of each

interval is
4
5

in problem 10,

you can factor that value

out to simplify your

arithmetic.
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EXERCISE 2

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE YOUR GRAPHING CALCULATOR FOR ALL OF THESE PROBLEMS.

1. What type of Riemann sum is being applied in each of the following diagrams? If
there is more than one correct answer, give both.

2. Approximate the area bounded by f(x) 5 sin x and the x-axis on the interval [0,p]
using 4 rectangles and upper sums.

3. If g(x) is a continuous function that contains the values in the following table,

approximate the area bounded by g(x) and the x-axis on [0,8] using

(a) 8 rectangles and right-hand sums
(b) 4 rectangles and midpoint sums

e
xe

rc
ise

s
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ANSWERS AND EXPLANATIONS

1. (a) Upper sums, circumscribed rectangles: On the first two rectangles, the right-
hand endpoint is used to determine height, whereas the left-hand endpoint is
being used for the third and fourth rectangles. Thus, it cannot be right- or
left-hand sums.

(b) Lower sums, right-hand sums, inscribed rectangles: All these descriptions
apply to this diagram since the right-hand endpoint of each interval forms
the inscribed rectangles.

(c) Lower sums, inscribed rectangles: The lower of the two endpoints’ heights
is chosen each time, not the right- or left-hand endpoint on a consistent
basis.

(d) Midpoint sums: That one’s pretty clear from the diagram. The function
value at each interval midpoint dictates the height of the rectangle there.

2. (a) If 4 rectangles are used, the width of each interval will be ∆x = =−π π0
4 4 .

Therefore, the intervals will be S0,
p

4D, Sp

4
,
p

2D, Sp

2
,
3p

4 D, and S3p

4
,pD. Because

upper sums (circumscribed rectangles) are specified, the heights of the rect-

angles, from left to right, will be sin
p

4
, sin

p

2
, sin

p

2
, and sin

3p

4
, as these are

the higher of the two endpoint function values for each interval.

The upper sum is π
4

2
2

1 1 2
2

2 682+ + +⎛
⎝⎜

⎞
⎠⎟

≈ . .

3. (a) If 8 rectangles are used, the width of each will be 1. Because right-hand sums
are specified, the function value at the right endpoint of each interval dictates
the height. Thus, the right-hand sum will be

1 z (g(1) 1 g(2) 1 g(3) 1 g(4) 1 g(5) 1 g(6) 1 g(7) 1 g(8))
3.6 1 5.1 1 6.3 1 6.9 1 7.2 1 7.3 1 4.0 1 3.2 5 43.6

(b) Each rectangle will have width Dx 5 2, so the intervals are (0,2), (2,4),
(4,6), and (6,8). The midpoints of these intervals are simple, and the
heights come from their function values, so the midpoint sum is

2 z (g(1) 1 g(3) 1 g(5) 1 g(7))
2(3.6 1 6.3 1 7.2 1 4.0) 5 42.2

THE TRAPEZOIDAL RULE
Sure, Riemann sums give some approximation of the area under a curve, but they sure
as heck don’t give a terrific approximation. In fact, they’re as clumsy as your cousin
Irene that time she fell down the stairs at your parents’ barbeque. There are other, more
accurate, methods and this section focuses on one of them. (The other major method,
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NOTE
g(0) is not used in 3(a)

because it is not the

right-hand endpoint of any

interval.
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Simpson’s rule, is no longer on the AP test. D’oh! It used intervals with little parabolas
on the end to approximate area.)

Consider the following graph and the method of upper sums used to approximate the
area it bounds.

There’s no avoiding it or ignoring it any longer: Those rectangles just contain way too
much extra space. Enter (to thunderous applause) the Trapezoidal Rule. Instead of
little rectangles, we will use little trapezoids to approximate the area.

These trapezoids are formed by marking the function values at both endpoints of an
interval and connecting the two dots. See how all that extra area disappears in just
one application, returning the original showroom shine to the car’s finish? You also
may have noticed that the two “trapezoids” at the edges are really triangles. That’s
okay. Believe it or not, a triangle is just a special kind of trapezoid (a trapezoid with
one base that has length 0). These aren’t the pretty trapezoids you’re used to seeing,
but remember, a trapezoid is a quadrilateral with exactly one pair of parallel sides,
and the vertical sides of these trapezoids are their bases.

According to geometry (and the voices echoing in my head), the area of a trapezoid is

A h b b= +( )1
2 1 2

where h is the height of the trapezoid and b1 and b2 are the lengths of its parallel
sides, or bases.
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The bases in the above trapezoid have length f(c) and f(d), and the height, h (the
distance between the bases), is d 2 c, or Dx.

Let’s return to the diagram above, entitled, “A Cunning Trapezoidal Rule Problem,”
and determine the area according to the Trapezoidal Rule. In that problem, we know
there are 5 trapezoids, but let’s pretend we don’t and say that there are n trapezoids.
This way, we can develop the Trapezoidal Rule from scratch.

The area of the first trapezoid (conveniently labeled trapezoid 1) will be
5 h f a f w2 ( ) + ( )( ). To find the height, remember the formula from the section on
Riemann sums:

∆x h
b a

n
= = −

therefore,

h b a
n2 2

= −

The area of the second trapezoid is 1
2 h f w f x( ) + ( )( ). (The h will have the same value,

since our intervals will always be of equal measure.) So far, the area is

b a
n

f a f w f w f x
− + + +( ) ( ) ( ) ( )( )

2
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Let’s skip ahead to the sum of all the trapezoids.
b a

n
f a f w f w f x f x f y f y f z f z f b

− ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( )( )
2

b a

n
f a f w f x f y f z f b

− ( ) + ( ) + ( ) + ( ) + ( ) + ( )( )
2

2 2 2 2

This, in essence, is the Trapezoidal Rule, but let’s define it carefully:

The Trapezoidal Rule: If f is a continuous function on [a,b] divided into n equal
intervals of width ∆x b a

n= − , as pictured in the diagram below, then the area between
the curve and the x-axis is approximately

b a
n

f a f x f x f x f bn
− + + + + +( ) ( ) ( ) ( ) ( )( )−2

2 2 21 2 1…

Translation: In order to approximate the area beneath the curve f(x), find the width of

one interval ∆x
b a

n
= −

and divide it by 2. Then multiply by the sum of all the

function values doubled, but don’t double f(a) or f(b), the beginning and ending
function values.

Example 4: Use the Trapezoidal Rule to approximate the area beneath the curve
f(x) 5 x3 2 2x 1 5 on [22,2] using n 5 8 subintervals.

Solution: If 8 subintervals are used, then the width of each will be

∆x
b a

n
= − =

− −
= =( )2 2

8
4
8

1
2

You can then apply the Trapezoidal Rule, using the x values 22, 2
3
2

, 21, 2
1
2

, 0,
1
2

, 1,
3
2

, and 2:
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ALERT!
Even though the

Trapezoidal Rule contains
b 2 a

2n
, the width of the

trapezoids is still
b 2a

n
. Know
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expression.
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Area ≈
− −

⋅

− + − + − + −

+

( ) ( ) ⎛
⎝⎜

⎞
⎠⎟ ( ) ⎛

⎝⎜
⎞
⎠⎟ +

( )
2 2

2 8

2 2 3
2 2 1 2 1

2

2 0 2

f f f f

f ff f f f1
2 2 1 2 3

2 2⎛
⎝⎜

⎞
⎠⎟ ( ) ⎛

⎝⎜
⎞
⎠⎟ ( )

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟+ + +

A ≈ ( ) =1
4

80 20

In fact, this is the exact area beneath the curve, although you don’t know how to verify
this yet—that’s in the next section.
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EXERCISE 3

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR PROBLEM 3 ONLY.

1. The Trapezoidal Rule can give the exact area beneath what types of functions?

2. Use the Trapezoidal Rule to approximate the area beneath the curve h(x) 5 x2 1 1
on the interval [0,4] using

(a) 2 subintervals
(b) 4 subintervals
(c) 3 subintervals

3. (Based on the Stephen King book The Girl who Loved Tom Gordon) Nine-year-old
Trisha McFarland is hopelessly lost in the woods, and the efforts of those looking
for her have turned up nothing. The graph below shows the woods in which she is
lost and measurements of the width of the woods (in miles) at regular intervals.

(a) Use the Trapezoidal Rule to approximate the area of the woods.

(b) Assuming that one person can search 15 mi2 in one day, how many people
will it take to scour the entire woods in a single day?

ANSWERS AND EXPLANATIONS

1. The Trapezoidal Rule gives the exact area beneath linear functions, since the tops
of the trapezoids used to make the approximations are linear.

2. (a) Dx 5 2 4 0
2 2 0 2 2 4−

⋅ + +( ) ( ) ( )( )h h h

1 z (1 1 10 1 17) 5 28

(b) Dx 5 1

4 0
2 4

0 2 1 2 2 2 3 4−
⋅

+ + + +( ) ( ) ( ) ( ) ( ) ( )( )h h h h h

1
2

1 4 10 20 17 26+ + + +( ) =

e
xe

rc
ise

s
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(c) Dx 5
4 0

3
4
3

− =

4 0
2 3

0 2 4
3

2 8
3

4
−( )
⋅ ( ) + ⎛

⎝
⎞
⎠ + ⎛

⎝
⎞
⎠ + ( )⎛

⎝⎜
⎞
⎠⎟h h h h

2
3

1 50
9

146
9

17+ + +⎛
⎝

⎞
⎠

2
3

358
9

716
27

⎛
⎝

⎞
⎠ =

By the way,
716
27

is approximately 26.519.

3. It might confuse you that the woods wiggle around as they do. If it helps, you can
smoosh the woods against the x-axis to look something like this:

Either way, it is clear that f(100) 5 87, f(350) 5 133, and so on. The Trapezoidal
Rule is actually quite easy to apply; you don’t even have to plug into a function to
get its values, as you did in number 2. The graph clearly is defined on the interval
[0,500], and there are 10 subintervals, each with a length 50 miles.

Area '
500 2 0

2 z 10
[(f(0) 1 2f(50) 1 2f(100) 1 2f(150) 1 2f(200) 1 2f(250) 1 2f(300) 1

2f(350) 1 2f(400) 1 2f(450) 1 f(500))]

Area ' 25(140 1 174 1 252 1 280 1 270 1 284 1 266 1 182 1 226) 5 51,850 mi2

(b) Even though 15mi2 is a generous estimate of how much area one person
can search, it would take

51,850
15

= 3456.667

at least 3,457 people to conduct the search simultaneously.

THE FUNDAMENTAL THEOREM OF CALCULUS
I once had a Korean professor in college named Dr. Oh. He once said something I
remember to this day: “Fundamental theorems are like the beginning of the world.
Yesterday, not very interesting. Today, interesting.” This is quite accurate, if not a little
understated. In this theorem lies the fabled connection between the antiderivative and
the area beneath a curve. In fact, the fundamental theorem has two major parts.
Mathematicians can’t seem to agree which is the more important part and, therefore,
number them differently. Some even refer to one as the Fundamental Theorem and the
other as the Second Fundamental Theorem. I love them both equally, as I would my own
children.
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The number of terms you

add in the Trapezoidal Rule
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the n you are using.
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The first part of the Fundamental Theorem deals with definite integrals. These are
slightly different from the integrals we’ve been dealing with for two reasons: (1) they
have boundaries, and (2) their answers are not functions with a “1 C” tacked on to the
end—their answers are numbers. These are, indeed, two giant differences, but you’ll
be surprised by how much they actually have in common with our previous integrals,
which we will now refer to by their proper name, indefinite integrals.

The Fundamental Theorem, Part One
If f(x) is a continuous function on [a,b] with antiderivative g(x), then

f x dx g b g a
a

b ( ) = ( ) − ( )∫
Translation: In order to evaluate the definite integral f x dx

a

b ( )∫ , find the antideriva-
tive of f(x). Once you’ve done that, plug the upper bound, b, into the antiderivative.
You should get a number. From that number, subtract the result of plugging the lower
bound into the antiderivative.

What is the purpose of definite integrals? They give the exact area beneath a curve.
Let’s return to a problem from the Trapezoidal Rule section. You used 2, 3, and 4
subintervals to approximate the area beneath y 5 x2 1 1 on [0,4]. Let’s find out what
the exact area is.

Example 5: Find the exact area beneath y 5 x2 1 1 on [0,4].

Solution: The specified area is the result of the following integral:

x dx2

0

4
1+( )∫

So, you need to find the antiderivative of x2 1 1. When you do, drop the integration
sign and dx, as you did before.

x x
3

3
+⎛

⎝⎜
⎞
⎠⎟

4
0

The problem is not yet over, and you signify that the boundaries of integration still
must be evaluated with the vertical line (or right bracket, if you prefer) and the
boundaries next to the antiderivative. To finish the problem, then, you plug the upper
limit of integration into the expression (both x’s!) and then subtract the lower limit
plugged in:

4
3

4 0
3

0
3 3

+⎛
⎝⎜

⎞
⎠⎟

− +⎛
⎝⎜

⎞
⎠⎟

64
3

4 76
3

25 333+ = = . units squared
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NOTE
Remember, you can’t spell

Fundamental Theorem

without “fun”!

NOTE
The a and b in definite

integrals are called the

limits of integration.

However, they have little to

do with the limits of

Chapter 3, so don’t worry.
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Example 6: Find the area beneath sin x on [0,p].

Solution: This area is found by evaluating the definite integral

sin x dx 
0

π
∫

Integrate sin x to get

− cos   x
0

π

Now, substitute in p and 0 and subtract the two results:

2cos p 2(2cos 0)

2(21) 1 1 5 2 units squared

Example 7: Evaluate
π
0∫ cosx dx, and explain the answer geometrically.

Solution: To begin, apply the Fundamental Theorem.

sin   x
0

π

sin p 2 sin 0 5 0 2 0 5 0

How can a curve have no area beneath it? Consider the graph of y 5 cos x on [0,p]:

The area is made up of two separate areas, marked A and B on the diagram. Let’s find
those two separate areas:

Area  A x dx= ∫ cos
0

2π

sin
/

sin sinx
π π2

0 2
0 1 0= − = −

Area A = 1

Area   B x dx= ∫ cos
π

π

2

sin
/

sin sinx
π

π
π π

2 2
0 1= − = −

Area B 5 21
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These answers should not be too surprising. They are the same, although one is
located under the x-axis, so its signed area is the opposite of the other. When you add
these two areas together, you get 0. So, the geometric explanation is that the areas are
opposites, and the resulting sum is 0.

Example 7 is a great segue to a few definite integral properties that are essential to
know:

• f x dx f x dx f x dx a b c
a

c

a

b

b

c( ) = ( ) + ( ) ≤ ≤∫ ∫ ∫ ,  if 

Translation: You can split up an integral into two parts and add them up separately.
Instead of integrating from a to c, you can integrate from a to b and add the area from

b to c. We did this in Example 7. In that case, a 5 0, c 5 p, and b 5
p

2
.

• f x dx
a

a ( ) =∫ 0

Translation: If you start and end at the same x value, you are technically not covering
any area. Therefore, if the upper and lower limits of integration are equal, the
resulting area and definite integral have a value of 0.

• f x dx f x dx
a

b

b

a( ) = − ( )∫ ∫
Translation: In a typical definite integral, the upper bound, b, is greater than the
lower bound, a. If you switch them, the answer you get will be the opposite of your
original answer. For example, let’s redo Example 6 with the limits of integration
switched:

sin   cos x dx x= −∫ ππ

00

2cos 0 2(2cos p)

21 21 5 22

In essence, switching the boundaries of integration has the effect of commuting
(switching the order of) the subtraction problem dictated by the Fundamental Theo-
rem, making it g(a) 2 g(b) instead of g(b) 2 g(a). This causes the sign change.

• The definite integral represents accumulated change.

Translation: In the same way that derivatives expressed a rate of change, the integral
goes in the other direction and reports accumulated change. For example, consider the
graph below of a car’s velocity:
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You may argue that no

area is technically

negative. That’s true.

However, any area that falls

beneath the x-axis is

considered negative. To

avoid this logical dilemma,

the area bounded by

definite integrals is often

referred to as signed

area—area that is positive

or negative based on its

position with relation to

the x-axis.
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At any time t, the graph tells how fast the car was going. (This is the graph of the rate
of change of position, velocity.) However, definite integrals give accumulated change.

Therefore, v t dt
a

b ( )∫ actually gives the distance the car traveled between time a and b.

If the graph represented the rate of sale of socks over time, then the definite integral
represents the number of socks sold over that time. More appropriate for me, if the
graph represents the rate of hair loss over time, then the definite integral represents
the actual amount of hair lost over the interval of time. Get the picture? More on this
in Chapter 9.

Now that you know quite a bit about definite integrals, it’s time to spring Part Two of
the Fundamental Theorem on you. In essence, this theorem shows that differentiation
and integration are opposites of one another.

The Fundamental Theorem, Part Two
If c is a constant and t and x are variables,

d
dx

x

c
f t dt f x( )⎛

⎝⎜
⎞
⎠⎟

= ( )∫
Translation: This theorem is very specific in its focus and purpose. It applies only if (1)
you are finding the derivative of a definite integral, (2) you are differentiating with
respect to the same variable that is in the upper limit of integration, and (3) the lower
limit of integration is a constant. If all these conditions are met, the derivative of the
integral is simply the function inside the integral (the derivative and integral cancel
each other out) with the upper bound plugged in.

Although this part of the Fundamental Theorem may sound awfully complicated (and
some books make it sound nearly impossible), it is really quite easy. The following
example will lead you through the process.

Example 8: Evaluate the following derivatives:

(a)
d

dx
t dt

x
cos   

3∫
⎛
⎝

⎞
⎠

You are taking the derivative of an integral with respect to the variable in the upper
limit of integration. In addition, the lower limit is a constant. Because all these things
are true, you may apply Part Two. In order to do so, simply plug the upper bound, x,
into the function to get cos x. That’s all there is to it.

If you forgot this handy trick, you can still integrate as in the past:

d
dx

x
t dt d

dx
t

x

3 3
cos sin∫

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

d

dx
xsin sin  −( )3

cos x

Because sin 3 is a constant, its derivative is 0. This is why the lower boundary must
be a constant for the theorem to work and also why it doesn’t matter what that lower
boundary is.
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NOTE
If the upper bound is

something other than a

single variable, according

to the Chain Rule, you must

multiply by its derivative.

NOTE
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Fundamental Theorem as

“Part Two” to avoid

repeating myself. However,

refer to it as merely the

Fundamental Theorem if

justifying an answer on the

AP test.
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(b) d
dh

x x dx
h 2

5
2

2

−( )⎛
⎝⎜

⎞
⎠⎟∫

The upper bound is h2 rather than just h, but the variable you are deriving with
respect to still matches, so you can still apply Part Two. Simply plug the upper bound
into the function to get

(h2)2 2 2(h2)

However, this is not the final answer. Because the upper bound is not merely h, you
have to multiply by its derivative according to the Chain Rule. In this case, just
multiply your previous answer by d

dh h h2 2( ) = :

(h4 2 2h2) z 2h

2h5 2 4h3

If you like, you can verify this by using Part One of the Fundamental Theorem.

(c) d
dx

t dt
x

x

2

3

∫
Bad news: The lower bound of this integral is not a constant. Therefore, we cannot
apply Part Two. So, we default back to Part One of the Fundamental Theorem. It
helps to rewrite t t as 1 2 before you begin.

d
dx

t
x

x2
3

3 2
2

3⎛

⎝
⎜

⎞

⎠
⎟

d
dx

x x2
3

23 3 2 3 2( ) − ( )( )⎡
⎣⎢

⎤
⎦⎥

/ /

d
dx

x x2
3

29 2 3 2/ /− ( )( )⎡
⎣⎢

⎤
⎦⎥

Don’t forget to take the derivative once you’re finished integrating.

2
3

9
2

3
2

2 27 2x x/ − ⋅⎛
⎝

⎞
⎠

3 2 27 2x x/ −
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answer because you are

finding a derivative, even

though it’s the derivative of

an integral.
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EXERCISE 4

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR PROBLEMS 3 AND 4 ONLY.

1. Evaluate the following definite integrals:

(a) x x
x

dx1 3 4

2

6
2 1/ −⎛

⎝⎜
⎞
⎠⎟∫

(b) sec sec tanx x x dx−( )∫0

3 4π

(c) x dx
–1

2

∫

2. If f(x) is defined by the graph below and consists of a semicircle and numerous
line segments, evaluate the following:

(a) f x dx( )∫0

3

(b) f x dx( )∫4

4

(c) f x dx( )∫0

10

(d) f x dx( )∫–4

0

3. Find the vertical line x 5 c that splits the area bounded by y x= , y 5 0, and
x 5 8 exactly in half.

4. Evaluate the following derivatives:

(a) d
dx

t t dt
x

sin cos
3

9

2∫( )
(b) d

dy
m dm

y

y
 

−∫( )1

3
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ANSWERS AND EXPLANATIONS

1. (a) Begin by rewriting the expression and distributing the x1/3.

2 13 3 1 3 1 2

2

6
x x dx/ / /−( )−∫
2 13 3 1 6

2

6
x x dx/ /−( )−∫

3

8

6

5
16 3 5 6

2

6

x x/ /−

3

8
6

6

5
6

3

8
2

6

5
216 3 5 6 16 3 5 6( ) −⎛

⎝
⎞
⎠ − ( ) − ( )⎛

⎝
⎞
⎠•

/ / / /

Without a calculator, there’s really no need to continue simplifying. What was
the purpose of a problem that doesn’t simplify? Get used to getting weird
answers that don’t work out evenly. Have confidence in answers that look and
feel weird.

(b) Distribute the sec x to get

sec sec tan
/ 2

0

3 4
x x x dx−( )∫

π

You can integrate each of those terms.

tan sec
/

x x−( ) 3 4
0

π

− +⎛
⎝⎜

⎞
⎠⎟

− −( )1 2
2

0 1

2

2
2or  if you rationalize,( )

(c) Even though we never discussed absolute value definite integrals, the answer
is as simple as looking at the graph:

The area beneath the graph is composed of two right triangles, and all you

need to find the area of a triangle is
1
2

bh. Therefore, the area of both

triangles is

1
2

1 1 1
2

2 2 1
2

2 5
2

⋅ ⋅ + ⋅ ⋅ = + =

Not bad, eh? Look at the problems at the end of the chapter to practice
nonlinear absolute value definite integrals.
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2. Your work on 1(c) should make this easier. In order to calculate the definite
integrals, use geometric formulas for triangles and semicircles.

(a) 23: This is a triangle with base 3 and height 2. It is also below the x-axis,
so its signed area is negative.

(b) 0: One of the properties of definite integrals stated that an integral with
equivalent upper and lower limits of integration has zero value, as no area
is accumulated.

(c) 2p 2 1: The area from 0 to 4 is 24. The area from 4 to 8 is a semicircle of

radius 2, which has area
1
2
p(2)2 5 2p. The area from 8 to 10 is a right

triangle of area 3. The sum is 2p 2 1.

(d)
5
2

: In order to do this problem, you first need to find the x-intercept of the

line segment from (24,3) to (21,21). To do this, find the equation of the
line by finding the slope

slope = − −
− − −( )

= −1 3

1 4

4

3

and substituting a point.

y x− −( ) = − − −( )( )1
4

3
1

y x+ = − −1
4
3

4
3

3 3 4 4y x+ = − −

Then, set the y equal to 0 in order to find the x-intercept:

3 5 24x 2 4

x = − 7
4

Therefore, the area from 24 to 0 consists of two right triangles: one with

positive area (height 5 3 and base 5 4 2
7
4

5
9
4

) and one with negative

area (height 5 1 and base 5
7
4

). Therefore, the total area will be

1
2

9
4

3 1
2

7
4

1⋅ ⋅ − ⋅ ⋅

27
8

7
8

5
2

− =
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3. The region bounded by all those graphs is simply

and this area is given by

xdx
0

8

∫
2
3

8
0

3 2x /

2
3

83 2i /

We are looking for a c between 0 and 8 that has exactly half of the area, or an area
of 1

3
3 28•

/ . In other words,

xdx
c

0

3 21

3
8∫ = •

/

Integrate the left side to get

2
3 0

1
3

83 2 3 2x
c/ /= i

2
3

1
3

83 2 3 2c / /= i

2c3/2 5 83/2

Square both sides to solve

4c3 5 83

c3 512
4

128= =

c = =128 4 23 3
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4. (a) You cannot apply Part Two right away since the lower bound isn’t a constant.
However, one of the properties of definite integrals says that you can switch
the order of the bounds if you take the opposite of the integral:

− ⎛
⎝⎜

⎞
⎠⎟∫d

dx
t t dt

x
sin cos  

9

3 2

Apply Part Two and be finished. Don’t forget to multiply by the derivative of
the upper bound.

26x(sin 3x2 cos 3x2)

(b) No Part Two here, as the lower bound again isn’t a constant, and this time
you can’t do much about it. Just use the Fundamental Theorem Part One:

d

dy

m
y

y2

2 1

3

–

⎛
⎝⎜

⎞
⎠⎟

d

dy

y y9
2

1

2

2 2

− −( )⎛

⎝⎜
⎞

⎠⎟

d

dy
y y y

9
2

1
2

2 12 2− − +( )⎛
⎝

⎞
⎠

Again, don’t forget to take the derivative to finish!

9
1
2

2 2y y− −( )

9 1 8 1y y y− −( ) = +
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TIP
Ever wonder when to

calculate area and when

to calculate signed area?

When computing definite

integrals, it’s always

signed area.
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HANDS-ON ACTIVITY 7.2: ACCUMULATION FUNCTIONS
Accumulation functions are a new emphasis on the AP test. Not all books refer to them
by this name, but the leaders in calculus reform have begun to use this terminology.
Therefore, I will bend to peer pressure and use it as well. Accumulation functions are
natural (and neato) extensions to definite integrals.

1. Given a function f x g t dt
x( ) = ( )∫0

and the function g(t) defined by the graph

evaluate f(1). Plug 1 into f(x), even though it may feel strange, and evaluate the
definite integral.

2. How did the function f get its value?

3. Evaluate f(21). Why is your answer positive?

4. For what integral value(s) of c does f(c) 5 21? Complete the chart below to decide.

5. Based on the table you created in number 4, graph f(x).

6. Find f ′(x), and justify your answer.

7. What relationship do you notice between f(x) and g(x), and why?
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8. Evaluate f ′′(23).

SOLUTIONS TO HANDS-ON ACTIVITY 7.2

1. f g t dt1
0

1

( ) = ( )∫ . In other words, f(1) is the area beneath g(t) on the interval [0,1].

That area is a small trapezoid with height 1 and bases of length 1 and 2. (You
could also calculate the area as the sum of the square and triangle that make up

the trapezoid.) Either way, the signed area is 2
3
2

(negative because it is below the

x-axis).

2. f got its value from the amount of area “above” g(t) on the interval 0 to whatever
the input was (in this case, 1). In other words, by accumulating signed area, f is
an accumulation function.

3. f g t dt−( ) = ( )∫1
0

1–
. Notice that the lower number is on top, which is weird, since

it is usually on the bottom. Therefore, you should change it so that the lower limit
of integration is on the bottom, but remember that doing so makes the definite

integral its opposite, since f x dx f x dx
a

b

b

a( ) = − ( )∫ ∫ .

− ( )∫ g t dt
–1

0

The triangle between 21 and 0 is below the x-axis, so it should have area 2
1
2

so

the integral equals:

− −⎛
⎝

⎞
⎠ =1

2
1
2

4. Use geometric formulas to calculate the areas. Don’t forget that

f g t dt4
0

4( ) = ( )∫ , which is all of the accumulated area from x 5 0 to x 5 4. The

area from x 5 0 to x 5 1 is 2
3
2

, as we’ve said. The area from x 5 1 to x 5 2 is a

right triangle of area 21. The area from x 5 2 to x 5 4 is a right triangle with

base 2 and height
2
3

(since the slope of the line from x 5 2 to x 5 5 is
1
3

). Therefore,

all of the accumulated area from x 5 0 to x 5 4 is 2
3
2

2 1 1
1
2

z 2 z
2
3

5 2
11
6

.

The correct answers are c 5 24 and 5.
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5.

6. d
dx

x
g t dt g x( )⎛

⎝
⎞
⎠ = ( )∫0

, according to Fundamental Theorem Part Two. Don’t miss

the importance of this: the graph of f ′(x) is the graph you were given in the first
place, g(t). (The fact that there’s a t instead of an x makes no difference in the
graph, but you should use g(x) to keep your notation consistent.)

7. The graph of g(x) acts like any first derivative graph. g(x) is positive when f(x) is
increasing (look at the interval (24,21) on each). g(x) is 0 whenever f(x) has a
relative extrema point (look at x 5 21 and 22).

8. f ′′(23) is the slope of the tangent line to f ′(x) at x 5 23. Since g(x) is f ′(x), you are
trying to find the slope of the tangent line to g(x) at x 5 23. Luckily, g(x) is linear

at x 5 23, and the slope of the line segment is
1
2

. Remember, the slope of a

tangent line to a linear graph is simply the slope of that linear graph. Therefore,

f ′′(23) 5
1
2

.
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EXERCISE 5

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

DO NOT USE A GRAPHING CALCULATOR FOR ANY OF THESE PROBLEMS.

1. If f x g x dx( ) = ( )∫0

3
, why is f not an accumulation function?

2. One famous function gets its value by accumulating area beneath the graph of

y 5
1
x
.

(a) If we call the famous function f(x) and define it as f x dtt

x( ) = ∫ 1
1

, find f(2).

(b) What is the name of the famous function?
(c) Evaluate f(10), and verify that the result matches the output of the famous

function.

3. If g x
x( ) = ∫ sec

/ 2

0

4
t dt , evaluate g(3p), g′(3p), and g′′(3p).

4. If h(t) is defined by the below graph and m x h t dt
x( ) = ( )∫1 2/

,

(a) Approximate mS3
2D.

(b) Evaluate m′(2).
(c) Describe the concavity of m(x) for [0,2].

(d) Write the following function values in order from least to greatest: mS1
2D,

m(1), and m(2).
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ANSWERS AND EXPLANATIONS

1. An accumulation function has an x in its limits of integration.

2. (a) f dtt2 1
1

2( ) = ∫ . You know that the integral of
1
t

is ln t , so you get

ln t
2
1

ln 2 2 ln 1

and since ln 1 5 0, the answer is ln 2. Notice, f(2) 5 ln 2.

(b) The name of this famous function is the natural logarithm! f(x) 5 ln x. It

makes sense since f ′(x) 5
1
x
.

(c) f
t
dt10

1
1

10( ) = ∫ . So,

f(10) 5 ln 10 2 ln 1 5 ln 10

This works every time, since the lower limit of integration is always 1 and
ln 1 is 0.

3. Let’s do one at a time and start with g(3p).

g t dt3 2

0

3 4
π

π( ) = ∫ sec
/

g t3
3 4
0

π
π( ) = tan

/

g 3 3
4

0 1 0 1π π( ) = − = − − = −tan tan

According to Fundamental Theorem Part Two, g′(x) 5
1
4

sec2 Sx
4D. (Don’t forget to

multiply by the derivative of the upper limit of integration, which is
1
4

.) Therefore,

′ ( ) = ⎛
⎝

⎞
⎠g 3 1

4
3
4

2π πsec

′ ( ) = −⎛
⎝⎜

⎞
⎠⎟

g 3 1
4

2
2

2

π i

′ ( ) =g 3 1
2

π

Finally, use the Chain Rule to find g′′(x):

′′( ) = • •g x
x x x1

2 4 4 4

1

4
sec sec tan

′′( ) =g x
x x1

8 4 4
2sec tan
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′′( ) = ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠g 3

1

8

3

4

3

4
2π π π

sec tan

′′ = − = −( ) • •g 3
1
8

2 1
1
4

π

4. (a) m h t dt3
4 1 2

3 2⎛
⎝

⎞
⎠ = ∫ ( )

/

/
. Because there is no function, you cannot find this exact

area. However, you do know that the area from x 5
1
2

to x 5 1 is negative, and

the area from x 5 1 to x 5
3
2

is positive. You could use Riemann sums or the

Trapezoidal Rule to approximate; however, these methods are mostly used
when you happen to know the function. Since there is no function, why not
make it a total approximation and count boxes of area? Each box on the graph
of the function is one square unit. Therefore, the negative area is approxi-
mately 21.9 (your answer may be different but should be relatively close),
and the positive area should be 2.

Therefore,m 3
2

0 3⎛
⎝

⎞
⎠ ≈ .

(b) According to Fundamental Theorem Part Two, m′(x) 5 h(x). Therefore,

m′(2) 5 h(2) 5
3
2

, according to its graph.

(c) The concavity of m(x) is described by the signs of m′′(x). In addition, m′′(x)’s
signs describe the direction of m′(x), or h(x). Therefore, whenever h(x) is
increasing, m′′(x) will be positive and vice versa. To summarize, m(x) will be

concave up whenever h(x) is increasing: S1
2

,2D, and m(x) will be concave down

wherever h(x) is decreasing: S0,
1
2D.

(d) Using the method of counting boxes, we have already determined that m(1) '

21.9. We also said that mS3
2D ' .3, so it makes sense to say that m(2) . m

S3
2D, since m accumulates a lot of additional positive area from x 5

3
2

to x 5 2.

Therefore, we know that m(2) is positive (if you count boxes, m(2) ' 4).

Finally, mS1
2D is 0, since m h t1

2 1 2

1 2⎛
⎝

⎞
⎠ = ∫ ( )

/

/
(according to a property of definite

integrals). With all this in mind, we know that m(1) , mS1
2D , m(2).
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NOTE
Counting boxes to

approximate area may feel

inaccurate, but it’s often

more accurate than

Riemann sums and, since

you’d be approximating

function values to use the

Trapezoidal Rule in this case

anyway, why bother? Sure

it’s a guess, but the

directions do say

approximate.
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THE MEAN VALUE THEOREM FOR INTEGRATION, AVERAGE
VALUE OF A FUNCTION
The Mean Value Theorem for Integration (MVTI) is an existence theorem, just like the
Mean Value Theorem (MVT) was for differentiation. The MVT guaranteed the existence
of a tangent line parallel to a secant line. The MVTI guarantees something completely
different, but because it involves integration, you can guess that the theorem involves
area and, therefore, definite integrals.

Although the MVTI is a very interesting theorem (and I’m not lying just to try to keep
you interested), it is not widely used. I call the MVTI the flour theorem, because it has
everything to do with making cookies, a necessary precursor to one of my favorite
hobbies, eating cookies.

The Mean Value Theorem for Integration: If f(x) is a continuous function on the
interval [a,b], then there exists a real number c on that interval such that

f x dx f c b a
a

b ( ) = ( ) −( )∫ .

Translation: You can create a rectangle whose base is the interval and whose height is
one of the function values in that interval. This is a very special rectangle because its
area is exactly the same as the area beneath the curve on that interval.

Look at the graph of f(x) below. If you count the boxes of area beneath it on the
interval [1,9], you will get approximately 36.

Also on the graph is a rectangle with length 9 2 1 5 8. It stretches across the interval
at a height of 4.5, and its area is 36. Notice that f(c) 5 4.5; this is the value promised
by the MVTI. Let’s break down the parts of the theorem:
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The height of the rectangle, f(c), is also called the average value of f(x). In the example
above, the average value is f(c) 5 4.5. Imagine that the graph of f(x) represents the
flour in a measuring cup whose width is the interval [a,b]:

If you shake the measuring cup back and forth, the flour will level out to its average
height or average value. The resulting flour will have the same volume as the hillier
version of it—it’s just flattened out. The same thing happens in two dimensions with
the MVTI.

The AP test loves to ask questions about the average value of a function. Because of
this, it helps to have the MVTI written in a different way—a way that lets you get
right at the average value with no hassle. You get this formula quite easily; just

multiply both sides of the MVTI by
1

b 2 a
, and you’ve got it.

The Average Value of a Function: If f(x) is continuous on [a,b], the average value of
the function, f(c), is given by

f c
b a

f x dx
a

b
( ) ( )=

−
• ∫1

Example 9: Find the average value of the function g x x x( ) = + on [4,9].

Solution: The average value, g(c), will be given by

g c
b a

g x dx
a

b
( ) ( )=

−
⋅∫1

g c x x dx( ) ( )= +∫1
5

1 2

4

9

g c x
x( ) ⎛

⎝⎜
⎞

⎠⎟
= +1

5
2
3 2

3 2
2

4
9

g c( ) ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= + − +• •
1
5

2
3

27
81
2

2
3

8 8

g c( ) ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= + − +1
5

36
2

81
2

16
3

24
3

g c( ) ⎛
⎝⎜

⎞
⎠⎟

= − =1
5

117
2

40
3

271
30
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ALERT!
Although the average

value occurs at x 5 5 in this

example (and 5 is the

midpoint of [1,9]), the

average value does not

always occur at the

midpoint of the interval.

TIP
Make sure you memorize

the average value formula.

It is guaranteed to be on

the test at least two or

three times.

ALERT!
271
30

is a tiny bit more than

270
30

5 9, so in this case

(although it was close), the

average value is not

halfway between the

absolute maximum (12)

and absolute minimum (6)

for the closed interval.

Some students assume that

the average value always

falls exactly in the middle.
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One final note before a parting example: Students sometimes get the average value of
a function confused with the average rate of change of a function. Remember, the
average value is based on definite integrals and is the “flour flattening” height of a
function. The average rate of change is the slope of a secant line and describes rate
over a period of time. Problem 4 following this section addresses this point of confu-
sion.

Example 10: (a) Use your graphing calculator to find the average value of h(x) 5 x cos x
on the interval [0,p].

We have no good techniques for integrating x cos x, and we’ll need to do so to find the
average value of the function. The method is the same, but the means will be
different:

h c x x dx( ) = − ∫1
0 0π

π
  cos

Type the above directly into your calculator, using the “fnInt” function found under
the [Math] menu. If you do not know how to use your calculator to evaluate definite
integrals, immediately read the technology section at the end of this chapter. The
average value turns out to be h(c) 5 2.6366197724. In fact, the actual answer is

2
2
p

.

(b) Find the c value guaranteed by the Mean Value Theorem for Integration.

The MVTI guarantees the existence of a c whose function value is the average value.

In this problem, there is one input c whose output is 2
2
p

; in other words, the point

Sc,2
2
pD is on the graph of h(x). To find the c, plug the point into h(x):

h(c) 5 c cos c

2
2
p

5 c cos c

Solve this using your calculator, and you get: c 5 1.911.
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EXERCISE 6

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE YOUR CALCULATOR FOR PROBLEMS 3 AND 4 ONLY.

1. Find the average value of g x x( ) = sec2 on the closed interval
3

4

5

4

π π⎡
⎣⎢

⎤
⎦⎥

, .

2. If f x dx( ) =∫2

5
10 and f x dx( ) = −∫14

2
29 , what is the average value of f(x) on the

interval [5,14]?

3. Find the value c guaranteed by the Mean Value Theorem for Integrals for the

function h(x) 5 x2 2
1
x

on the interval [2,6].

4. A particle travels along the x-axis according to the position function
s t tt( ) = sin cos3 .

(a) What is the particle’s average velocity from t 5
p

2
to t 5 2p?

(b) What is the velocity of the particle at any time t?
(c) Find the average value of the velocity function you found in part (b) on the

interval π π
2

2,⎡
⎣⎢

⎤
⎦⎥
, and verify that you get the same result you did in

part (a).

ANSWERS AND EXPLANATIONS

1. The average value, g(c), is given by

g c x dx( ) = π π

π

∫1
2

2

3 4

5 4
sec

/

/

g c x( ) = ( )2 5 4
3 4π

π
π

tan
/
/

g c( ) = − −( )( ) =2 1 1 4
π π

2. First of all, you can rewrite the second definite integral as
14
2

29f x dx∫ ( ) =

Using another property of definite integrals, you know that

f x dx f x dx f x dx

f x dx

( ) ( ) ( )
( )

∫ ∫ ∫
∫

+ =

+ =
2

5

5 2

14

5

14

14

10 29
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NOTE
We have to integrate

* x cos x dx by parts. This is

a BC-only topic.

NOTE
The MVTI guarantees that

at least one such c will

exist, but multiple c’s could

be lurking around.
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Therefore, f x dx( ) =∫ 19
5

14
. With this value, you can complete the average value

formula:

f c f x dx( ) ( )=
− ∫1

14 5 5

14

f c( ) = =•
1
9

19
19
9

3. First, you should find the average value of the function:

h c x
x

dx( ) ⎛
⎝⎜

⎞
⎠⎟

= − −∫1
6 2

12

2

6

h c x x( )
⎛

⎝
⎜

⎞

⎠
⎟= −•

1
4 3

3

2

6
ln  

h c( ) ( ) ⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟= − − −•

1
4

72 6 8
3

2ln ln

Although this is the average value of the function, it is not the c guaranteed by
the MVTI. However, if you plug c into h(x), you should get that result. Therefore,

c
c

2 1
17 05868026− = .

Solve this with your graphing calculator to find that c ' 4.159.

4. (a) The average velocity is given by the slope of the secant line to a position
function, just as the tangent lines to position functions give instantaneous
velocity. The slope of the secant line is

3
2

2 1837762985
2π π− = .

(b) Since s is the position function, the velocity, v(t), is the derivative. Use the
Product Rule (and the Chain Rule) to get

v(t) 5 2sin
t
3

sin t 1
1
3

cos t cos
t
3

(c) Use your calculator’s fnInt function to find the average value of v(t):
1

3
1
3 33 2 2

2

π π

π
• − +⎛

⎝⎜
⎞
⎠⎟∫ sin sin cos cos

t
t t

t
dt 5 .1837762985

Therefore, you can find the average rate of change of a function two ways:
(1) calculate the slope of the secant line of its original function, or (2) find a
function that represents the rate of change and then calculate the average
value of it. Pick your favorite technique. Collect ‘em and trade ‘em with your
friends!

a
n

sw
e

rs
e

xe
rc

ise
s
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U-SUBSTITUTION
Until this point, you have been able to integrate painfully few things. For example, you

can solve cos x dx ∫ , but not cos5x dx ∫ . If you thought cos5x dx ∫ = sin 5x dx ∫ , all you

have to do is take the derivative (to check):
d
dx

x C xsin cos5
1
5

5+ =( )
Since the result was not cos 5x, our antiderivative of sin 5x doesn’t check out. How-
ever, we were pretty close.

In order to integrate things like cos 5x or e2x, you need to employ a method called
u-substitution. This method allows you to integrate composite functions, sort of like
the Chain Rule allowed you to differentiate composite functions. Here’s a good rule of
thumb: If you would use the Chain Rule to take the derivative of an expression, you
should use u-substitution to integrate it. How important is u-substitution? It is all
over the AP test, and it is an essential skill you’ll use for the remainder of the year.
Let’s begin by integrating the above examples using u-substitution.

Example 11: Integrate the following:

(a) cos5x dx∫
If this were cos x, you could integrate it. Therefore, we will introduce a new variable,
u, like so: u 5 5x. This way, the expression will become cos u, and we know the
integral of cos u—it is sin u. However, before we get ahead of ourselves, we need to
find the derivative of u (with respect to x); this is the all-important second step.

du 5 5 dx

We want to solve this for dx. Why? We will be replacing x’s with u’s in the integral, so
we want to replace dx’s with du’s so all the variables match. Solving for dx is very
easy:

du
dx

5
=

Now, substitute u 5 5x and
du

dx
5

= into the original integral to get

cosu
du

5∫
At this point, you can pull the

1
5

out of the integral since it’s just a constant and the

result is beautiful:

1
5

cosu du ∫

The integral of cos u is sin u, so you get
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NOTE
Remember, there is no

u-substitution without you.

Isn’t that nice? Do you feel

all fuzzy inside? No? Me

neither, so get used to it.

www.petersons.com



1
5

sin u 1 C

However, your final answer can’t include u’s since the original problem didn’t include
u’s. To finish, substitute in the original value for u, u 5 5x.

1
5

sin 5x 1 C

(b) e dxx2∫
We can integrate ex, but not e2x. Because the 2x is not a single variable (which we
want), we replace it with a single variable, u:

u 5 2x

du 5 2dx

Again, solve for dx so we can replace it in the integral and make the variables match.

du
dx

2
=

Now, substitute into the integral, make those x’s a bad memory, and factor out that
1
2

.

e
duu

2∫

1
2

e duu∫

Nothing is easier to integrate than eu! e e Cu u∫ = + .

1
2

eu 1 C

Get everything back to x’s and you’re finished.

1
2

e2x 1 C

If you don’t feel confident that these answers are correct, take their derivatives and
check them.

So far, you’ve seen that u-substitution can take the place of the “inner function” of a
composite function and make the integral simpler by replacing that troublesome inner
function with a single variable. But, this is only one good use of u-substitution. Often,
you’ll see a complex integral problem with this specific characteristic: part of the
integral’s derivative is also in the problem. For example, consider this integral:

ln x
x dx∫ . Of the two pieces in the integral, whose derivative is present? The answer is

ln x. We can rewrite the integral to look like this:

ln x
x

dx⋅∫ 1
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The derivative of ln x is
1
x
, and it’s in the integral! Why is this important? Watch

and see.

Example 12: Evaluate ln x
x

dx∫
Solution: Because, as we said above, ln x has its derivative in the integral, we set it
equal to u (and take the derivative as we did each time in Example 11).

u 5 ln x

du
x

dx= 1

That’s why it’s important that the derivative was also present. Because we could
rewrite the original integral expression as

ln x
x

dx⋅∫ 1

(as we showed above), we can now replace
1
x
dx with du. Why? Because we found out

they were equal when we differentiated the statement u 5 ln x. By substitution, our
original integral becomes

u du ∫
This is really easy to integrate:

u
C

2

2
+

Simply replace the u’s with x’s, and you’re finished. The final answer is

ln x
C

( ) +
2

2

The hardest part of u-substitution is deciding what the u should be. If you try a few
things and they don’t work, don’t get discouraged. Try other things. Eventually, you’ll
find something that works.

5 Steps to Success with U-Substitution

Choose part of the integral expression to be your u. This is the diabolical part. If
you’re dealing with a composite function, you might want to set u equal to the
inner function. If an expression f(x) and its derivative f′(x) are both in a function,
set u equal to f(x). There are no hard and fast rules. Practice is the key.

Find the derivative of the u expression with respect to x (or whatever the variable
present is).

If necessary, solve the derivative you found in step 2 for dx.
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NOTE
If you can’t integrate by

simple means (like the

Power Rule for Integration),

immediately try

u-substitution. Make it your

on-deck batter.
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Substitute back into the original integral and integrate.

Replace your u’s using your original u statement from number 1.

Example 13: Solve the following integrals using u-substitution.

(a) x
x x

dx
2

3

1
3

+
+∫

This looks complicated. You might try a couple of things for u, but if you set u 5 x3 1

3x, watch what happens:

du x dx= +( )3 32

du
x dx

3
12= +( )

The entire numerator and the dx get replaced with
du
3

, and the original integral

expression becomes

1
3

1
u

du∫

and you can integrate this quite easily.

1
3

ln u C+

1
3

33ln x x C+ +

(b)
tan

cos
x
x

dx2∫
There are at least two good ways to solve this, both using u-substitution.

Method One: Rewrite tan x as sin
cos

x
x

.

sin
cos

x
x3∫

u 5 cos x

du 5 2sin x dx

2du 5 sin x dx

−∫ 1
3u
du

− −∫u du3
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TIP
If you cannot figure out

what u should be and the

integral expression is a

fraction, try to set u equal

to the denominator, as in

Example 13(a).
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1
2

2u C− +

1
2 2cos x

C+

Method Two: Rewrite
1

2cos x
as sec2x.

tan secx x dx  2∫
u 5 tan x

du 5 sec2 x dx

u du ∫

u
C

2

2
+

tan2

2
x

C+

Although those answers do not immediately look the same, they are equivalent. If you
need proof, here it is:

1
2 2cos x

C+

1
2

2sec x C+

Use Pappa to substitute 1 1 tan2 x for sec2 x.

1
2

1 2+( ) +tan x C

1
2 2

2

+ +tan x
C

Realize that
1
2
1 C is simply another constant, or a different C, and the expressions are

equal. There is never a guarantee that two C’s are equal, even though we use the
same variable to represent them—C is an arbitrary constant.
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tan2

2
x

C+

You can also use u-substitution in definite integrals. The only adjustment you must
make is that your limits of integration (which are x limits) must become u limits. It’s
very easy to accomplish this.

Example 14: Evaluate 4 3 52 3

2

3
x x dx−∫

Solution: Begin by pulling the constant 4 out of the integral to get

4 3 52

2

3
3x x dx∫ − . Now, set u equal to the value inside the radical.

u 5 3x3 2 5

du 5 9x2dx

du
x dx

9
2=

At this point, it is incorrect to write
4
9

1 2

2

3

u∫ . The boundaries 2 and 3 are x bound-

aries. We have to make all the variables match (which is why dx has to become du.)
Therefore, plug each of these x values into the u expression u 5 3x3 2 5 to get the
corresponding u boundary:

u 5 3(2)3 2 5 5 19

u 5 3(3)3 2 5 5 76

Therefore, we can rewrite the original integral as

4
9

1 2

19

76

u du∫
Integrate and apply the Fundamental Theorem to finish.

4
9

2
3

3 2
19

76
• u

8
27

76 19 171 773
3 2 3 2

− ≈⎛
⎝⎜

⎞
⎠⎟ .

The last important topic of this section (and it was a long one, wasn’t it?) is integrat-
ing trigonometric functions. You already know the integrals of sin x and cos x, but you
don’t know the other four, and it’s important that you know all six. It is actually quite
easy to find * tan x dx. If you rewrite it in terms of sine and cosine, you can integrate
using u-substitution:

tan
sin

cos
x dx

x

x
dx ∫ ∫=

u 5 cos x, du 5 2sin x dx
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ALERT!
When you change the x

boundaries to u

boundaries, the lower

bound might end up higher

than the upper bound. If

this happens, don’t panic

and don’t change them!

Leave them as is, and

complete the problem.

TIP
It sometimes is useful to set

u equal to the part of your

integral that is raised to a

power. In Example 14, 3x3 2

5 is raised to the
1
2

power.
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2du 5 sin x dx

−∫ 1
u

du

− +ln cos x C

You can integrate cotangent in a similar way to get

cot ln sinx dx x C ∫ = +

Integrating sec x and csc x are a little more difficult and require a trick or two, so we
won’t get into that. However, it is important that you know what their integrals are,
if not where they came from:

sec ln sec tanx dx x x C ∫ = + +

csc ln csc cotx dx x x C ∫ = − + +

Just like you memorized the derivatives of these functions, it’s equally important to
memorize their integrals. Except for sine and cosine, all of the trig integrals contain

“ln.” To help memorize sec x dx ∫ , remember its derivative. d
dx x x xsec sec tan( ) =  ,

and sec ln sec tanx dx x x C = + +∫ .

One multiplies the terms, and the other adds them. The same goes for csc x. You really
shouldn’t need a trick to memorize the integrals for tan x and cot x; as you’ve seen
with tan x, they are very easy to find with u-substitution.
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EXERCISE 7

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

DO NOT USE A GRAPHING CALCULATOR FOR ANY OF THESE PROBLEMS.

Evaluate the following integrals.

1. 3 14
0

3

x dx+∫
2. sine

e
dx

x

x

−

∫
3. cos sin2 5 5x x dx   ∫
4. csc cotx x dx

2 24

3

π

π

∫
5. e x dxxsin cos3 3  ∫
6.

x

x
dx

ln 3 42( )( )+∫

ANSWERS AND EXPLANATIONS

1. This is a composite function, so set u 5 3x 1 14, the inner function. (This also
follows the earlier tip that something to a power can be the u.)

u 5 3x 1 14

Therefore, the derivative is du 5 3dx and
du
3

5 dx. The new u boundaries will be

u 5 3(0) 1 14 5 14 and

u 5 3(3) 1 14 5 23

The integral then becomes

1
3
1
3

2
3

2
9

23 14

1 2

3 2

3 2 3 2

14

23

14

23

u du

u

∫
•

−( )

e
xe
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2. This is a fraction that contains a composite function. The inner function is e2x, so
make that your u:

u 5 e2x

2du 5 e2xdx

− =du
dx

ex

The 2du will replace the denominator as well as dx so you can integrate.

−∫ sinu du 

2(2cos u) 1 C

cos e2x 1 C

3. The best u in this problem is u 5 cos 5x. Therefore, du 5 25 sin 5x dx, and 2
1
5

du

5 sin 5x dx.

−

− +

− +

∫1
5
1

15
1

15
5

2

3

3

u du

u C

x Ccos

4. Another composite function: Set u
x=
2

, so du 5
1
2

dx and 2du 5 dx. The new

u-boundaries will be

u

u

= =

= =

π

π

π

π

3

4

2 6

2 8
and the new integral will be

2

2

2
6

2
8

8

6

8
6

csc cot

csc

csc csc .

u u du

u

  
π

π

π
π

π π

∫
−

− +
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5. You could set u 5 sin 3x, but if you set u 5 esin 3x, watch what happens:

du 5 3esin 3x
z cos 3 x dx

du e x dxx

3 33= •
sin cos

All of the integral disappears, to be replaced with
du
3

.

1
3

du∫
Of course, the integral of du is u, so the answer is

1
3

1
3

3u C e Cx+ = +sin

This is a great technique for integrating any kind of exponential function; it
works like magic.

6. The
1
3ln

is merely a constant we can pull out of the integral; next, set u 5 x2 1 4.

This results in du 5 2x dx, and du
2

= x dx. When you substitute back you get

1
2 3

1
2 3 42

⋅

⋅ + +

∫
( )

ln

ln ln

du
u

x C

There’s no need to use absolute values for the natural log, since x2 1 4 will always
be positive. You might also apply log properties and write the answer as

1
9

42

ln
ln x C+ +( )

INTEGRATING INVERSE TRIGONOMETRIC FUNCTIONS
You already know a lot about integrating inverse trigonometric functions. In fact, you
know so much that your parents pull pictures of you from their wallet and drone on and
on about your intimate knowledge of arcsin. In fact, they wish you were going out with
arcsin instead of that no-good you’re currently dating. Well, it’s time to give them even
more to brag about.

You already know that
1

1 2−
= +∫

x
dx x Carcsin . However, a radical in the denomi-

nator does not have to contain a 1, and the squared term does not have to be x2. You
can integrate any expression of the form

1
2 2a u−

to get arcsin
u
a

(where a is a constant and u is a function of x).
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Example 15: Evaluate
5

9 4

x
x

dx
−∫

Solution: First of all, pull that 5 out of the numerator. The numerator has to be 1,
according to the formula above. Don’t worry about the presence of the x for now. . . .
That will take care of itself later.

5
9 4

x

x
dx

−∫

We still have the arcsin form a u2 2− in the denominator; a2 5 9 and u2 5 x4.
Therefore, a 5 3 and u 5 x2. The presence of a u reminds you to do usubstitution.

u 5 x2

du 5 2x dx

Therefore,
du
2

will replace the xdx in the denominator when we substitute. (See? I told

you the x would take care of itself.)

5
2 2 2

du

a u−
∫

According to the formula above, this equals arcsin
u
a

, which is

5
2 3

2

arcsin
x

C+

That’s all there is to it. Recognize the pattern of number variable2 2− in the
denominator, and it’s a good clue to try to integrate using arcsin x. However, there are
two other patterns you want to memorize as well (not five, as you might have feared).
Here are the remaining two (and they look remarkably similar to the derivatives you
found earlier in the book).

1 1
2 2a u

du
a

u
a

C
+

= +∫ arctan

Pattern to look for: The sum of a number and a variable to a power in the denominator.

1 1
2 2u u a

du
a

u
a

C
−

= +∫ arcsec

Pattern to look for: A radical in the denominator and the difference of a variable to a
power and a number. Arcsec is very close to arcsin, but the order of the subtraction is
reversed—not to mention the presence of that extra x in the arcsec formula.

Both of these formulas have a 1
a

in front of the inverse trigonometric formula,
whereas arcsin x does not. It does not change the procedure at all; just don’t forget it.
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Example 16: Integrate the following:

(a) 2 2

3 6 4
x

x
dx

x −∫
This is a job for arcsec. The u u a2 2− pattern is evident in the denominator: u 5 x

3

and a 5 2. Don’t forget—the u reminds you to do u-substitution. If u 5 x3, then du 5

3x2 and
du
3

5 x2. This gives you

2
3

2
3

1

1
3 2

2 2

3

du
u u a

a a C

C

u

x

−

+

+

∫

• arc

arc

sec

sec

(b) sin

cos

x

x
dx

( )( )
+∫ 2 3

This one may not look like arctan, but it is. The denominator has the form u2 1 a2,

where u 5 cos x and a = 3. The constant does not have to be a perfect square. This
works exactly the same way. Don’t forget about u-substitution, though. If u 5 cos x,
du 5 2sin x, and 2du 5 sin x.

−
+

− +

∫ du

u a

a
u
a

C

2 2

1
arctan

− +1

3 3
arctan

cos x
C

You can rationalize this, if you wish, to get

− +3
3

3
3

arctan
cos x

C
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EXERCISE 8

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

EVALUATE EACH OF THE FOLLOWING WITHOUT A CALCULATOR.

1. 1

4 72
0

6

x +∫
π

2. dx
x +∫ 7

3.
4

64 16 2

dx

x−
∫

4.
tan

sin cot

x

x x
dx

2 2 16−∫

ANSWERS AND EXPLANATIONS

1. This is a clear arctan problem with u 5 2x and a 5 =7. Therefore, du 5 2dx and
du
2

5 dx.

1
2 2 2

3

0

du
u a+∫

π

1
2 7 7 0

3arc ant u⎛
⎝⎜

⎞
⎠⎟

π

1
2 7 3 7

arctan
π

2. You cannot use inverse trig formulas to solve this. If you tried, you would have set

u 5
1

=x
, but the resulting u-substitution would have been impossible—you’d

need another
1

=x
in the problem. Instead, this is a simple u-substitution prob-

lem. Set u 5 x 1 7 and du 5 dx. You can then rewrite the integral as

du

u∫
which is simply

ln

ln

 

 

u C

x C

+

+ +7

PART II: AP Calculus AB & BC Review304
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

www.petersons.com



3. This is definitely an arcsin problem, but it’s much easier if you factor out a 16
from the denominator and simplify first.

4
16 4 2

dx

x−∫
dx

x4 2−∫

This could hardly be more straightforward now. Set u 5 x and a 5 2, so du 5 dx
and the integral becomes

du

a u

x
C

2 2

2

−

+

∫

arcsin

4. Your instinct should tell you that this is an arcsec problem, since there is a
radical in the denominator and the order of subtraction is variable 2 constant.
However, if u 5 cot x, shouldn’t there be a cot x in front of the radical to match the
correct denominator form of x x u2 2− ? Watch what happens when you rewrite
the trig functions using the reciprocal identities:

csc

cot cot

2

2 16

x dx

x x

 

−∫
Now, if u 5 cot x (and a 5 4), du 5 2csc2x dx, so 2du 5 csc2x dx. Rewrite the
integral to get

−
−∫ du

u u a2 2

which is the exact formula for arcsec, and everybody’s happy.

− +1
4 4

arcsec
cot x

C

TECHNOLOGY: EVALUATING DEFINITE INTEGRALS WITH
YOUR GRAPHING CALCULATOR
The final of the four calculator skills (also known as the four skills of the apocalypse by
those lacking technological know-how) you are required to know for theAP test is how to
calculate a definite integral. As was the case with derivatives, the TI-83 cannot find

symbolic integrals. In other words, it does not know that x dx
x

C2
3

3∫ = + . However, it

can find a darn good approximation for the area beneath a curve. Always remember and
never forget that you’ll have to be able to solve definite integrals without your graphing
calculator, so don’t come to rely so much on the tool that you forget the Fundamental
Theorem in all its glory.
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Example 17: Evaluate x x
x

dx1 3 4

2

6
2 1/ −⎛

⎝⎜
⎞
⎠⎟∫

Solution: This was problem 1(a) from the Fundamental Theorem problem set; al-
though it wasn’t very hard, there are lots of places to make a mistake. To use your
calculator, press [Math], [9], or just press [Math] and arrow down to the 9th option,
“fnInt.” The correct syntax for evaluating definite integrals on the TI-83 is

fnInt(integral,x,lower limit,upper limit)

Type this into your calculator,

and you get 5,280.402. Are you convinced that this is the same thing as the answer we
got back in the pre-calculator day?

3
8

6
6
5

6
3
8

2
6
5

2
16 3 5 6 16 3 5 6( )⎛

⎝⎜
⎞
⎠⎟ ( ) ( )⎛

⎝⎜
⎞
⎠⎟

− − −•
/ / / /

To make sure they are the same (if you feel the need, are masochistic, or are, by
nature, dubious of others), you can type the above “number” into your calculator, and
see what happens.

Oh, ye of little faith—they’re the same.
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EXERCISE 9

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR PROBLEMS 11 THROUGH 13 ONLY.

1. tan2 x dx ∫
2. e

x
dx

xtan

sin1 2−∫
3. f x dx( ) =∫0

3
10 and g x dx( ) =∫3

0
12 , evaluate the following:

(a) g x f x dx( ) − ( )( )∫ 3
0

3

(b) f x dx( ) +( )∫ 2
0

3

4. Evaluate
sin 1

4

5
x

x
dx∫ .

5. What is the average value of the function v(x) 5 42sec x
z

sin
cos

x
x2 on [0,

p

3
]?

6. Set up, but do not evaluate, x x dx2

3

10
4 5− −∫–

.

7. If j x y dy
x( ) = ∫ ln

cos 3

3
, j′⎛⎝

⎞
⎠

π
4

= ?

8. What expression has an integral of 3 3ln m x C( ) + , if m is a function of x?

9. tan sec ln cosx x dx ∫ ( )
10. The following graph, r(t), represents the rate of sales of the Furby toy (in

hundreds of thousands of toys per month) from January 1998 to June 1999.

(a) Write a definite integral that represents total sales from February 1998 to
March 1999.

(b) Write, but do not evaluate, an expression that represents the average rate
of sales over the entire period of time.

(c) Where will the graph of total sales be concave up?

11. If x
a

x
dx

b
1 3

22
11− =⎛

⎝⎜
⎞
⎠⎟∫ (a and b are real numbers), find a in terms of b.
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12. If it takes NASCAR driver Dale Jarrett 1 minute to complete a lap around a track
and his speed is measured every 10 seconds (in mph) as indicated below, answer
the following.

(a) According to midpoint sums and n 5 3 rectangles, approximately how long
is one lap on the track?

(b) What estimation of Dale’s distance traveled is given by the Trapezoidal
Rule with n 5 6 trapezoids?

(c) Using your results from part (b), approximate Dale’s average speed.

13. James’ Diabolical Challenge: A particle’s velocity over time (in inches/sec) as it
moves along the x-axis is governed by the function v(t) 5 3t2 2 10t 1 15.

(a) If the particle’s position at t 5 1 second is 8 inches, find the exact position
equation of the particle, s(t).

(b) What is the distance traveled by the particle from t 5 0 sec to t 5 5 sec?
(c) At what time(s) from t 5 0 sec to t 5 5 sec is the particle traveling its

average velocity?

ANSWERS AND EXPLANATIONS

1. If you use the Pappa Theorem to rewrite tan2 x as sec2 x 2 1, you can easily
integrate:

sec sec

tan

2 21x dx x dx dx

x x C

−( ) = −

− +
∫∫∫

2. Another trigonometric substitution is needed in this problem. According to the
Mamma Theorem, 1 2 sin2 x 5 cos2 x. Therefore, the integral can be rewritten as

sec tan2 x e dxx
•∫

This is especially useful since the derivative of tan x is sec2 x, which prods you to
use u-substitution. If u 5 tan x, du 5 sec2 x dx:

e du e C

e C

u u

x

= +

+

∫
tan

3. First of all, get the boundaries to match up. According to definite integral prop-

erties, g x dx( ) = −∫0

3
12 .
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(a) g x f x dx g x dx f x dx( ) ( )( ) ( ) ( )− = − = − − = −∫ ∫ ∫ •3 3 12 3 10 42
0

3

0

3

0

3

(b) Think about the graph of f(x) 1 2 when compared to f(x). The graph is the
same, only moved up two units. The effect is demonstrated by the diagram
below:

The new graph has an additional rectangle of area 6 (length 3 and height

2) beneath the original area of 10. Therefore,
0

3

∫ (f(x) 1 2)dx 5 16.

4. If u 5 x24, then du 5 24x25dx, so − =du

x
dx

4
1
5 . This u-substitution makes the

integral

−

+ = +

∫1
4

1
4

1
4

1
4

sin

cos cos

u du

u C
x

C

 

5. In order to find the average value, you’ll need v x dx( )∫0

3π
. Hopefully, your

instinct is pushing you toward u-substitution. When integrating exponential

functions, it’s best to set u equal to the entire exponential function, so

u

du x x dx
du x x

x

x

x

=
=

=

• • •

4
4 2 4

2 4 4

2

2

2

sec

sec

sec

sec tan ln

ln sec tan

  

   dx

That seems all well and good, but where is the “sec x tan x” in the original

problem? Do you see it? Rewrite
sin

cos
x
x2 as

sin
cos cos

x
x x

•
1

, and the original func-

tion becomes

v(x) 5 42sec x sec x tan x
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Now it’s time to actually find the average value of v:

v c
b a

v x dx

v c x x dx

a

b

x

( ) ( )

( )

=
−

=

•

•

∫
∫

1

1

3

42

0

3

π
π

sec sec tan  

Now, do the u-substitution, as outlined above, to get

v c du( ) = • ∫3 1

2 4 16

256

π ln 

Don’t forget to get the new boundaries of 16 and 256 by plugging 0 and
p

3
into the

u statement.

v c u

v c

( )

( ) ( )

=

=

•
3

16
3

16
240

16

256

π

π

ln

ln

 

 

6. The graph of x2 2 4x 2 5 without the absolute values is a concave-up parabola. To
find the roots, factor and set each equal to zero. The roots are, therefore, 21
and 5.

The graph of x x2 4 5− − is the same, except that its negative portion flips
above the x-axis, as the absolute value cannot have a negative output. Therefore,
to find the area beneath the right graph above, we will find the area beneath the
left graph and take the opposite of the area between 21 and 5 (since that area
will be negative as it is below the x-axis).

x x dx x x dx x x dx x x dx2

3

10
2

3

1
2

1

5
2

5

10
4 5 4 5 4 5 4 5− − = − −( ) − − −( ) + − −( )∫ ∫ ∫ ∫−

−

– –
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7. You should use Fundamental Theorem Part Two. Plug in the upper bound, and
multiply by its derivative to get j′(x):

′ = −

′ = −

( ) ( ) ( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

•

•

j x x x

j

ln cos sin

ln

3

3

4
2

2
2

2
π

8. Find d
dx

m x C3 3ln ( )( )+ ; whatever you get must integrate to get the original

expression. You don’t have to worry about the absolute value signs at all—they’re

only there for the benefit of the ln function.

3
1
3

3 3

9 3

3

• • •( ) ( )

( )
( )

′

′

m x
m x

m x

m x

9. This problem was much easier if you memorized your trig integrals. First of all,
you’d notice that tan x and its integral’s opposite, ln cos x , are both in the
expression. Therefore, you should do a u-substitution with u 5 ln cos x . That
makes du 5 2tan x dx, and 2du 5 tan x dx. The integral now becomes

−∫ secu du 

You’re not out of the woods yet! You still have to remember what the integral of
sec u is. Are you thinking that you should have memorized those silly things? Do
it now!

− + +

− + +( ) ( )
ln sec tan

ln sec ln cos tan ln cos

u u C

x x C

10. (a) Because the definite integral represents accumulated change, it gives you
total sales (not total rate of sales or anything weird like that). If January 1998 5

0, then February 1998 5 1 and March 1999 5 15, and the correct definite integral

is r t dt( )∫1

15
.

(b) The average rate of change over the interval [0,18] is
1

18 0

18
• ( )∫ r t dt.

(c) r(t) is the rate of change, or derivative, of the total sales function. Therefore,

the total sales function will be concave up whenever r(t) is increasing, which is on

the interval [0,12].
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11. Use the Fundamental Theorem in order to evaluate the definite integral:

x ax dx

x a
x

b a
b

a

b

b

1 3

4 3

4 3 4 3

2

2

2

11

3
4

11

3
4

3
4

2
2

11

− =

+ =

+ − + =

−( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∫

•

All that remains is to solve the equation for a:

a
b

b

a
b

b

1 1
2

11 3
4

2

11 2

4 3 4 3

4 3 4 33
4

1 1
2

− = − −

=
− −

−

⎛
⎝⎜

⎞
⎠⎟ ( )

( )

12. (a) We can assume that Dale stuck to the inner lanes as much as possible to cut
down on his time, so you are basically finding the length of the innermost
lane of the track, since the definite integral of velocity is distance traveled.
Before you begin, you must standardize the units. Since the speed is in mph,
you should transform the seconds into hours to match. For example, since

there are 602 5 3,600 seconds in an hour, 10 seconds are equal to
10

3,600
=

1
360

hours. If you convert all the times, the chart becomes

Using midpoint sums, the width of each interval will be

∆x b a
n

= − = =
1
60
3

1
180

. The midpoints of the intervals occur at t 5 10, 30,

and 50 seconds, or
1

360
,

1
120

, and
1

72
hours. Therefore, the midpoint sum is

given by
1

180
98 225 228 3 061+ +( ) ≈ .  miles.

(b) The Trapezoidal Rule estimation for this problem is

1
60

12
0 2 98 2 117 2 225 2 233 2 228 241

1
720

2043 2 8375

+ + + + + +

=

• • • • •

•

( )

.  miles.

PART II: AP Calculus AB & BC Review312
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

NOTE
Even though you are only

given velocity values and

not the actual velocity

function, you are still

approximating the area

beneath the velocity

function in 12(a) and (b).

Therefore, we call that

mystery function v(t) in

12(c), even though we

don’t know what it is.

www.petersons.com



(c) Dale’s average speed is the average value of the velocity function. The fact
that speed is the absolute value of velocity is irrelevant in this problem, as
Dale’s velocity is always positive.

Average speed =
1
1
60

0

1 60
v t dt( )∫

/

In part (b), you found that v t dt( ) .
/

≈∫ 2 8375
0

1 60
. Plug this value into the

average speed formula.
Average speed 5 60 z 2.8375 ' 170.250 mph

13. (a) Since position is the integral of velocity, you know that
s(t) 5 t3 2 5t2 1 15t 1 C

But, you also know that s(1) 5 8, so plug that into the function to find C.
s(1) 5 13 2 5 z 12 1 15 z 1 1 C 5 8

1 2 5 1 15 1 C 5 8
C 5 23
Therefore, the exact position equation is

s t t t t( ) = − + −3 25 15 3

(b) The distance traveled is not just v t dt( )∫0

4
! That gives you the total displace-

ment of the function. If the particle changes direction and comes back toward
the origin, your answer will be wrong. For example, if the particle moves
right 15 inches until t 5 3 and then moves left 8 inches from t 5 3 to t 5 5, the
definite integral above will give a result of 7 inches, whereas the particle
really moved 15 1 8 5 23 inches. So, you have to make sure the particle does
not change direction on [0,5]. How do you do that? Dust off the wiggle graph.

s′(t) 5 v(t) 5 3t2 2 10t 1 15 5 0
Luckily, v(t) .0, and the particle never stops or turns backward (according to
its graph). Therefore, the total distance traveled will be

3 10 15 752

0

5
t t dt− +( ) =∫  inches

In fact, because the particle never turns around, you could say that the total
distance traveled is s(5) 2 s(0), where it stopped minus where it started,
which is 78 2 3 5 75.

(c) The average velocity is the average value of the velocity function (most of
which you’ve already figured out):

1
5 3 10 15

1
5 75 15

2

0

5
⋅ ( )

⋅

− +

=

∫ t t dt

 in/ sec

When is the particle actually traveling at a rate of 15 in/sec? Set the velocity
equation equal to 15, and solve.

3 10 15 15

3 10 0

0 10
3

2

2

t t

t t

t

− + =
− =

= ,

a
n

sw
e

rs
e

xe
rc

ise
s
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SUMMING IT UP
• The third major topic of calculus (limits and derivatives are the two) is integra-

tion or antidifferentiation.

• You can only pull coefficients out of integrals.

• Although the Power Rule for Integrals is relatively easy, it is also easy to make
mistakes when the exponents are fractions or have negative powers. Be careful.

• If you ever wonder when to calculate area and when to calculate signed area,
when computing definite integrals, it’s always signed area.
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Advanced Methods of
Integration

OVERVIEW
• Miscellaneous methods of integration
• Parts (BC topic only)
• Powers of trigonometric functions (BC topic only)
• Partial fractions (BC topic only)
• Improper integrals (BC topic only)
• Technology: Drawing derivative and integral graphs with

your calculator
• Summing it up

Occasionally, you’ll encounter an integration problem that smells like trouble.
AB students need only complete the first section of this chapter, whereas BC
students have to plod all the way through it. Happy trails.

MISCELLANEOUS METHODS OF INTEGRATION
Most of the integration on the AP test is done using the Power Rule and
u-substitution. Occasionally, the test writers (while deviously twisting their
thin moustaches) will throw in a tricky integral or two and cackle uproariously.
Integration is unlike differentiation in a fundamental way: Using the Power,
Product, Quotient, and Chain Rules, you can differentiate just about anything
that comes your way. Integration requires many more methods, some of which
only work in very specific circumstances. However, don’t be discouraged. Below
are five things you can try if all else has failed and you simply cannot integrate
the problem at hand. One of these will help you if nothing else can.

Use a trigonometric substitution

Although the problem cot2 x dx ∫ looks just about as impossible as can be,
you can use the Baby Theorem to rewrite cot2x and change the integral to

csc2 1x dx−( )∫ . This is substantially easier because it is now possible. In the

same way, tan x dx ∫ was impossible until we rewrote it as sin
cos

x
x dx∫ and used

u-substitution. If the problem is trigonometric, you’ve got options.

Split up the integral

If an integral looks too complicated, rewrite it in pieces, if possible. In the case
of a fraction, rewrite each term of the numerator over the denominator, as in
the following example.

c
h

a
p

te
r8

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Example 1: Evaluate
x

x
dx−

−∫ 2
9 2

Solution: Although the denominator certainly looks like an arcsin is in your future,
the numerator makes things too complicated. However, split this into two separate
fractions, and the work is half done.

x

x
dx

dx

x9
2

92 2−
−

−∫∫

Let’s do the left integral first by u-substitution. If u 5 9 2 x2, du 5 22xdx, and
− =du xdx

2
.

−

− +

− − +

−

• •

∫1

2
1

2
2

9

1 2

1 2

2

u du

u C

x C

The second integral is an arcsin problem with a 5 3 and u 5 x. Since du 5 dx, you
have

− +2
3

arcsin
x

C

Therefore, the final answer is

− − +⎛
⎝

⎞
⎠ +9 2

3
2x

x
Carcsin

Long division

If the integral at hand is a fraction made up of polynomials, and the degree of the
numerator is greater than or equal to the degree of the denominator, you can use long
division on the problem before you begin to simplify the integral:
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TIP
If none of these techniques

works, there’s always

weeping, cursing, and

breaking things. Although

they won’t help you solve

the problem, you’ll feel a

whole lot better when

you’re through.
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Example 2: Evaluate x x
x

3

2
1

1
− −

+∫
Solution: Because the degree of the numerator is greater than (or equal to) the
degree of the denominator, you can simplify the problem by long division first:

We are not finished by any means, but our integral can now be rewritten as

x
x

x
dx− +

+
⎛
⎝

⎞
⎠∫ 2 1

12 . In order to finish this problem, you’ll have to separate it into pieces,

just as you did in Example 1. Once separated, you get

xdx
x

x
dx

x
dx∫ ∫ ∫−

+
−

+
2

1

1

12 2

You’ll use the Power Rule for Integrals, u-substitution, and arctan, respectively, to
solve this, and the final answer will be

x x x C
2

2

2
1− +( ) − +ln arctan

Complete the square

This technique is useful when you have quadratic polynomials in the denominator of
your integral and, typically, only a constant in the numerator. Once you complete the
square, you are able to default back to an inverse trig formula.

Example 3: Evaluate 3
2 8 102x x

dx
+ +∫

Solution: The quadratic in the denominator and no variables in the numerator alert
us to complete the square. To do so, you’ll have to factor 2 out of the terms in the
denominator (since the x2 must have a coefficient of 1).

3

2

1

4 52x x
dx

+ +∫

When you complete the square, you’ll add 1
2

2
4•( ) and subtract it in the denominator

to ensure that the value of the fraction does not change.

3

2

1

4 4 5 4
3

2

1

2 1

2

2

x x
dx

x
dx

+ + +

+( ) +

∫
∫

–
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NOTE
Don’t forget you are

subtracting the entire

second integral. That’s why

it is negative.

NOTE
When you add C 1 C, you

do not get 2C. Since each

C is “some number,” when

you add them, you’ll get

some other number, which

we also call C. Handy, eh?

ALERT!
When using long division,

remember to use place

holders of 0 for terms that

are not present, like 0x2

or 0x.
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This is now a pretty easy arctan function with u 5 x 1 2, du 5 dx, and a 5 1. The final
answer is

3

2
2arctan x C+( ) +

Add and subtract (or multiply and divide) the same thing

This exercise might sound fruitless. If you add and subtract the same thing, you get
zero. What’s the point? In the above example, you saw how adding and subtracting 4
allowed you to complete the square. So, it’s not a complete waste of time. This method
is used most often when you are trying to do a u-substitution and the problem won’t
cooperate with you. If you need something in the problem that isn’t there to finish a
u-substitution, why not just add it right in (as long as you remember to subtract it as
well).

Example 4: Evaluate dx
ex +∫ 1

Solution: We can’t complete the square (not a quadratic denominator), we can’t long
divide (that’s just crazy), we can’t do a trig substitution, we can’t separate (we can
only separate terms in the numerator—the expression 1 1

1ex + is not the same as
1

1ex + ), and u-substitution comes up short. What are we to do? Try u-substitution
again, and force it.

Let’s set u 5 ex 1 1, so du 5 exdx. We’ve got a problem: There is no exdx present in the
numerator—only the dx is there. So, we will add and subtract ex in the numerator
like so:

1 + −
+∫ e e

e
dx

x x

x 1

(Don’t forget that there was a 1 in the denominator to start with. It wasn’t 0dx up
there.) If we split this integral up, something magical transpires.

1

1 1

+
+

−
+∫∫ e

e
dx

e

e
dx

x

x

x

x

The first fraction cancels out, since the numerator and denominator are equal. The
second fraction is integrated with a simple u-substitution of u 5 ex 1 1. After taking
these steps, you get

1dx
du

u
− ∫∫

and the final answer will be

x e Cx− +( ) +ln 1
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TIP
You should leave off the

absolute value signs around

the ~ex 1 1! since ex has to

be positive, and that value

only becomes more

positive when you add 1.
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EXERCISE 1

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

DO NOT USE A GRAPHING CALCULATOR TO INTEGRATE THE FOLLOWING.

1. x

x x
dx2 5 9+ +∫

2.
4

6 122− − +∫
x x

dx

3. x x

x
dx

3 4 3

2

+ +
−∫

4. Each of the following integrals varies just slightly from the others. However, each
requires a completely different integration method. Discuss the method you
would use to begin each.

(a) 1

3 102x x
dx

+ +∫
(b) x

x x
dx2 3 10+ +∫

(c) x

x x
dx

3

2 3 10+ +∫

ANSWERS AND EXPLANATIONS

1. (This one’s pretty tough.) If you set u 5 x2 1 5x 1 9, du 5 (2x 1 5)dx. In order to
use u-substitution, the numerator needs to be 2x 1 5. First, get the 2x up there by

multiplying by 2 and
1
2

at the same time:

1

2

2

5 92
x

x x
dx

+ +∫
Now, you can add and subtract 5 to get that required 2x 1 5:

1

2

2 5 5

5 92
x

x x
dx

+ −
+ +∫

Split the integral up now

1

2

2 5

5 9

5

2

1

5 92 2
x

x x
dx

x x
dx

+
+ +

−
+ +∫ ∫

and the first piece can be solved by u-substitution (now that you have arranged
it). The second integral requires you to complete the square.

e
xe

rc
ise

s
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1
2

1 5
2

1
5 92 25

4
25
4

u
du

x x
dx∫ ∫−

+ + + −

1

2
5 9

5

2

12

5
2

2 11
4

ln x x C
x

dx+ +( ) + −
+( ) +∫

ln arctanx x
x

C2
5
25 9

5

11

2

11
+ + −

+( )
+

2. This is a completing-the-square question. Begin by factoring the negative out of
the first two terms in the denominator so that the coefficient of x2 is 1:

4
1

1 6 122−( ) +( ) +
∫

x x
dx

Now, complete the square in the denominator:

4
1

1 6 9 12 92−( ) + +( ) + +
∫

x x
dx

Even though it looks like you are adding 9 twice, remember that the 9 in
parentheses gets multiplied by that 21, so it’s really 29.

4
1

21 3 2− +( )∫
x

dx

This is the arcsin form with a = 21 and u 5 x 1 3. Since du 5 dx, you can
rewrite the integral as

4
1

2 2a u
du

−∫
and the answer is

4
3

21
arcsin

x
C

+ +
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3. The numerator degree is larger, so use long division (or even synthetic division
since the denominator is a linear binomial).

Either way, the quotient is x x x
2 19

22 8+ + + − . So, the integral can be rewritten as

x x dx
x

dx2 2 8 19
1

2
+ +( ) +

−∫∫
which you can integrate using the Power Rule and a u-substitution of u 5 x 2 2
to get

x
x x x C

3
2

3
8 19 2+ + + − +ln

4. (a) Because the denominator is a quadratic with a constant numerator, you will
complete the square in the denominator to integrate.

(b) You will use u-substitution to integrate, with u 5 x2 1 3x 1 10. Since du 5

(2x 1 3)dx, you’ll have to make the numerator match it, as you did in
number 1.

(c) Because the degree of the numerator is greater than that of the denominator,
long division will be your first step. I have a sinking feeling that there will be
other methods required before that one is done, though.

PARTS (BC TOPIC ONLY)
Integration by parts is a technique based completely on the Product Rule. However, it’s
unlikely that you’ll recognize that familiar and happy rule once we’re done mangling it.
This integrating method was made famous in the movie Stand and Deliver, when Jaime
Escalante stands in front of the chalkboard and chants “Come on, it’s tic-tac-toe.” That
small cameo role catapulted integration by parts to fame, and it eventually ended up on
General Hospital playing a handsome gangster doctor. However, one day, everyone
noticed it was just a math formula, and it was immediately fired. The formula is still
very bitter.

We’ll begin by using the Product Rule to find the derivative of the expression uv,
where both u and v are functions:

d uv u v v u( ) = ′ + ′• • , or

d uv u dv v du( ) = +  

a
n

sw
e

rs
e

xe
rc

ise
s
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If you integrate both sides of the equation, you get

uv u dv v du= + ∫∫   

Finally, solve this for u dv ∫ and you get the formula for integration by parts:

u dv uv v du  ∫ ∫= −

The focus of this method is splitting your difficult integral into two parts: a u and a dv
like the left side of the above equation. The u portion must be something you can
differentiate, whereas the dv must be something you can integrate. After that, it’s all
downhill.

Example 5: Evaluate x x dx  cos∫
Solution: None of the methods we’ve discussed so far can handle this baby. We’ll use
parts instead. First of all, set u 5 x (because you can easily find its derivative) and
dv 5 cos x dx (because you can easily find its integral). It’s true that you could have
set u 5 cos x and dv 5 x dx, but if at all possible, you should choose a u whose
derivative, if you kept taking it again and again, would eventually equal 0. The
derivative of cos x will jump back and forth between cos x and sin x without ever
becoming 0.

Since u 5 x, du 5 dx, and if dv 5 cos x dx, v x dx x= =∫ cos sin . (Don’t worry about
“1 C”s for now—we’ll take care of them later.) According to the parts formula,

u dv uv v du  = − ∫∫

and we know what u, du, v, and dv are, so plug them in.

x x dx x x x dx    cos sin sin= − ∫∫

Our original integral, on the left, equals (and can be rewritten as) the expression on
the left, which contains a very simple integral in sin x dx ∫ . The final answer is

x sin x 1 cos x 1 C

If you don’t believe that this is the answer, take its derivative, and you get

x cos x 1 sin x 2 sin x 5 x cos x

which is the original integral.

That wasn’t so bad, was it? Sometimes, however, it’s less tidy. For example, if you
are integrating x x dx2 cos  ∫ by parts, you’d set u 5 x2 and dv 5 cos x dx. Therefore,
du 5 2xdx and v 5 sin x. According to the formula,

PART II: AP Calculus AB & BC Review322
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

NOTE
You’ll see why it’s important

to pick a u that, through

differentiation, eventually

becomes 0 in Example 6.

www.petersons.com



x x dx x x x x dx2 2 2cos sin sin  = − ∫∫

Do you see what’s troubling in this equation? You cannot integrate x sin x dx easily. In
fact, guess what method you’ll have to use? Parts! You’ll have to set aside the x2 sin x
portion for now and expand the integral using the parts formula again, this time
setting u 5 x and dv 5 sin x dx. These sorts of things happen when the du term isn’t
something pretty and frilly like 1, as it was in Example 5. But don’t give up hope—
there’s a handy chart you can use to integrate by parts that feels like no work at all.
The only limitation it has is that the u term must eventually differentiate to 0.

Example 6: Evaluate x x dx2 cos  ∫
Solution: To set up the chart, make a u column, a dv column, and a column labeled
“1/2 1”. In the first row, list your u, your dv, and a “11”. In the second row, list du, v,
and a “21”. In the third row, take another derivative, another integral, and change
the sign again. Continue until the u column becomes 0, but take the signs column one
row further than that. (You’ll see why in a second).

Now draw diagonal arrows beginning at the x2 and continuing down and to the right.
Do this until you get to the 0 term. Multiply each of the terms along the arrow (for
example, in the first arrow, you multiply x2 • sin x • “11”) to get a term in the answer
(x2 sin x). You will make three arrows in this chart, so the answer has three terms.
(Multiplying anything by 0 results in 0, so there’s no need for a fourth arrow.) The
final answer is

x2 sin x 1 2x cos x 2 2 sin x 1 C

This method is preferred by students. In fact, look how easy Example 5 is if you use
the chart:

x sin x 1 cos x 1 C
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TIP
You always start the signs

column with a “11” sign.
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However, as wonderful as the chart is, it’s not so handy when the u term’s derivative
does not eventually become 0. The final example is about as complicated as integra-
tion by parts gets.

Example 7: Evaluate e x dxx sin  ∫ .

Solution: It’s wise to choose u 5 sin x and dv 5 exdx, since the integral of dv is very
easy. If you do so, du 5 cos x dx and v 5 ex.

e x dx e x e x dxx x xsin sin cos  = − ∫∫

This is unfortunate. We have to use parts again to evaluate the new integral. Stick
with it, though—it will pay off. For now, we’ll ignore the ex sin x (even though it will
be part of our eventual answer) and focus on e x dxx cos  ∫ . As before, we set u 5 cos x
and dv 5 exdx; so, du 5 2sin x dx and v 5 ex.

e x dx e x e x dxx x xcos cos sin  = + ∫∫

Watch carefully now. The original integral, e x dxx sin  ∫ , is equal to ex sin x minus

what we just found e x dxx cos  ∫ to be:

e x dx e x e x e x dxx x x xsin sin cos sin  = − +( )∫∫

It looks hopeless. The original problem was e x dxx sin  ∫ , and that same expression
appears again on the right side of the equation! Here’s what you do: distribute that
negative sign on the right-hand side and add e x dxx sin  ∫ to both sides of the
equation.

2 e x dx e x e xx x xsin sin cos = −∫

To get your final answer, just divide by 2.

e x x dx
e x e xx x

sin
sin cos

 = −∫ 2
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EXERCISE 2

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

DO NOT USE A GRAPHING CALCULATOR FOR ANY OF THESE PROBLEMS.

1. x x dx2 4sin  ∫
2. 10x x x dx   sec tan∫
3. e x dxx cos  ∫
4. x e dxx3∫
5. ln x dx ∫ (Hint: So far, you know of no easy integral for ln x.)

ANSWERS AND EXPLANATIONS

1. If u 5 x2 and dv 5 sin 4x dx, the derivative of u will eventually become 0, so you
can use a chart to find the integral.

− + + +1

4
4

1

8
4

1

64
42x x x x x Ccos sin cos    

2. It’s smart to put dv 5 sec x tan x dx, since the resulting v is sec x. Therefore,
u 5 10x and du 5 10dx. Use a chart or the formula; either works fine.

10 10 10x x x dx x x x dx     sec tan sec sec= − ∫∫
= − + +10 10x x x x C    sec ln sec tan

3. This one is tricky, like Example 7. Let u 5 cos x and dv 5 exdx; therefore,
du 5 2sin x dx and v 5 ex.

e x dx e x e x dxx x xcos cos sin  = + ∫∫
The rightmost integral must be evaluated using parts again, this time with
u 5 sin x (du 5 cos x dx) and dv 5 ex dx (v 5 ex).

e
xe

rc
ise

s
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e x dx e x e x dxx x xsin sin cos  = − ∫∫
Therefore, the original integral becomes

e x dx e x e x e x dxx x x xcos cos sin cos   = + − ∫∫
Add e x dxx cos  ∫ to both sides of the equation to get

2 e x dx e x e xx x xcos cos sin = +∫
e x dx e x e xx

x x

cos cos sin∫ +
2

4. This baby is a prime candidate for the chart, with u 5 x3 and dv 5 exdx.

ex(x3 23x2 1 6x 26) 1 C

5. If you don’t know an integral for ln x, then you cannot set it equal to dv. So,

u 5 ln x and du 5
1
x
dx. Therefore, the dv must be dx; it’s the only thing left! If

dv 5 dx, then v 5 x.

ln ln

ln

ln

x dx x x x
x

dx

x x dx

x x x C

   ∫ ∫
∫

= − ⋅

= −

= − +

1

POWERS OF TRIGONOMETRIC FUNCTIONS (BC TOPIC ONLY)
If we’ve done anything, we’ve done a lot of trigonometric integration, so here’s a little
more to throw on the top of the pile. In this section, you learn a few more coping
strategies for when all of our other methods fail. These methods, like others we’ve
covered, often help out when u-substitution does not quite work out. The first of these is
something I call the Odd Man Out Rule, and it works for sine and cosine.

Odd Man Out Rule: If an integral contains positive powers of sine and cosine, and
only one of the powers is odd, keep one of the odd-powered factors and convert the rest
to the other trigonometric expression using the Mamma Theorem. Is there anything
your Mamma can’t do?
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Example 8: Evaluate sin cos2 3x x dx  ∫ .

Solution: In this integral, cos x is the odd man out, since it has the odd power of the
two factors. Therefore, we want to leave behind only one cos x and convert the other
cosines to sines (truly making cos x the odd man out).

sin cos cos2 2x x x dx   ∫

The Mamma Theorem tells you that cos2x 5 1 2 sin2x, so replace the cos2x to get

sin sin cos2 21x x x dx−( )∫  

Distribute the sin2x and the cos x to both terms, and split the integral to get

sin cos sin cos2 4x x dx x x dx  ∫ ∫−

Now, you can perform u-substitution in each expression with u 5 sin x to get

u u C

x x C

3 5

3 5

3 5

3 5

− +

− +sin sin

What if you have only sines or cosines in the problem and not both? In this case, you
cannot count on the odd man out to help with u-substitution. If this occurs, you will
have to resort back to the power-reducing formulas from way back in Chapter 2. Once
applied, they make the problem almost a trivial pursuit.

Example 9: Evaluate sin2 x dx ∫ .

Solution: The power-reducing formula for sin2x is 1 2
2

− cos x so you can substitute

that into the integral and factor out
1
2

.

1
2

1 2−( )∫ cos x dx

Split the integral up,

1
2

1
2

2dx x dx− ∫∫ cos  

and use u-substitution (with u 5 2x) to integrate cos 2x.
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1
2

1
4

2x x C− +sin

The final rule for trigonometric powers works for secants and tangents in the same
integral. I call it the Steven and Todd Rule, since it has to do with secants being even
and tangents being odd.

Steven and Todd Rule: If an integral contains positive powers of secant and tangent
and the power of secant is even, save a sec2x and convert the remaining secants to
tangents using Pappa. If, however, the power of tangent is odd, save a sec x tan x and
convert the remaining tangents to secants using Pappa.

This might be the opposite of your first instincts. If you are focusing on an even power
of secant, you are preparing a sec2x term, which is the derivative of tangent. If you are
focusing on the odd power of tangent, then you are preparing a sec x tan x term, the
derivative of secant. However backward it may seem, it works like a charm.

Example 10: Evaluate tan sec2 4x x dx  ∫ .

Solution: Steven is in this problem, waving to you, eating a hotdog, and waiting until
you see him (since secant is even). Therefore, you prepare a sec2x term and convert
the remaining sec2x term to 1 1 tan2x using Pappa.

tan sec

tan tan sec

2 2

2 2 21

x x x dx

x x dx

  sec  2∫
∫ +( )

Distribute the tan2x sec2x, and split the integral to get

tan sec tan sec2 2 4 2x x dx x x dx    ∫ ∫+

Use u-substitution with u 5 tan x to finish.

u u
C

x x
C

3 5

3 5

3 5

3 5

+ +

+ +tan tan

This answer looks hauntingly similar to Example 8, and that’s no real coincidence.
Odd Man Out and Steven-Todd are techniques that set you up for a simple
u-substitution and differ only in very minor ways.

There may be instances in which you cannot use any of the techniques outlined here.
Do not panic. Try some old-fashioned elbow grease, and experiment until something
works. Break the integral into smaller pieces, and bring Mamma, Papa, and Baby into
the picture.
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Example 11: Evaluate cos3 x dx ∫ .

Solution: No u-substitution is possible yet. If you set u 5 cos x, there’s no sine to help
out on the du. So, let’s introduce a sine (or two) into the problem with Mamma.

cos cos cos

sin cos

cos sin cos

3 2

2

2

1

x dx x x dx

x x dx

x dx x x dx

   

 

   

=

−( )
−

∫∫
∫

∫∫
The left integral is easy, and the right integral is a simple u-substitution (u 5 sin x).

sin
sin

x
x

C− +
3

3
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EXERCISE 3

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

EVALUATE THE FOLLOWING WITHOUT A GRAPHING CALCULATOR.

1. cos sin23 3x x dx  ∫
2. tan sec3 5x x dx  ∫
3. tan secx x dx  ∫ 6

4. cos4 x dx ∫
5. csc cos3 3x x dx  ∫

ANSWERS AND EXPLANATIONS

1. You need to use the Odd Man Out Rule for this integral (even though the cosine
is to a weird power). Save a sin x, and transform the remaining sin2x to
(1 2 cos2x):

cos cos sin

cos sin cos sin .

/

/ /

2 3 2

2 3 8 3

1x x x dx

x x dx x x dx

  

    

∫
∫∫

−( )
−

Both of these integrals require u-substitution with u 5 cos x (don’t forget that
du 5 2sin dx).

− + +3

5

3

11
5 3 11 3cos cos/ /x x C

2. It’s Todd (tangent is odd), so save a sec x tan x term and transform all the
tangents to secants using Pappa.

sec tan tan sec

sec tan sec sec

sec sec tan sec sec tan

x x x x dx

x x x x dx

x x x dx x x x dx

   

  

      

( )

( ) −( )
−

∫
∫

∫∫

2 4

2 4

6 4

1

Now, use u-substitution with u 5 sec x to finish.

sec sec7 5

7 5

x x
C− +
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3. Both Steven and Todd are in this problem, so you can do the problem either way.
However, Todd provides the easier way (since saving a sec x tan x term leaves no
other tangents to transform to secants). Bring it home, Todd.

sec sec tan5 x x x dx   ∫
Use u-substitution with u 5 sec x (just as in number 2).

sec6

6

x
C+

4. There is no sine in this problem to help with u-substitution. So, do we use the
technique of Example 9 or Example 11? Because the power is even, we’ll use the
technique of Example 9, where the power also was even.

cos cos4 2 2
x dx x dx = ( )∫∫

Now, use the power-reducing formula for cos2x.

1 2
2

1
4

1 2

1
4

1 2 2 2

2

2

2

2

+( )

+( )

+ +( )

∫

∫
∫

cos

cos

cos cos

x
dx

x dx

x x dx

The first two integrals are easy, but you have to use another power-reducing

formula for cos22x. Let’s focus on that for a moment. (Don’t forget the
1
4

that

needs to be distributed to each integral—easy and hard alike.)

1

4
2

1

4

1 2 2

2
1

8
1 4

2cos

cos

cos

xdx

x
dx

x dx

∫
∫
∫

+ ( )

+( )

All together (don’t forget the two easy integration terms above), the answer is

1
4

1
4

2 1
8

1
32

4

3
8

1
4

2 1
32

4

x x x x C

x x x C

+ + + +

+ + +

sin sin

sin sin
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5. Holy smokes, this doesn’t match a single one of the techniques we’ve covered! To
begin, rewrite as sine and cosine to see if things get any easier.

cos
sin

cot

3

3

3

x
x

dx

x dx

∫
∫  

That looks a little more compact, if nothing else. This, however, looks a lot like
Example 11; in fact, it differs by only a single letter. Try that technique on a
whim, and see what pans out.

cot cot

cot csc

cot csc cot

x x dx

x x dx

x x dx x dx

 

   

2

2

2

1

∫
∫

∫∫
−

−

( )

The left integral is a u-substitution, and you should have the right integral
memorized.

− − +cot ln sin
2

2
x x C

PARTIAL FRACTIONS (BC TOPIC ONLY)
Integration by partial fractions is a method used to simplify integrals based on a very
cool trick. The trick is so unique that it tends to stick with you, so you shouldn’t have any
trouble remembering how it’s done come test time. That’s good news, especially since
the test is such a high-pressure situation that most people forget important things, such
as what their name is, when the Magna Carta was signed, what the current exchange
rate is between major world currencies, and what exactly that little symbol is that
became The Artist Formerly Known as Prince’s new name.

Partial fraction decomposition allows you to break a rational (fractional) expression
into the sum of a couple of smaller fractions. Here’s the great thing: The denominators
of the smaller fractions are the factors of the original denominator. The numerators of
those smaller fractions are just constants. It’s your job to find out what they are
exactly.

Example 12: Evaluate
x

x x
dx

+
− −∫ 3

2 9 52 .

Solution: You may be tempted to try a u-substitution with u 5 2x2 2 9x 2 5 and to try
and force the numerator into du 5 (4x 2 9)dx (as we did earlier in this chapter).
However, you should use partial fractions because the denominator is factorable.

x
x x

dx
+

+ −( )( )∫ 3
2 1 5
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Partial fraction decomposition tells us that

x
x x

A
x

B
x

+
+ −

=
+

+
−( )( )

3
2 1 5 2 1 5

In other words, we can find two constants A and B such that the sum of the two right
fractions equals the larger fraction on the left. How do you do that? First, eliminate
the fractions by multiplying both sides of the above equation by (2x 1 1)(x 2 5).

x 1 3 5 A(x 2 5) 1 B(2x 1 1)

Now, distribute the constants.

x 1 3 5 Ax 2 5A 1 2Bx 1 B

You’re almost finished; factor the x out of the Ax and 2Bx terms.

x 1 3 5 (A 1 2B)x 2 5A 1 B

Stop and look at that for a second. If the two sides are equal, then A 1 2B (the
coefficient of the x on the right side) must be equal to 1 (the coefficient of the x on the
left side). Similarly, 25A 1 B must equal 3. Therefore, you get the system of equa-
tions:

A 1 2B 5 1

25A 1 B 5 3

Use whatever technique you want to simultaneously solve these equations (linear

combination, substitution, matrices, etc.) to figure out that A = − 5
11 and B = 8

11 .

Therefore,

x
x x x x

+
+ −

= − + + −( )( )
3

2 1 5 2 1 5

5
11

8
11

and instead of integrating the ugly left side, we can integrate the slightly less ugly
right side.

−
+

+
−∫∫5

11
1

2 1
8

11
1

5x
dx

x
dx
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Use u-substitution in each integral with u 5 the denominator of each and the result is

− + + − +5
22

2 1
8

11
5ln lnx x C

or if you feel like getting common denominators and going nuts with log properties,
you can rewrite as

ln

x

x
C

−
+

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

+

5

2 1

22

16

5

I have no idea why you would ever want to do that, but hey, whatever floats your boat.

In conclusion, you should integrate by partial fractions if you can factor the denomi-
nator. Create a sum of new fractions such that the denominators of the new fractions
are the factors of the original denominator and the numerators of the new fractions
are constants. Once you determine what those constants must be, all that remains is
to integrate the string of smaller fractions, which is typically very easy.
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EXERCISE 4

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

DO NOT USE A CALCULATOR WHEN YOU INTEGRATE THE FOLLOWING.

1. x
x x

dx−
+ +∫ 3

9 202

2. x
x x

dx+
− −∫ 2

2 82

3. 4
3 142x x

dx
+ −∫

4. 2 1
63 2

x
x x x

dx+
+ −∫

ANSWERS AND EXPLANATIONS

1. The denominator factors to (x 1 4)(x 1 5); to begin partial fractions, you set up
the following equation:

x
x x

A

x

B

x

−
+ +

= +
+ +

3
9 202 4 5

Multiply through by (x 1 4)(x 1 5) to eliminate fractions, and then find A and B.

x 2 3 5 A(x 1 5) 1 B(x 1 4)

x 2 3 5 (A 1 B)x 1 5A 1 4B

This results in the system of equations:

A 1 B 5 1 and 5A 1 4B 5 23

A 5 27, B 5 8

The original integral now becomes

−
+

+
+

− + + + +
∫∫7

1
4

8
1

5
7 4 8 5

x
dx

x
dx

x x Cln ln

2. This problem does not require partial fractions. If you factor the denominator, the
fraction simplifies.

x
x x

dx

x
dx

+
− +

−

( )( )∫

∫

2
4 2

1
4

e
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This is an easy u-substitution problem if u 5 x 2 4.

ln x C− +4

3. You can pull the 4 out of the integral if you want (and replace it with a 1), but that
doesn’t make the problem significantly easier. Because there is no x in the
numerator, its coefficient must be 0 (that’ll be important in a few seconds).
Factoring the denominator may be the hardest part of this problem.

4

3 14 3 7 2

4 2 3 7

4 3 2 7

2x x

A
x

B
x

A x B x

A B x A B

+ −
=

+
+

−
= − + +

= + + − +
( ) ( )

( ) ( )

This leads to the system A 1 3B 5 0 and 22A 1 7B 5 4, whose solution is
A = − 12

13 and B = 4
13 .

−
+

+
−∫∫12

13
1

3 7
4

13
1

2x
dx

x
dx

− + + − +4
13 3 7 4

13 2ln lnx x C

4. The denominator has three factors this time, but the technique stays exactly
the same.

2 1
6 3 2

2 1 3 2 2 3

2 1 6 2 3

2 1 2 3 6

3 2

2 2 2

2

x
x x x

A
x

B
x

C
x

x A x x Bx x Cx x

x A x x B x x C x x

x A B C x A B C x A

+
+ −

= +
+

+
−

+ = + − + − + +

+ = + − + − + +

+ = + + + − + −

( )( ) ( ) ( )
( ) ( ) ( )

( ) ( )

The only constant term on the right is 26A, so 26A 5 1 and A 5 2
1
6

. There is no

squared term on the left, so (after substituting in the value of A) you have the
system

− + + = − − + =

+ = − + =

1
6

0
1
6

2 3 2

1
6

2 3
13
6

B C B C

B C B C

 and 

 and 
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After solving the system, you get A 5 2
1
6

, B 5 2
1
3

, and C 5
1
2

, making the integral

− −
+

+
−

− − + + − +

∫∫∫1
6

1 1
3

1
3

1
2

1
2

1
6

1
3

3
1
2

2

x
dx

x x

x x x Cln ln ln

IMPROPER INTEGRALS (BC TOPIC ONLY)
Improper integrals are bizarre integrals that have at least one of the three following
qualities: (1) one of the limits of integration is infinity, (2) the curve being integrated has
an infinite discontinuity between the limits of integration, or (3) the integral has an
obsession for fruit-scented candles. As the final condition is often difficult to measure,
most mathematicians are satisfied with the first two.

Consider the integral 1

90

3

2−∫ x
. The upper limit of integration causes the expression

to be undefined. How can you find the area beneath a curve when x 5 3 if the curve
doesn’t exist at 3? This is an interesting question. To counter the dilemma, we will
evaluate the limit as x approaches 3. To be completely mathematically accurate, we
will evaluate the limit as x approaches 3 from the left (since those left-hand values are
in our interval of [0,3] but the right-hand values are not).

Example 13: Evaluate
1

9 20

3

−∫ x
dx

Solution: Since the integration limit of 3 causes trouble, you substitute a constant
(we will use b since it is the upper limit) for it and rewrite the integral as follows:

lim
b

b

x→ − −
∫3 20

1

9

For now, ignore the limit and evaluate the integral.

lim arcsin

lim arcsin arcsin

|b

b

b

x

b

→ −

→ −

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

−

3 0

3

3

3
0
3

Since arcsin 0 5 0, the integral is simply arcsin
b
3

. It’s time to bring that limit back

into the picture (to evaluate it, you just substitute 3 in for b).

lim arcsin arcsin

arcsin

b

b

→ −
=

=

3 3
3
3

1
2
π

a
n
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e
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e
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rc

ise
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As you can see, the method was quite easy. The problem limit is replaced by a
constant, and you let that constant approach the problem limit. The next example
involves another tricky integration boundary, but the resulting limit is a little more
complicated.

Example 14: Evaluate ln x dx 
0

1

∫ .

Solution: This is an improper integral because ln x has an infinite discontinuity
when x 5 0. Therefore, we replace the 0 boundary with a constant as follows:

lim ln
a a

x dx
→ + ∫⎛

⎝
⎞
⎠0

1
 

We know the integral of ln x from problem 5 of the integration by parts section.

ln lnx dx x x x C  = − +∫
lim ln

lim ln

lim ln

|
a a

a

a

x x x

a a a

a a a

→ +

→ +

→ +

−

− − −

− − +

( )

( ) ( )( )
( )

⋅
0

1

0

0

1 0 1

1

 

 

 

Now it’s time to let a approach 0. The only difficult part of the above is lim ln
a

a a
→ +0

 .

Did you notice that this is the indeterminate form of 0⋅∞ ? You can rewrite the
limit as

lim ln
a a

a
→ +0 1

and apply L’Hôpital’s Rule. This is the only difficult step in the problem, but it’s a
doozy. If you find the derivative of the numerator and denominator, you get

 

which is definitely 0. That eliminates the hardest part of the expression.

lim ln
a

a a a
→ +

− − +( )
0

1

lim
a→ +

− − −( ) = −
0

1 0 0 1

The final answer is 21. If this seemed like a bunch of smoke and mirrors rather than
a real magic trick, evaluate the integral with your graphing calculator to see that
we’re right—remember that the calculator only gives you an approximation!
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We have yet to discuss the other major type of improper integral—an integral that
actually has ` as one of the limits of integration. You’ll be glad to hear that the process
used to solve those integrals is identical to the process we have used in the previous
two examples.

Example 15: Evaluate
1
41 x

dx
∞

∫ .

Solution: You may think that the answer is automatically `. We are integrating from
x 5 1 all the way to x 5 `, for goodness sakes! Can a shape with an infinite boundary
have a finite area? This one will. (I hope I didn’t ruin the suspense. If you think I did,

the answer is
1
3

—so there, I ruined even more of the suspense.)

The first step to solving this problem is to introduce a constant in place of the
troublesome boundary.

lim
b

b
x dx

→∞
−∫⎛

⎝
⎞
⎠

4

1

Integrate as usual and then apply the limit.

lim

lim

|b

b

x

b

b

→∞

→∞

−

− +

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

1
3

1
3

1
3

3 1

3

As b goes to infinity, 3b3 will become mega-gigantic, which makes 1
3 3b

really tiny, or
essentially 0.

0 1
1
3

Therefore, the definite integral is equal to
1
3

, and I’m sorry I ruined the surprise.

Example 15 highlights a very important characteristic of improper integrals. Any
improper integral of the form

1
0 x

dxp

∞
∫

(where the exponent p is a real number) will always converge (result in a finite or
numerical answer) if p . 1. If, however, p ≤ 1, the integral will not have a numerical
answer (the corresponding area is infinite), and the integral is termed divergent.

Therefore, you can tell without any work that 1
0

2x
dx

∞
∫ converges (although you’ll

have to work it out to determine the actual value), whereas 1
0 x

dx
∞

∫ will diverge.
This is sometimes called the p-test.
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The final thing the AP test expects you to do with improper integrals is to compare
them with other improper integrals. In such cases, the test will not ask you to
evaluate an integral but rather ask you to determine its convergence or divergence.
Rather than spending the time to integrate these, it’s best to find an integral that is
extremely similar to those that are much easier to work with.

Example 16: Does e x dxx−∞
∫ sin  
0

converge or diverge?

Solution: Compare this to e dxx−∞
∫0

(which is similar but much easier to integrate).

Because the range of sin x is [21,1], multiplying e2x by sin x will never give you a
result larger than e2x. The most you are multiplying e2x by is 1, and that will return
the same value (of course). Otherwise, you are multiplying e2x by a number smaller
than one, and the result will be less than e2x. Therefore, we can unequivocally
say that

e x dx e dxx x−∞ −∞
∫ ∫≤sin  
0 0

Why is this important? We can show that e x−∞
∫0

is a finite area, so if the original

area is less than a finite area, it must also be a finite area and, therefore, converge.

All that remains is to actually show that e x−∞
∫0

is finite through improper
integration.

lim

lim

lim

|
b

xb

b

x b

b

b

e dx

e

e e

→∞
−

→∞
−

→∞
−

∫
−( )

− +( )

0

0

0

2e2` is essentially 0 (to visualize this, graph 2ex and let x approach 2`), but e0

equals 1, so the limit is

0 1 1 5 1

Because e dxx−∞
∫0

converges, then e x dxx−∞
∫ sin  
0

(being smaller) must converge.
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EXERCISE 5

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

USE A GRAPHING CALCULATOR TO CHECK YOUR WORK ON THESE PROBLEMS
ONLY.

For problems 1 through 4, determine whether or not the improper integrals converge; if
they do, evaluate them.

1.
1

131

0

x
dx

+−∫
2. 1

6 82
2

0

x x
dx

+ +−∫
3. 1

12

3

x
dx

+−∫
4. dx

x 2 30

∞

∫
5. Determine whether or not

∞
+∫ 1 6

dx
ex converges by comparing it to another,

simpler improper integral.

ANSWERS AND EXPLANATIONS

1. The lower limit of integration, 21, is the troublemaker here. Replace it with a
constant and evaluate the limit:

lim
a a x

dx
→− + +∫1 3

0 1
1

To integrate, use u-substitution with u 5 (x 1 1):

lim

lim |
a

a

u du

u

a

a

→−

→−

+

+

−

+

+

∫
⎛
⎝⎜

⎞
⎠⎟

1

1

1 3

1

1

2 3

1

13
2

Don’t forget the u boundaries.

lim
/

a
a

→− +
− +( )⎛

⎝
⎞
⎠1

2 33
2

3
2

1

When you evaluate the limit, you essentially plug 21 in for a to get

3
2

2 0 5
3
2

e
xe

rc
ise

s
Chapter 8: Advanced Methods of Integration 341

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

www.petersons.com



2. If you factor the denominator into (x 1 4)(x 1 2), you can see that the integration
limit of 22 will cause the fraction to be undefined, making the integral improper.

lim
a x x

dx
a→− + + +( )( )∫2

1
4 2

0

You’ll have to use partial fractions to integrate.

1
4 2 4 2

2 4 1

2 4 1

x x
A

x
B

x

A x B x

x A B A B

+ +
=

+
+

+

+ + + =

+ + + =

( )( )
( ) ( )

( )

This creates the system A 1 B 5 0 and 2A 1 4B 5 1. The solution to the system

is A 5 2
1
2

and B 5
1
2

. Substitute these into the expanded integral and solve to get

lim ln ln |a
x x

a→− +
+ − +⎛

⎝⎜
⎞
⎠⎟2

1
2 2 1

2 4
0

There is still a problem, however. When you substitute 22 into ln x + 2 , the
expression is still undefined. Our method could not correct the problems inherent
in the integral, so the integral is divergent.

3. The infinite discontinuity in this integral does not occur at the endpoints but
rather when x 5 21. However, you need the discontinuity to exist at an endpoint
to use the method you’ve practiced and know so well. Therefore, you can rewrite
the integral (using a property of definite integrals) as a sum of smaller integrals,
each with 21 as a limit of integration:

1
1

1
1

1
11

3

2

1

2

3

x
dx

x
dx

x
dx

+
=

+
+

+−−

−

− ∫∫∫
Each of these integrals needs to be done separately.

1
1

1
1

1

2

1

1 2

1 2

x
dx

x
dx

x

b

b

b

b

+

+

+

−

−

→− − −

→− − −

∫
∫lim

lim ln |
As you continue to solve this, you will end up with ln (21 1 1) 5 ln 0, which is
undefined. Therefore, this integral is divergent. (The same problem will occur as
you integrate the second integral.)
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4. Replace that infinite boundary with a constant and integrate.

lim

lim

lim

|
b

b

b

b

b

x dx

x

b

→∞
−

→∞

→∞

∫
⎛
⎝

⎞
⎠

( )−

2 3

1 3

1 3

0

0
3

3 0

The function 3b1/3 (three times the cube root function) will grow infinitely large
as b→`, so this integral diverges.

5. Compare this integral to dx
ex

1

∞
∫ . Because ex 1 6 . ex, 1

6
1

e ex x+
< . Therefore, if

you can prove dx
ex1

∞

∫ has a finite area (and is thus convergent), our original

integral must also be convergent.

lim

lim

lim

|
b

xb

b

x b

b

b

e dx

e

e e

→∞
−

→∞
−

→∞
− −

∫
−( )

− +

1

1

1

You know from Example 16 that lim
b

be
→∞

−− = 0

lim
b

e
e→∞

− =1 1

Therefore, the original integral dx
ex +

∞
∫ 61

must also converge.

TECHNOLOGY: DRAWING DERIVATIVE AND INTEGRAL
GRAPHS WITH YOUR CALCULATOR
In past chapters, you were asked to describe characteristics of functions based on the
graphs of their first and second derivatives. Your calculator (although slow) is able to
draw a function’s derivative or integral graph, even if you cannot figure out what it is.
This is not an extraordinarily useful tool for the AP test, but it gives you an infinite
amount of practice drawing the graphs of derivatives and integrals (and solving each
one for you).

Example 17: Draw the graphs of *cos x dx and d
dx xcos( ).

Solution: You already know what the integral of cos x is—it’s sin x. However, the
process you use with any function will be the same. Before we begin, let’s set up a good
[Window] for this problem. Press [Zoom]→“Ztrig”, and then adjust the [Window] so
that “Xmin” is 0 and “Xmax” is 4p. This will set up a very pretty window for cos x.
Now, go to the [Y5] screen and assign Y1 5 cos (x). We want Y2 to be the graph of the
integral, so its equation is

Y2 5 fnInt(Y1,x,0,x)

a
n

sw
e
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e
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rc

ise
s
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This is the area beneath the Y1 curve with respect to x from x 5 0 to x 5 whatever the
current x is. In other problems, you may want to adjust the lower limit of integration
(in this example 0) to match the “Xmin” value on your graph.

It’s also a good idea to darken the graph of the integral so you can tell them apart.
Press [Graph], wait a bit, and the graph of the integral slowly scrawls itself across the
axes. No big surprise here; it’s the graph of sin x, the integral of cos x.

If you want to draw the derivative of cos x, enter

Y2 5 nDeriv(Y1,x,x)

Just as we suspected, the graph of the derivative of cos x is the horizontal reflection of
sin x, or 2sin x.
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If you are still confused about the relationship between a graph and its derivatives,
this technique can give you all the practice you need. Make up any function at all, and
enter it as Y1. Predict, based on that graph, what its integral and derivative graphs
look like, and use the above commands to check yourself.

Example 18: Show that ln x gets its value by accumulating area beneath
1
x
.

Solution: Enter Y1 5
1
x
. Remember that ln x gets its value from the accumulation

function

ln x
x

dx
x

= ⎛
⎝

⎞
⎠⎟∫ 1

1

So, Y2 5 fnInt(Y1,x,1,x). Make sure to set your Xmin to a number slightly larger than

0 (since 0 is undefined for
1
x
). I chose a value of .001 for Xmin.

This activity sheds a whole new light on why ln x is negative from x 5 0 to x 5 1: ln x
is based on an integral with inverted limits of integration on that interval. For example,

ln 1
2

1
1

1 2

= ∫ x
dx

Because those limits are “backward” (with the larger limit in the lower position), the
result is negative (based on a property of definite integrals).
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EXERCISE 6

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

DO NOT USE A GRAPHING CALCULATOR ON A SINGLE, SOLITARY ONE OF THESE
PROBLEMS.

Evaluate each of the following integrals, if possible.

1. 1
1+∫ cos x

dx

*2. x
x x x

dx
2

3 2

1
7 6

−
− +∫

*3. x x dx  ln∫
*4. 6

62

6 +
−∫ x

x
dx

5. sec tan2 5x x dx  ∫
6. x dx

x
 
+∫ 3

7. x x x
x

dx
3 26 2 4

7
+ + −

+∫
*8. cos sin4 33 3x x dx( ) ( )∫   

*9. x x dx  sin
1

∞
∫

*10. James’ Diabolical Challenge: x x dx4 3cos  ∫
*a BC-only question.

ANSWERS AND EXPLANATIONS

1. The best way to integrate this is using a method called the conjugate. It hasn’t
been included until now because it is much easier than the other methods. To
apply it, multiply the numerator and denominator by the conjugate of the de-
nominator (1 2 cos x); you will get

1
1 2

−
−∫ cos

cos
x
x

dx

Use Mamma to change the denominator and split the integral into two parts.

1
2 2

2
2

sin
cos
sin

csc cos
sin

x
dx x

x
dx

xdx x
x

dx

∫ ∫
∫∫

−

−
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The first integral is easy, and the second is a simple u-substitution (with u 5

sin x).

− − +

− + +

− + +

−∫cot

cot

cot csc

x u du C

x
u

C

x x C

2

1

2. This is not a long-division problem because the degree of the denominator is
greater than the degree of the numerator. Instead, because the denominator is
factorable, you should use partial fractions.

x
x x x

A
x

B
x

C
x

x A x x Bx x Cx x

x x A B C x A B C A

2

2 2

2 2

1
1 6 1 6

1 7 6 6 1

1 7 6 6

−
− −

= + − + −

− = − + + − + −

− = + + + − − − +

( )( )
( ) ( ) ( )
( ) ( )

Therefore, A 5 2
1
6

, B 5 0, and C 5
7
6

. The integral is now written as

− + −

− + − +

∫ ∫1
6

1 7
6

1
6

1
6

7
6

6

x
dx

x
dx

x x Cln ln

3. Integration by parts is the way to go here. It’s best to set u 5 ln x; although you
probably have memorized its integral, you’d have to integrate twice if you set
dv 5 ln x, so that rules out the chart. Instead, set u 5 ln x and dv 5 xdx, which

makes du =
1
x
dx and v =

x2

2
.

x x dx x x xdx

x xdx x x x C

ln ln

ln ln

 = −

= − +

∫ ∫
∫

2

2 2

2
1
2

2 4

4. (This is a toughie.) This is an improper integral since the boundary of 6 wreaks
havoc in the denominator.

lim
b

b x

x
dx

→ −

+
−∫6 2

6
6

a
n
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e
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s
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The best method to use is the conjugate method (since the denominator is a
radical surrounding a binomial). Multiply the top and bottom of the fraction by

6 + x to get

lim
b

x
x

dx
b

→ −

+
−∫6

6
36 22

This integral must be broken into two parts. We’ll solve them one at a time. The
first is

lim

lim arcsin

arcsin

b

b

x
dx

x b

b

→

→

−

−

−
⎛
⎝⎜

⎞
⎠⎟

⋅
⎛
⎝⎜

⎞
⎠⎟

∫6

6

6 1
36

6
6 2

6 1

22

−−

⋅ −

−

6 1
3

6
2

6 1
3

3 6 1
3

arcsin

arcsin

arcsin

π

π

The second integral is completed using u-substitution.

lim

lim

b

b

b

x
x

dx

u x du xdx du xdx

→

→

−

−

−

= − = − − =

∫
⎛
⎝⎜

⎞
⎠⎟6 2

6

36

36 2 2

2

2, , 

−−

−

−

−−

−

∫
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟→

→

−

−

1
2

3

1 2

32

36 2

1 2

32

36 2

6

6

u du

u

b

b

b

b

lim

lim

|

66 32

32

2− +( )b

The final answer is the sum of the two integrals:

3 6 1
3

32π − +arcsin
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5. This is a simple u-substitution problem; BC students can also use Steven or Todd
(although Steven, in this case, is essentially u-substitution).

u x du xdx

u du

x
C

= =

+

∫
tan sec

tan

,  2

5

6

6

6. There are two good ways to do this. If you use long division (since the degrees of
top and bottom are equal), you get

1 3
3

3 3

− +
− + +

⎛
⎝⎜

⎞
⎠⎟∫ x dx

x x Cln

which is quite easy. You can also do a bizarre u-substitution. If you set u 5 x 1 3,
du 5 dx and the integral becomes

x du

u

 ∫
How do you get rid of that pesky x in the numerator? Remember that you just set
u 5 x 1 3. Therefore, x 5 u 2 3. If you substitute that value in for x, you get

u
u

du−∫ 3

which can be split up, resulting in

du
u

du

u u C

x x C

x x C

∫ ∫−

− +

+ − + +

− + +( )

3 1

3

3 3 3

3
3

ln

ln

ln

,  or

(since the 3 is just a constant and can be added to the C). Both methods result in
the same answer.

7. You need to begin this problem with long or synthetic division (synthetic division
is shown below).

a
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The integral can be rewritten as

x x x dx

x x x x C

2

3 2

9 67
7

3 2 9 67 7

− + − +

− + − + +

⎛
⎝⎜

⎞
⎠⎟∫

ln

8. The odd man out in this problem is sin (3x). Therefore, save one sin (3x), and
change the others to cosines.

cos sin sin

cos cos sin

cos sin cos sin

4 2

4 2

4 6

3 3 3

3 1 3 3

3 3 3 3

x x x dx

x x x dx

x x dx x x dx

( ) ( ) ( )

( ) − ( )( ) ( )

( ) ( ) − ( ) ( )

∫
∫

∫∫

   

   

    

Both integrals require u-substitution with u 5 cos (3x) and 2
du
3

5 sin (3x)dx.

− ( ) − ( )⎛
⎝⎜

⎞
⎠⎟

+1
3

3
5

3
7

5 7cos cosx x
C

9. This is an improper integral due to the infinite upper limit.

lim sin
b

b
x x dx

→∞ ∫   
1

You should integrate x sin x by parts with u 5 x and dv 5 sin x dx. In fact, you can
use the parts chart.

lim cos sin

lim cos sin cos sin

|
b

b

b

x x x

b b b
→∞

→∞

− +( )

− + − − +( )
1

1 1 

As b approaches infinity, neither cos b nor sin b approaches any one height. They
both oscillate infinitely between 21 and 1. Therefore, there is no limit as b
approaches infinity, and this integral diverges.

PART II: AP Calculus AB & BC Review350
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

www.petersons.com



10. This is one mother of an integration by parts problem. If you don’t use the chart,
you are just masochistic.

Multiply along the diabolical diagonals (and simplify fractions, if you feel the
urge) to get the final answer:

1
3

3
4
9

3
4
9

3
8
27

3
8
81

34 3 2x x x x x x x x x Csin cos sin cos sin+ − − − +
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SUMMING IT UP
• Most of integration on the AP test is done using the Power Rule and

u-substitution.

• Integration by parts is a technique based on the Product Rule (BC topic only).

• When you integrate by partial fractions on the AP test, the denominators will
always have linear factors. This technique is slightly modified when the factors
have higher degrees, but you don’t have to worry about that for the AP test.

• Improper integrals are integrals that have the following qualities: one of the
limits of integration is infinity and the curve being integrated has an infinite
discontinuity between the limits of integration (BC topic).

• Not all shapes with infinite boundaries have finite area. If the area is not finite,
the integral is said to diverge, whereas a finite integral is said to converge.
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Applications of
Integration

OVERVIEW
• Hands-On Activity 9.1: Area between curves
• The disk and washer methods
• The shell method
• Finding the volume of regions with known cross sections
• Arc length (BC topic only)
• Polar area (BC topic only)
• Technology: Using your calculator efficiently
• Summing it up

Learning how to integrate, although a fun adventure in and of itself (yeah
right), is just the beginning. Just as derivatives had keen applications such as
related rates and optimization, integrating has its own applications, which
are primarily concerned with finding area and volume generated by graphs.
These topics always remind me of one thing—getting close to the AP test!
Although BC students have an extra chapter (and what a fun chapter that is),
AB students are nearing the home stretch for the AP test. Don’t give up, and
keep your focus—you’re almost done.

HANDS-ON ACTIVITY 9.1: AREA BETWEEN CURVES
You can already find the area between a curve and the x-axis (thanks to the
Fundamental Theorem). Now, you will learn how to find the area between any
two integrable curves. I can tell that you’re excited. Let’s get right to it.

1. If a circle is inscribed in a square whose side length is 9, find the area of
the shaded region.

c
h
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2. Describe the technique you used to complete problem 1.

3. Below are the graphs of y 5 4 and y 5 x2 in the first quadrant. Where do these
two graphs intersect?

4. Evaluate the definite integrals 4
0

2
dx∫ and x dx2

0

2

∫ . Using those two integrals,

how can you find the shaded area? (Use a technique similar to the circle and
square problem from number 1.)

5. Fill in the blanks below to complete the statement:

When finding the area enclosed by two curves that contain x variables, you are
adding the sum of the areas of an infinite number of vertical
_______________________s. In practice, you subtract the definite integral of the
_________________________ from the definite integral of the
_____________________. The limits of integration for those integrals should be the
x-values of the ____________________.

6. Graph the curves y 5 2 2 x2 and y 5 x2 2 3. Lightly shade the total area between
the curves (not just in the first quadrant this time). Set up the integral that
represents the area, but do not integrate it.
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7. If your functions both contain y’s, how will your technique for finding the area
between them differ?

8. Fill in the blanks below to complete the statement:

When finding the area enclosed by two curves that contain y variables, you are
adding the sum of the areas of an infinite number of _______________________. In
practice, you subtract the definite integral of the __________________________
from the definite integral of the __________________. The limits of integration for
those integrals should be the __________________________.

9. Find the area in the first quadrant enclosed by the curves x 5 y2 and x y= .

SELECTED SOLUTIONS TO HANDS-ON ACTIVITY 9.1

1. The radius of the circle must be
9
2

since its diameter is the same as the side of the

square. The shaded area is 81 81
4

− π .

2. You find the area of the square and subtract the area of the circle.

3. You can find this answer by setting them equal to one another.

x2 5 4

x 5 62

They intersect at the point (2,4).
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4. 4 8
0

2
dx∫ = and x dx2

0

2 8
3∫ = , as shown in the following diagrams.

Notice that the left area minus the right area equals the shaded area in the

problem. Therefore, the answer is 8 2
8
3

=
16
3

.

5. When finding the area enclosed by two curves that contain x variables, you are
adding the sum of the areas of an infinite number of vertical rectangles. In
practice, you subtract the definite integral of the lower curve from the definite
integral of the higher curve. The limits of integration for those integrals should
be the x-values of the intersection points.

6.

The diagram contains a single, dark vertical rectangle, which is one of the infinite
number of rectangles that make up the shaded area. This makes it easy to see
that you will integrate the top curve minus the bottom curve, or (2 2 x2)2(x2 2 3),
as that is the length of the rectangle.

Find the intersection values by setting the functions equal.

2 2 x2 5 x2 2 3

2x2 5 5

x = ±
5
2

Therefore, the area is given by

2 32 2

5 2

5 2
−( ) − −( )( )

−∫ x x dx
/

/

7. When functions contain y’s instead of x’s, the rightmost function is the greater
instead of the higher function. Also, you would use the y-coordinate of the
intersection point rather than the x-coordinate.
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8. horizontal rectangles, leftmost curve, rightmost curve, y-coordinates of the points
of intersection.

9.

Because these functions both contain y’s, you are using horizontal rectangles of
length (right 2 left) 5 =y 2 y2. The functions intersect at (1,1) and (0,0). Don’t
forget that you have to use the y-coordinate (even though it’s the same as the x in
this case).

y y dy

y
y

−( )
−

⎛

⎝⎜
⎞

⎠⎟
=

∫ 2

0

1

3 2
32

3 3 0

1 1
3

/  
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EXERCISE 1

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

DO NOT USE A GRAPHING CALCULATOR FOR PROBLEMS 1 AND 4.

1. Calculate the area bounded by f(x) 5 x5 2 5x3 and the x-axis. What important
conclusion can be drawn from this problem?

2. Calculate the area bounded by y 5 x3 2 4x and y 5 (x 1 2)2 in the second
quadrant.

3. Calculate the area in the first quadrant bounded by x 5 5 and y 5 x2 1 2
twice—once with horizontal rectangles and once with vertical ones.

4. Calculate the area bounded by x 5 y2 1 4y 2 5 and y 5 2
1
2

x 1 1.

5. Calculate the area bounded by y 5 3x3 2 8x, y 5 10x2, x 5 0, and x 5 21.

ANSWERS AND EXPLANATIONS

1. First, you need to find the points of intersection of the graphs by setting them
equal.

x5 2 5x3 5 0

x3(x2 2 5) 5 0

x = ±0 5,

This problem must be split into two separate integrals. On [ − 5 ,0], f(x) is the
“top” function, whereas on [0, − 5 ], the x-axis (y 5 0) is the “top” function.
However, you only need to calculate one of these regions since f(x) is odd and
therefore origin-symmetric (both of the regions will have the same area).
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We will calculate the area of the region on [0, − 5 ]. Don’t forget that y 5 0 is the
“top” function.

0 55 3

0

5
− −( )( )∫ x x dx

− +( )∫ x x dx5 3

0

5
5

−
⎛

⎝⎜
⎞

⎠⎟
+

x
x

6
4

6
5
4 0

5
 

− +⎛
⎝

⎞
⎠ =125

6
125

4
125
12

Therefore, the entire region between the two curves is 125
12

125
62• = . The important

conclusion to be drawn? The Fundamental Theorem of Calculus is just an exten-
sion of this method. (Before, our unstated lower curve was always 0, since
upper curve 2 0 5 upper curve.)

2. These are both functions of x, so you use x-boundaries and integrate top 2 bottom.
(You also use vertical rectangles with x functions.) Graph them to see which is
which.

The top function is x3 2 4x. Now, find the intersection points of the graphs.

x3 2 4x 5 x2 1 4x 1 4

x3 2 x2 2 8x 2 4 5 0

Solve this equation using your calculator to get x 5 22 and 2.5615528128 (the
other solution corresponds to an intersection point in the first quadrant). The
area will be

x x x dx3 2

2

5615528128
4 2−( ) − +( )( )−

−

∫
.

The area is approximately 2.402 square units.
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3. Using vertical rectangles is much easier in this problem, although both give you
the same solution.

Vertical rectangles (using x’s):

The area of the region is found using the Fundamental Theorem.

x dx2

0

5
2

155
3

+( ) =∫
Horizontal rectangles (using y’s):

From y 5 0 to y 5 2, the right-hand function is x 5 5, and the left-hand function
is x 5 0. In fact, that area is simply a rectangle of area 10.

How do you find that upper intersection point? You cannot just set the equations
equal, because one is an equation in terms of x. If you want to use horizontal
rectangles, you have to go whole hog and change everything to y’s.

y 5 x2 1 2

y 2 2 5 x2

x y= − 2

Now you can set the two equal to find the boundaries.

y − =2 5

y 2 2 5 25

y 5 27

The intersection point is (5,27). Notice that the horizontal rectangles from y 5 2
to y 5 27 have a right-hand boundary of x 5 5 and a left-hand boundary of
x y= − 2 . Since we already know the lower rectangular area is 10, let’s find the
other area.

5 2
125

32

27
− −( ) =∫ y dy

The total area is 10 125
3

155
3

+ = , and the answer matches our vertical rectangle
answer.
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4. You have to use horizontal rectangles here. One of the functions is in terms of y,
and there is no changing that one into terms of x easily. Therefore, you need to
change the other and put it in terms of y also.

y 5 2
1
2

x 1 1

y 2 1 5 2
1
2

x

2 2 2y 5 x

The intersection points will be

y2 1 4y 2 5 5 2 2 2y

y2 1 6y 2 7 5 0

y 5 1, 27

On the entire interval from y 5 1 to y 5 27, the line forms the right-hand
boundary, so the area between the curves will be

2 2 4 52

7

1
−( ) − + −( )( )

−∫ y y y dy

7 6 2

7

1
− −( )

−∫ y y dy

7 3
3 7

1 256
3

2
3

y y
y

− −
⎛

⎝⎜
⎞

⎠⎟ −
= 
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5. Both of these functions are in terms of x, so you should use vertical rectangles
and x boundaries for integration.

This graph is stretched to feature the area in question.

These graphs intersect in the interval [21,0]. Find that point.

3x3 2 8x 5 10x2

3x3 210x2 2 8x 5 0

x(3x 1 2)(x 2 4) 5 0

x 5 0, 2
2
3

, and 4

Clearly, 2
2
3

is the value we need. However, we will need two separate integrals.

On the interval [21, 2
2
3

], the quadratic function is on top. However, on [ 2
2
3

,0],

the cubic function is on top. Therefore, the total area is

10 3 8 3 8 10

235
324

52
81

44

2 3 3 2

2 3

0

1

2 3
x x x dx x x x− −( )( ) + − −( )

+ =

−−

−

∫∫ /

/

33
324

1 367 or .

THE DISK AND WASHER METHODS
My students are always surprised when I tell them that calculus can help them find the
volume of a butternut squash. However, when they see how it’s done, they are often
disappointed. “That’s not calculus!” they exclaim. “Is too!” I cleverly retort. “Is not!” they
protest. Such academic debates are essential to producing enlightened and well-spoken
students.

There is no formula in your textbook concerning the volume of produce, so you need to
break the squash into smaller, more manageable pieces.
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A squash’s cross-section

If you slice the squash into thin disks (cylinders), you can find the approximate
volume of each and then add those volumes. Sound familiar? It’s basically a three-
dimensional Riemann sum.

The volume of a disk is pr2h. However, if we want to find the exact volume of a
three-dimensional shape, we have to use an infinite number of disks (like we used an
infinite number of rectangles to find the exact area when we applied the Fundamental
Theorem). This formula is called the Disk Method.

The Disk Method: If the area beneath a function is rotated in three dimensions and
the resulting solid has no holes or gaps, its volume is given by

V r x dx
a

b
= ( )( )∫π 2

where a and b are the endpoints of the original area and r(x) is the radius of the
three-dimensional solid.

This sounds mighty complicated, but it is really quite simple. (And that’s no typical
math teacher mumbo jumbo.) One thing to keep in mind: The Disk Method uses
rectangles that are perpendicular to the rotational axis. If you remember that, the
process is much simpler.

Example 1: Find the volume generated if the region bounded by f(x) 5 sin x on [0,p]
is rotated around the x-axis.

Solution: Draw the original region first (you don’t have to be able to picture it in
three dimensions to get the problem right.) The x-axis (the rotational axis specified by
the problem) is horizontal, so we will have to use rectangles perpendicular to that
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(vertical rectangles) to complete the problem. Remember from the last section that
vertical rectangles mean that everything is in terms of x.

To find r(x), just draw one sample vertical rectangle on the interval. How do you find
its height? Use top 2 bottom like we did in the last section. So, r(x) 5 sin x 2 0.
According to our formula, the volume of the resulting solid will be

V x dx= ∫π
π

sin 2

0
 

AB students will have to use their calculators to integrate this, but BC students

should be able to do it by hand. The answer is
p2

2
or approximately 4.935.

Example 2: Find the volume of the region bounded by x 5 2y2 1 4y 2 2 and x 5 1
rotated about the line x 5 1.

Solution: This time, the rotational axis is vertical, so you have to use horizontal
rectangles (which should be very easy, since the function is already in terms of y). All
you have to do is find a, b, and r(y) and plug them right into the formula. The
endpoints are y 5 1 and y 5 3 (they have to be y values). Once again, you can draw a
sample rectangle in order to find the radius.
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To find length with horizontal rectangles, you take right 2 left, so the radius is given
by (2y2 1 4y 2 2) 2 1.

π − + − −( )∫ y y dy2 2

1

3
4 2 1

π y y y y dy4 3 2

1

3
8 22 24 9− + − +( )∫  

π • − + − +
⎛

⎝⎜
⎞

⎠⎟
y

y y y y
5

4 3 2

1

3

5
2

22
3

12 9  

The rotational volume is
16p

15
, which is much prettier an answer than you thought it

would be, isn’t it?

Sometimes, rotational solids aren’t all that solid. Consider the region bounded by the
horizontal lines y 5 1 and y 5 2 on the interval [0,3].

If this figure is rotated about the x-axis, the empty space between y 5 0 and y 5 1 gets
rotated, too, creating a three-dimensional doughnut. The more practical-minded
mathematicians of the days of yore thought it looked more like a washer (hence the
name Washer Method).

The Washer Method works the same way as carving a pumpkin for Halloween. If you
want to find the volume of a jack-o-lantern, what would you have to do? First, you’d
have to find the volume of the whole pumpkin (including pumpkin guts). Second,
you’d have to find the volume of the hollowed-out space inside the pumpkin and
subtract that from the original volume (sort of like the shaded area problem in the
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beginning of this chapter). In the Washer Method, you use the Disk Method twice,
once to find the overall volume and once to find the volume of the hole.

The Washer Method: The rotational volume of the area bounded by two functions,
f(x) and g(x), on [a,b] if f(x) ≥ g(x) on [a,b]) is given by

V R x r x dx
a

b
= ( )( ) − ( )( )( )∫π 2 2

where R(x) is the outer radius (the radius of the outer edge of the region) and r(x) is
the inner radius (the radius of the hole of the region).

Again, this method looks insanely difficult, but it is not bad if you’ve been paying
attention since the beginning of this chapter.

Example 3: Find the volume generated by revolving the area bounded by the curves
y 5 =x 1 1, x 5 4, and y 5 1 about the x-axis.

Solution: If you rotate the given area around the line y 5 1, there is no hole in the
rotational solid. However, since you are revolving around the line y 5 0, there is a
gaping hole there.

We are using vertical rectanges, since the axis of revolution (the x-axis) is horizontal.
Notice that the outer radius, R(x), reaches from the axis of rotation to the outer edge
of the region. The inner radius, r(x), reaches from the axis of revolution to the outer
edge of the gap between the region and the axis. You can find the length of each by
subtracting top 2 bottom:

R(x) 5 =x 1 1

r(x) 5 1 2 0
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The boundaries of the region are x 5 0 and x 5 4. Throw all these components
together, and you get the volume according to the Washer Method:

V x dx

V x x dx

V x x dx

V x x

V

= +( ) − ( )⎛
⎝

⎞
⎠

= + +( ) − ( )( )
= +( )

= +⎛
⎝⎜

⎞
⎠⎟

= +⎛
⎝⎜

⎞
⎠⎟

=

∫
∫

∫

π

π

π

π

π
π

1 1

2 1 1

2

1
2

4
3 0

4

8
32
3

56
3

2 2

0

4

2

0

4

0

4

2 3 2/  
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EXERCISE 2

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR PROBLEMS 4 AND 5.

1. Find the volume generated by revolving the area in the first quadrant bounded by
y 5 x2 and x 5 3 about the line x 5 3.

2. True or False: If f x dx g x dx
c

d

a

b
( ) ( )= ∫∫ , then the volume generated by revolving

each of those regions about the x-axis is equal. Give an example that supports

your position.

3. If you rotate the line segment below about the y-axis, you get a right circular cone

of height h and radius r. Verify that the cone has a volume of
1
3
pr2h.

4. Find the volume, V, generated by revolving the region bounded by y 5 (x 1 2)3,
y 5 0, and x 5 0 about x 5 1.

5. Find the volume, V, generated by revolving the region bounded by y 5 tan x,

y 5 0, and
p

4
about the x-axis. Then, find the value of c on [0,

p

4
] such that a plane

perpendicular to the x-axis at x 5 c divides V exactly in half.
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ANSWERS AND EXPLANATIONS

1. Because you are revolving about a vertical axis, you need to use horizontal
rectangles. With such rectangles, everything must be in terms of y, so you have to
rewrite y 5 x2 as x 5 =y.

The length of the example rectangle is given by right 2 left, or 3 2 =y.
Therefore, the volume is

π 3
2

0

9
−( )∫ y dy

π 9 6 1 2

0

9
− +( )∫ y y dy/

π • − +
⎛

⎝⎜
⎞

⎠⎟
9 4

2 0

9
3 2

2

y y
y/  

π • − +⎛
⎝⎜

⎞
⎠⎟

81 108
81
2

27
2
π

2. The problem proposes that two regions of equal area result in the same volume
once rotated about the x-axis. This is false. Consider the two regions pictured
below, both of area 1.

Both revolutions are solid disks with known radii and heights, so we can apply
the formula V 5 pr2h to find their volumes. The solid of revolution generated by
region A has height 5 1 and radius 5 1; the volume is p. Region B generates a
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disk of height
1
8

and radius 8; its volume will be p z 82
z
1
8

5 8p. The volumes are

very different.

3. To start, you need to find the equation of that line segment. Because it passes

through (0,0) and (r,h), it has slope
h
r

and y-intercept 0. Thus, the equation is

y
h

r
x=

However, you are revolving about a vertical axis, so the rectangles need to be
horizontal, and the equation needs to be in terms of y:

x
r

h
y=

Therefore, the volume generated after revolution will be

π •
⎛
⎝⎜

⎞
⎠⎟∫ r

h
y dy

h 2

0

π • ∫ r y

h
dy

h 2 2

20

You can pull out the constants to simplify the integral.

r

h
y dy

h2

2
2

0

π ∫
r

h

y h2

2

3

3 0

π
•  

r

h

h2

2

3

3
π

•

r h2

3
 π

4. This solid of revolution will have a hole in it, so you have to use the Washer
Method. Again, a vertical axis of revolution means horizontal rectangles. There-
fore, the function must be rewritten as x 5 y3 2 2. The inner radius (from the
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axis of revolution to the outside of the region) is 1 2 ( y3 22), and the outer
radius (from the axis of revolution to the outside of the hole) is 1 2 0 5 1.

Therefore, the volume is

V y dy= − −( ) − ( )( )∫π 1 2 13
2 2

0

8

V ' 35.186

You might as well use your calculator to find the answer. You should know how to
use the Fundamental Theorem by now.

5. Finally, a problem in which we don’t have to convert the function in terms of y!
Vertical rectangles are perpendicular to the x-axis, so the volume, V, will be

V x dx= ∫π
π

tan
/

2

0

4
 

We can integrate tan2x by hand if we replace it with (sec2x 2 1) using Pappa.
However, save time by using your calculator since it’s allowed on this problem.

V ' .6741915533

We want to find a revolutionary volume that is exactly half of that, so we should
set up this equation:

π tan .2

0

1
2

6741915533x dx
c

 = ⋅∫

Unless you have a symbolic integrator (like a TI-89), you’ll have to integrate the
left side by hand.

π sec .2

0
1 3370957767x dx

c
−( ) =∫

π tan .|x x
c

−( ) =
0

3370957767

p(tan c 2 c) 5 .3370957767

(tan c 2 c) 5 .1073009183

Use your calculator to solve this equation; you get

c ' .645
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THE SHELL METHOD
I must confess: I really don’t like baseball all that much. I used to love playing baseball,
but watching it on television (or even in the stadium, I am sad to say) just doesn’t cut it
for me. A bunch of guys standing around in tight pants sounds like Broadway musical
tryouts. At least in football, the guys in tight pants are trying to hurt one another, so we
can forgive the “nothing left to the imagination” attire.

One of the more interesting pieces of minutiae in baseball (which is far from trivial to
the avid fan) is the designated hitter rule. You see, the American League allows
coaches to replace the pitchers (who are generally very poor batters) with other
players, whose only job is to hit for the pitcher in the lineup. It’s a good concept: allow
one person good at something to stand in for someone else.

The Shell Method is the designated hitter for calculus, and there’s no debate about
whether or not it is good for baseball. When the Disk or Washer Method is hard (or
even impossible) to use, the Shell Method steps in and hits one out of the park. The
Shell Method doesn’t even care if the rotational solid has a hole in it or not (whereas
that scares the Disk Method off). The Shell Method uses rectangles that are parallel
to the rotational axis, so it can even save you time with variable conversions. The rule
itself is a little bizarre, though. I find it difficult to visualize, so spend more time on
memorizing and applying it than trying to figure out its place in the cosmos.

The Shell Method: If a region is rotated about a horizontal or vertical axis on an
interval [a,b], the resulting volume is given by

2π d x h x dx
a

b
( ) ( )∫  or

2π d y h y dy
f a

f b
( ) ( )

( )

( )
∫  

Now, you probably see why I call this the Designated Hitter; it helps you memorize
the formula. But what do the two functions stand for?

d(x) is the distance from the rotational axis to a rectangle in the region.

h(x) is the height of that rectangle.

Example 4: Consider the following region, bounded by functions f(x) and g(x), that
intersect at x 5 a and x 5 b. What is the volume of this region if rotated about the
y-axis?
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Solution: The key to the Shell Method is drawing the darkened rectangle in the
region (which is parallel to the rotational axis). The function d(x) represents how far
that rectangle is from the y-axis. We could have drawn that rectangle anywhere on the
interval, and we can’t be sure exactly where it is, so we will say that it is a distance of
x away. Thus, d(x) 5 x. Secondly, what is the height of that rectangle? You find it the
same way you have all chapter: top 2 bottom. This is how h(x) gets its value, so
h(x) 5 f(x) 2 g(x). Therefore, the volume of the indicated region is

2π d x h x dx
a

b ( ) ( )∫  

2π x f x g x dx
a

b ( ) − ( )( )∫
Sometimes, students are confused about how to find d(x). It’s not complicated, so don’t
get frustrated. Think about it this way: If you are given the graph below and asked to
give the coordinates of the point, how would you respond?

The only correct response would be very generic: (x,s(x)). In this instance, you assign
an unknown horizontal distance a value of x. That’s all you’re doing with the Shell
Method. However, d(x) is not always just x (or y), as you’ll see in the next example.

Example 5: What volume results if you rotate the region in the first quadrant

bounded by y 5 x2 1 1, x 5 1, and y 5 1 about the line y 5
1
2

?

Solution: To begin, breathe deeply, and draw the region. Then, draw a dark rectangle
in the region parallel to the rotational axis.

All of the rectangles are horizontal now, so all of the equations must be in terms of y.
Therefore, you must rewrite y 5 x2 1 1 as x 5 =y 2 1. How far is that darkened
rectangle from the x-axis? Because you don’t know exactly, you must say that it is y
units away. However, that’s not d(y). To find it, we need to know how far the rectangle
is from the rotational axis. Because the rectangle is y units above the x-axis and the

rotational axis is
1
2

unit above the x-axis, d(y) 5 y 2
1
2

. This is much easier to visualize
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than to explain; look at the graph above for help. All you have left to do is to determine
the value of h(y), the height (or length) of the rectangle. Its length is given by right 2

left and is h(y) 5 1 2 =y 2 1. Therefore, the volume will be

2 1
2

1 1
1

2
π y y dy−⎛

⎝
⎞
⎠ − −( )∫

You can multiply this out and integrate each separately, but let’s embrace calculator
technology for the time being. The answer is approximately 1.676.

This is the same answer you get using the Washer Method. If you don’t believe me, I’ll

show you. The outer radius will be R(x) 5 (x2 1 1) 2
1
2

, and the inner radius is r(x) 5

1
2

. Therefore, the volume is

π x dy2
2 2

0

1 1
2

1
2

1 676+⎛
⎝

⎞
⎠ − ⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

=∫ .
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EXERCISE 3

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY NOT USE A GRAPHING CALCULATOR FOR THESE PROBLEMS.

1. Find the volume generated by rotating the area in the first quadrant bounded by
y 5 x2 and x 5 2 about the line x 5 22. Use the Shell Method.

2. Find the volume generated by rotating the area bounded by y 5 16 2− x and
y 5 2 about the x-axis. Use the most appropriate method.

3. Find the volume generated by rotating the area bounded by y 5 =x, x 5 4, and
y 5 0 about the line y 5 23 using the

(a) Shell Method.
(b) Washer Method.

4. Find the volume generated by rotating the area bounded by y 5 x3 1 x 1 1, y 5 0,
and x 5 1 about the line x 5 1, and explain why the Shell Method must be used.

ANSWERS AND EXPLANATIONS

1. First, graph the region and draw your rectangle.

In this case, d(x) is more than just x; in fact, it is exactly two units more, so
d(x) 5 x 1 2. Even easier, h(x) 5 x2. Therefore, the volume is

2 2 2

0

2
π x x dx+( )( )∫

2 23 2

0

2
π x x dx+( )∫

2
4

2
3 0

24
3π • +

⎛

⎝⎜
⎞

⎠⎟
x

x  

2 4
16
3

56
3

π π+⎛
⎝

⎞
⎠ =

e
xe

rc
ise

s
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2. The Shell Method is not your best bet in this problem. You’d have to use horizon-
tal rectangles, so the function would have to be put in terms of y, and the problem
would only get more complicated from there.

Because the rotational solid will have a hole, you’ll need to use the Washer
Method (which requires perpendicular rectangles; in this case, x’s). First, you
need to find the intersection points of the graphs.

16 22− =x

16 2 x2 5 4

x2 5 12

x 5 62 =3

R(x) 5 16 2− x and r(x) 5 2; therefore, the volume is

π 16 42

2 3

2 3
− −( )−∫ x dx

π 12 2

2 3

2 3
−( )−∫ x dx

π 24 3 8 3 24 3 8 3−( ) − +( )( )−

32 3π

3. (a) The Shell Method will use horizontal rectangles and requires that you re-
write y 5 =x as x 5 y2.
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Based on the diagram, d(y) 5 y 1 3 and h(y) 5 4 2 y2. Therefore, the volume is

2 3 4 2

0

2
π y y dy+( ) −( )∫

2 4 3 123 2

0

2
π y y y dy− − +( )∫

2 2
4

122
4

3

0

2
π y y y y− − +⎛

⎝⎜
⎞
⎠⎟|

2p(8 2 4 2 8 + 24) 5 40p

(b) The Washer Method uses vertical rectangles and the function in terms of x.

The outer radius is R(x) 5 =x 2 (23) and the inner radius is r(x) 5 0 2 (23).
Therefore, the volume is

π x dx+( ) −⎛
⎝

⎞
⎠∫ 3 9

2

0

4

π x x dx+( )∫ 6
0

4

π x
x

2
3 2

0
4

2
4+

⎛

⎝
⎜

⎞

⎠
⎟ |

π π8 32 40+ =( )
4. Even though the solid of revolution will have no hole in it, you cannot use the

Disk Method. To do so, you would have to use horizontal rectangles and put the
y 5 x3 1 x 1 1 in terms of y, which is impossible (you cannot solve that equation
for x). Therefore, the Shell Method is the only way to go (since that requires
vertical rectangles).
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The distance from the axis of revolution to the rectangle in the region is 1 2 x,
and the height of the rectangle is x3 1 x 1 1. So, the volume generated will be

2 1 13

0

1
π −( ) + +( )∫ x x x dx

2 14 3 2

0

1
π − + − +( )∫ x x x dx

2
5

5

4

4

3

3 0

1π − + − +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x x x
x |

2
1
5

1
4

1
3

1
43
30

π π− + − + =⎛
⎝⎜

⎞
⎠⎟

FINDING THE VOLUME OF REGIONS WITH KNOWN
CROSS SECTIONS
Until now, all of our rotational solids have had circular cross sections. This section
discusses figures whose cross sections are, perhaps, triangles, squares, or semicircles
instead. This concept seems incredibly hard until you realize its inherent simplicity.
This is just an extension of the Disk Method, and nobody hates the Disk Method! Even
many of the most evil people throughout history harbored a fondness for the Disk
Method, among them Jesse James, Dracula, and the guy who canceled Star Trek.

In order to find the volume with the Disk Method, you integrated the area of one cross
section. Because the cross section was circular, you integrated the formula for the area
of a circle (pr2). So, if a new problem has squares as cross sections instead (for
example), you will integrate the formula for the area of a square (side2).

There is one other difference in these types of problems. Noncircular cross sections are
not the result of a rotation, as every other problem has been so far. (You have been
rotating about the x- or y-axis or a line such as x 5 1.) Instead, these solids grow out
of a base on the coordinate plane into the third dimension. It’s not as hard as it sounds.
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Consider a circular base on the coordinate axes with equation x2 1 y2 5 9. This circle
is actually made up of two functions (if you solve for y):

y x= −9 2 and y x= − −9 2

Here’s where your imagination and visualization come in to play. This circle is sort of
like how a pedestal is analogous to a statue. A three-dimensional form will sit on top
of it and come out of your paper. Imagine that the darkened rectangle in the figure
above is the bottom of a square that is sitting on the base. That is not the only square,
however. There are squares all along the circle at every possible vertical rectangle.
The resulting three-dimensional shape would look something like this:

Our job in the next example will be to find the volume of this shape.

Example 6: If a solid has square cross sections perpendicular to the x-axis and has a
base bounded by x2 1 y2 5 9, what is the volume of that solid?

Solution: We must use vertical rectangles, since they are perpendicular to the x-axis.
As stated earlier, all we have to do is to integrate the formula for the area of the figure
in question. The formula for the area of a square (with side s) is s2. Therefore, the
integral we use to find the volume is

s dx2

3

3

−∫
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(The 23 and 3 boundaries are the x-boundaries of the region.) How long is one side of
the square? Well, we know that the darkened rectangle in the preceding diagram is
the bottom side of the square, and it has length top 2 bottom 5

9 9 2 92 2 2− − − −( ) = −x x x . Therefore, the total volume is

2 9 2
2

3

3
−⎛

⎝⎜
⎞
⎠⎟−∫ x dx

4 9 2

3

3
−( )( )−∫ x dx

36
4
3

1443
3

3x x−⎛
⎝

⎞
⎠ =−|

This process is a little bizarre, but it is easy to learn.

3 Steps to Success with Known Cross Sections
Draw the graph of the base on the coordinate plane and darken a sample rect-
angle on it (be careful to draw it as instructed, i.e., perpendicular to the x-axis or
y-axis).

Determine the length of that rectangle and what relation it has to the shape of the
cross section. In the previous example, the rectangle was one of the sides of the
squares that formed the cross sections.

Integrate the formula for the area of the given cross section, inserting the infor-
mation you have about the darkened rectangle. Make sure the boundaries match
the shape of the rectangle (e.g., y-boundaries if the rectangle is horizontal).

Example 7: Find the volume of a solid that has semicircular cross sections perpen-
dicular to the x-axis whose base is bounded by the graphs of y 5 x2 and y 5 x .

Solution: Begin by drawing the base. Because these cross sections are perpendicular
to the x-axis, we will use vertical rectangles and x’s.
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If you are curious, the solid looks like this:

However, it is neither important nor useful to be able to draw this region, so don’t
worry if you can’t. The darkened rectangle on the base will have length x x− 2 , but
what does that length represent? If the cross sections are semicircles, then that must
be the diameter, and the semicircles sprout from there. If x x− 2 is the diameter,

then 1
2

2x x−( ) is the radius of those semicircles. That’s important because the

formula for the area of a semicircle is πr2

2
. Put all these pieces together to get the

total volume:

πr
dx

2

0

1

2∫
π
2

2

0

1
r dx∫

π
2

1
2

2
2

0

1
x x dx−( )⎛

⎝⎜
⎞
⎠⎟∫

π
8

2 5 2 4

0

1
x x x dx− +( )∫

π
8 2

4
7 5

2 7 2 5

0

1x
x

x
− +

⎛

⎝⎜
⎞

⎠⎟|

π π
8

1
2

4
7

1
5

9
560

− +⎛
⎝

⎞
⎠ =
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EXERCISE 4

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR PART (B) OF EACH PROBLEM.

1. Find the volume of the solid whose base is the region bounded by y 5 2 x and
y x= − 1

2 that has cross sections

(a) that are rectangles of height 3 perpendicular to the x-axis.
(b) that are equilateral triangles perpendicular to the y-axis.

2. Find the volume of the solid whose base is a circle with radius 5 centered at the
origin and that has cross sections

(a) that are isosceles right triangles perpendicular to the x-axis (such that the
hypotenuse lies on the base).

(b) that are semiellipses of height 2 perpendicular to the x-axis.

ANSWERS AND EXPLANATIONS

1. (a) First, we need to find the points of intersection.

– –

,

x x

x x

x x

x

=

=

− =
=

1
2

4
4 0

0 4

2

2

Since the cross sections are rectangles of height 3, the volume will be given by

length width •∫ dx
0

4

3 1
20

4
− +⎛

⎝
⎞
⎠∫ x x dx
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To find the width of the rectangle, you calculate the length of the darkened

rectangle, using top 2 bottom.

3
1
4

2
3

2 3 2
0
4− +⎛

⎝⎜
⎞
⎠⎟

x x |

3 4 16
3

4− +⎛
⎝

⎞
⎠ =

(b) This time, you have to rewrite the equations in terms of y (because the
rectangles are perpendicular to the y-axis and, therefore, horizontal). The
function y 5 2 x becomes x 5 y2; y x= − 1

2 becomes x 5 22y. The length of
a side of the triangle is given by right 2 left 5 22y 2 y2. Therefore, the
volume is

3
4

2

2

0
s dy

−∫

3
4

2 2 2

2

0
− −( )−∫ y y dy

You can use your calculator to find the volume; it is approximately .462.

2. (a) First of all, we need to figure out how to find the area of an isosceles right
triangle based on the length of its hypotenuse.

According to the Pythagorean Theorem, 2s2 5 h2. Therefore, s h=
2

. The
area of the triangle is 1

2
1
2

2bh s= . If we substitute in for s, we get

1
2 2

1
2 2 4

2
2 2h h h⎛

⎝⎜
⎞
⎠⎟

⋅= =

Now, we can integrate this formula to get the volume of the shape, as soon as
we figure out what the length of the hypotenuse is.
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We know that the darkened rectangle represents a hypotenuse, and its length

is h 5 top 2 bottom 5 2 25 2− x . Therefore, the volume is

1
4

2 25 2
2

5

5
−( )−∫ x dx

1
4

4 25 2

5

5
−( )( )−∫ x dx

1
4

100
4
3

3
5

5
x x−⎛

⎝⎜
⎞

⎠⎟ −|
1
4

1000
3

1000
3

500
3

− −⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

=

(b) This one is a little tougher to picture. The semiellipse should come out of the
base something like this:

Therefore, the darkened rectangle represents 2a (which means

a x= −25 2 ), and b 5 2 (the height). The area of a semiellipse is πab
2

, so

the volume of the solid will be

1
2 5

5
πab dx 

−∫
π
2

2 25 2

5

5
−

−∫ x dx

π 25 2

5

5
−

−∫ x dx

Use your calculator to evaluate this definite integral. The volume will be
approximately 123.370.
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ARC LENGTH (BC TOPIC ONLY)
The practice of finding arc length has a long and storied history, stretching all the way
back to Noah. Of course, he used cubits, but we can use any unit of measure. It is
arguable that Noah had more things on his mind, though: the impending destruction of
the human race, ensuring his ark was watertight, and placing layer upon layer of
newspaper on the floor. All you have to worry about is passing the AP test, and the good
news is that this topic is very easy; all you have to do is memorize a pair of formulas—
one for rectangular equations and one for parametric equations.

The Length of a Rectangular Curve (or Arc): If f(x) is an integrable function on

[a,b], then the length of the curve from a to b is 1
2+ ′( )( )∫ f x dx

a

b
.

That’s all there is to it. Find the derivative and plug it right into the formula—it
couldn’t be easier.

Example 8: Find the length of the curve y 5 sin x from x 5 0 to x = 3
2
π .

Solution: First, find the derivative (which is very easy).

f(x) 5 sin x

f ′(x) 5 cos x dx

Now, plug into the formula.

1 2

0

3
2 +∫ cos x dx 
π

This is really not very easy to integrate with our methods, so use the calculator to
finish. The arc (or curve) length is approximately 5.730.

It is just as easy to find arc length when you’re dealing with parametric equations; in
fact, the formula is very similar to rectangular arc length. The only less obvious
difference is that the boundaries of the definite integral in parametric arc length are
t-values, not x or y values.

The Length of a Parametric Curve (or Arc): If a and b are t-values for a
parametric function, its length between those t-values is given by

dx

dt

dy

dt
dt

a

b ⎛
⎝

⎞
⎠ + ⎛

⎝
⎞
⎠∫

2 2

The hardest part of differentiating parametric functions is finding
dy
dx

. Deriving with

respect to t is so easy that it’s just silly.
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NOTE
If the function is in terms of

y, the formula can be

adjusted. Make sure that a

and b are y boundaries,

and take the derivative

with respect to y

instead of x.
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Example 9: If a particle moves along the graph defined by x 5 cos t and y 5 sin t, how
far does the particle move from t 5 0 to t 5

3
4
π ? Verify your result geometrically.

Solution: Since the particle moves along the curve, we are just finding the length of
the curve. Begin by finding the derivatives.

x 5 cos t;
dx

dt
t= − sin  

y 5 sin t;
dy

dt
t= cos  

Now, substitute these values into the arc-length formula.

−( ) + ( )∫ sin cos
/

t t dt
2 2

0

3 4π

sin cos
/ 2 2

0

3 4
t tdt+∫

π

According to the Mamma Theorem, the contents of the radical are equal to 1:

dt

t

0

3 4

0
3 4 3 4 2 356

π

π π

/

/ / .

∫
= =

To justify this geometrically, you must realize that the parametric equations result in

a circle of radius 1 (the unit circle, actually). The arc length from 0 to
3p

4
represents

3
8

of the circumference of the circle.

The circumference of the unit circle is

2pr 5 2p ' 6.283185307

and
3
8

of that total is 2.35619449; this matches our answer above.
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TIP
Many of the integrals you

end up with when finding

arc length are difficult and

have been handed quite a

beating with the ugly stick.

Don’t expect to be able to

solve them all by hand.

NOTE
It’s unlikely that you will be

asked on the AP text to

verify your result

geometrically, as this

problem does. However,

doing so will help you as

you learn this topic.
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EXERCISE 5

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR PROBLEMS 2 THROUGH 5.

1. What is the length of the curve y 5 ln (sin x) from x 5
p

4
to x 5

p

2
?

2. Find the arc length of y x= − 1 from x 5 1 to x 5 3.

3. How long is the curve defined by x 5 y3 24 y 1 2 from y 5 21 to y 5 1?

4. Find the length of the parametric curve defined by x t= + 1 , y 5 t2 1 t from
t 5 1 to t 5 5.

5. Find the perimeter of the ellipse x y2 2

4 9 1+ = using parametric equations.

ANSWERS AND EXPLANATIONS

1. Begin by finding y′:

′ = =⋅y x x x1
sin cos cot

The arc length will be

1 2

4

2

+∫ cot
/

/

xdx
π

π

The Pappa Theorem allows you to replace the contents of the radical with csc2x.

csc2

4

2

xdx
π

π

∫
csc x dx 

π

π

4

2

∫
− +ln csc cot |x x

π

π

4

2

− + + +ln ln1 0
2

2
1

ln
2

2
1+

e
xe

rc
ise

s
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2. Again, find the derivative first.

′ =
−

y
x

1

2 1
The arc length will be

1
1

4 11

3
+

−( )∫ x
dx

1
1

4 41

3
+ −∫ x

dx

Evaluate this with your graphing calculator to get 2.562.

3. Even though everything is in terms of y, it would be the exact same problem if
every variable were an x.

1 3 42 2

1

1
+ −( )

−∫ y dy

The arc length will be 6.361.

4. First, find the derivatives with respect to t:

dx
dt t
dy
dt

t

=
+

= +

1
2 1

2 1

The arc length will be as follows:

1
4 4

2 1 28 0252

1

5

t
t dt

+( )
+ +( ) ≈∫ .

5. The first order of business is to rewrite the ellipse in parametric form. To do this,
remember your Mamma.

cos2t 1 sin2t 5 1

Compare that equation with the ellipse in standard form.

x y2 2

4 9
1+ =

You can set cos t =
x
2

and sin t =
y
3

, according to Mamma. Now, solve the new

equations for x and y to get the parametric form of the ellipse:

x 5 2 cos t, y 5 3sin t
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You could also solve

problem 5 using the

rectangular formula for arc

length.
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The ellipse is drawn completely from t 5 0 to t 5 2p, so you can use those values
to bound the definite integral. However, exactly half of the integral is drawn from
t 5 0 to t 5 p, so let’s evaluate that integral and double it (for a change of pace).
Both answers will be the same.

2 2 3
2 2

0
⋅ −( ) + ( )∫ sin cost t dt

π

The perimeter is 2 z 11.05174608 5 22.103.

POLAR AREA (BC TOPIC ONLY)
You may have wondered why we didn’t discuss polar arc length. Perhaps you answered
that question for yourself. Remember, any polar equation is easily expressed parametri-
cally using the formulas x 5 rcos u and y 5 rsin u. Therefore, finding polar arc length
equates to finding parametric arc length. However, you will need to be able to calculate
the area enclosed by polar curves. Smile—this is the last you will see of parametric and
polar equations for the AP test. Polar area isn’t hard, but it is different, and it will take
a moment or so to get used to.

No self-respecting calculus topic comes without a formula to despair over and ulti-
mately memorize. The formula for polar area is different from all previous area
formulas, because it is not based on rectangles. Instead, polar area uses an infinite
number of sectors to find area. A sector is a hunk of circle; for example, a piece of pie
is a sector of the entire pie. The area of a sector of a circle is given by θr2

2
, but since

we are using an infinite number of u’s to calculate exact area, we replace u with du.
Therefore, the formula for the area bounded between radial lines u 5 a and u 5 b is

1
2

2r d
a

b
θ∫

We’ll start with an easy example and dip our toes into the swimming pool. Once you
see how good the water feels, you won’t mind diving right in.

Example 10: Show that the area of a quarter circle of radius 2 equals p using
polar area.

Solution: A circle is quite easy to express in polar form; a circle of radius 2 is just the
equation r 5 2. Since we are trying to find the area of a quarter circle, you have to find
the area of the circle in one of the quadrants. For simplicity’s sake, let’s choose the
first quadrant.

a
n

sw
e

rs
e

xe
rc

ise
s
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Our area formula sums the areas of the little sectors in the first quadrant with the
formula

1
2

2
2

0

2

( )∫ dθ
π

Integrate and apply the Fundamental Theorem to get

1
2

4
0

2
• ( )θ π|

1
2

2⎛
⎝

⎞
⎠( ) =π π

You see, that’s not so bad. Let’s try a shaded-region problem to up the ante a little. To
solve it, you’ll have to find the area of the outer portion and subtract the inner. You
can use your calculator with no shame on this example.

Example 11: Find the shaded area in the graph below of r 5 2 1 3 cos u.

Solution: First of all, we should find where the graph intersects the pole (origin).

2 1 3cos u 5 0

Set your calculator to rectangular mode for a moment to solve this equation. The
answers are u 5 2.300523983 and u 5 3.982661324. This is the meat of the problem.
As u goes from 0 to 2.300523983, the top of the graph is drawn excluding the inner
loop. As u goes from 2.300523983 to 3.982661324, the inner loop is drawn. Finally,
from 3.982661324 to 2p, the bottom of the graph is drawn, again excluding the inner
loop.

Therefore, we can get the area of the requested region by doubling the left area above
and then subtracting the middle area. (The rightmost area is exactly the same as the
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leftmost area, since the equation is symmetric about the x-axis.) Therefore, the
answer will be

1
2

2 2 3
1
2

2 3
2 2

2 300523893

3 982661324

0

2 300523983
• + − +( ) ( )∫∫ cos cos

.

..
θ θ θ θd d

The area is approximately 25.822.

The final polar area problem you can expect from the AP test concerns finding the
area bounded by multiple functions. These problems are no more difficult if you draw
a graph first and proceed very carefully.

Example 12: Find the area bounded by the graphs r 5 3 sin u and r 5 1 1 cos u.

Solution: First, we should determine the value of u at which the graphs intersect.

3 sin u 5 1 1 cos u

3 sin u 2 cos u 2 1 5 0

u 5 .6435011088

This is the important step: the shaded region above is defined by 3 sin u from u 5 0 to
u 5 .6435011088; however, from u 5 .6435011088 to u 5 p, the shaded region is
bounded by 1 1 cos u.

Therefore, the area will be the sum of those two smaller regions.

1
2

3
1
2

1
2 2

64350110880

6435011088
sin cos

.

.
θ θ θ θ( ) ( )+ +∫∫ d d

π

The total area (please use a calculator!) is approximately 1.521.
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EXERCISE 6

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR PROBLEMS 4 AND 5.

1. Find the area bounded by r 5 22sin u.

2. Find the area in the second quadrant bounded by r 5 cos u 1 sin u.

3. Find the area enclosed by the graph of r 5 cos 2u.

4. Find the area of the region bounded by r 5 2 1 cos u and r 5 2.

5. Find the area bounded by r 5 3 2 2sin u and r 5 4cos u.

ANSWERS AND EXPLANATIONS

1. The entire graph is drawn from θ = 0 to θ π= . If you calculate the area from 0 to
2p, your answer will be two times too big.

Other than that, the setup is very easy:
1
2

2
2

0
sin θ θ π

π ( ) =∫ d

This is similar to Example 10, since both problems boil down to finding the area
of a circle with radius 1.

2. The radial lines that bound the portion in the second quadrant are θ π=
2

(which
makes sense) and θ π= 3

4
. The second value makes r 5 0 (since the sine and

cosine of
3p

4
are opposites), which is the intersection at the pole marking the end

of the region’s presence in the second quadrant.
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To find the area, use the formula and multiply the squared term out. Mamma will
make a return appearance!

1
2

2

2

3 4
cos sinθ θ θ

π

π
+( )∫ d

1
2

22 2

2

3 4
cos sin cos sinθ θ θ θ θ

π

π
+ +( )∫ d

1
2

22 2

2

3 4
cos sin sinθ θ θ θ

π

π
+ +( )∫ d

1
2

1 2
2

3 4
+( )∫ sin θ θ

π

π
d

That was fantastic—a Mamma substitution and a trigonometric substitution.
You can integrate this (using u-substitution for sin 2u) as follows:

1
2

1
2

2
2

3 4
θ θ π

π
−⎛

⎝⎜
⎞
⎠⎟

cos

1
2

3
4 2

1
2

π π− −⎛
⎝⎜

⎞
⎠⎟

1
2 4

1
2

π −⎛
⎝⎜

⎞
⎠⎟

It’s not a pretty answer, but calculus ain’t a beauty contest.

3. The best way to approach this problem is to calculate the area of one of the petals
and multiply it by 4. This graph is symmetric in just about every possible way, so
that makes it a little easier. The petal shaded below is bounded by the radial lines

u 5
p

4
and u 5

3p

4
.

Its area is

1
2

22

4

3 4
cos θ θ

π

π
d∫
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In order to integrate this, you’ll have to use a power-reduction formula.

1
2

1
2

1
2

4
4

3 4
+⎛

⎝⎜
⎞
⎠⎟∫ cos θ θ

π

π
d

1
4

1
16 4

3 4

4

3 4
d u duθ

π

π

π

π
+ ∫∫ cos  

1
4 2

1
16

0
8

• + =( )π π

There are 4 petals, so the final answer is 4 z
π π
8 2

=

4. The region in common is constructed, as shown in the diagram below.

1
2

2
1
2

4
2

2

2

2

3 2
+ +( )

−∫∫ cos θ θ θ
π

π

π

π
d d

Use your calculator to evaluate and sum the definite integrals to get the approxi-
mate area of 9.352.

5. First, find the intersection points of the two graphs, and be very careful—there’s
more here than meets the eye.

3 2 2sin u 2 4cos u 5 0

u 5 1.299129483 5 A, u 5 5.911351042 5 B

For the sake of not writing decimals until our eyes fall out, we’ll use A and B
instead of the gigantic decimal intersection values. What causes trouble here is
the circle. It will actually pass through points A and B twice, since it draws its
graph completely from u 5 0 to u 5 p. So, the circle actually hits A when u 5 A
and when u 5 A 1 p. Use your calculator to convince yourself that this is true!
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The circle will hit B when u 5 B and when u 5 B 2 p. Below are the integrals
that make up the area (there are 3) and a graph of the portion of the shaded
region they represent.

1
2

3 2
2

0
−( )∫ sin θ θd

A

1
2

4
2

cos θ θ
π

( )
−

∫ d
A

B

1
2

3 2
22

−( )∫ sin θ θ
π

d
B

The only tricky integral is the second one. If you try to represent that area with
the integral 4 2cos θ θ( )∫ d

A

B
, you will be tracing the entire circle an extra time.

Make sure that you take the speed with which the graph draws into account. You
need to know the exact values of u for that specific graph that bound the region.
When you add the three integrals, you get 2.496741051 1 3.494545773 1

2.116617352 ' 8.108.
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TECHNOLOGY: USING YOUR CALCULATOR EFFICIENTLY
By now, you know the four major calculator proficiencies you need for the AP test:
graphing, finding roots (solving equations), evaluating numeric derivatives, and evalu-
ating definite integrals. However, you may not be using all of the calculator’s features.
Remember, the AP test is a high-stress situation and is governed by strict time
constraints—you want the calculator to do as much as possible for you.

Take, for instance, problem 5 from the last problem set. (Even though it is a BC
problem, the skills apply to AB students as well.) You should be using your calculator
to serve two major purposes: finding the point of intersection and then evaluating
three definite integrals. You already know how to find the solutions to the equation

3 2 2sin u 2 4cos u 5 0

but here’s a good tip. Once you find a root, press [Clear] twice to return to the home
screen (you can also use [2nd]→[Mode], which is the [Quit] button). If you press [X,T,u]
and [Enter], the calculator gives you the root and shows more decimal places than it
did on the graph screen. Now press [Sto→] and then [Alpha]→[Math] (the [A] button).

This stores that root as the variable A in the calculator’s memory; this way, any time
you need that number, you can simply use A instead of typing it out. Follow the
process again, and store the other root to B.

Now, let’s shorten the process of constantly typing the equations in as we find definite
integrals. If you haven’t already, switch to polar mode and graph the two equations:
r1 5 3 2 2sin u and r2 5 4cos u. Look how much easier it is to evaluate the second,
troublesome integral from that problem when you use calculator shortcuts:

1
2

4 2cosθ θ
π ( )−

∫ d
A

B
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Instead of typing the limits of integration, just use the variables we defined. Instead
of typing (4cos u)2, just use r2

2. Once you type an equation into the “Y5” (or “r5”)
screen, you can access those equations by pressing [Vars]→“Y-vars”. To get r2, you
then select “Polar...”→ “r2”. If you are an AB student, you will use only the “Y5”
screen, and all these equations are found under [Vars]→“Y-vars”→“Function...”.

Look how much time you save when calculating the final integral if you employ all
these shortcuts:

These methods help eliminate the errors of mistyping and help you concentrate on the
business at hand—passing that AP test.
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EXERCISE 7

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR PROBLEMS 4 THROUGH 6.

1. If region A is bounded by y x= 3 and y 5 2x 1 4, find

(a) the area of A.
(b) the volume generated when A is rotated about the y-axis using both the

Washer and Shell Methods.
(c) the volume of the solid with base A that has isosceles right triangular cross

sections with hypotenuses perpendicular to the x-axis.

2. Prove that the volume of a sphere with radius r is 4
3

3πr .

3. If region B is bounded by y 5 2=x 1 2 and y 5 1, find

(a) the area of B.
(b) the volume generated by rotating B about the y-axis.
(c) the volume generated when B is rotated about the line y 5 21 using both

the Washer and Shell Methods.

*4. If region C is bounded by the polar curve r 5 sin u cos u, find

(a) the area of C.
(b) the perimeter of C.

*5. Find the perimeter of the region bounded by x 5 y2 2 y 2 2 and the y-axis.

6. James’ Diabolical Challenge: A machine part is made from an alloy that costs
$130 per cm3. The base of the part is bounded by the area between the functions
y 5 x and y 5 x2 (x is measured in cm). The part can be made using either
semicircular or equilateral triangular cross sections (perpendicular to the x-axis).
Which method is less expensive?

*a BC-only question

ANSWERS AND EXPLANATIONS

1. (a) The area is the definite integral of top 2 bottom with x-boundaries reflecting
their intersection.
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The area will be

− + −( )−∫ x x dx4 3 1

1

3

− + −
⎛

⎝⎜
⎞

⎠⎟
x

x x
2

1

3

2
4 3 ln

4 2 ln 27

(b) Shell Method: Because you are rotating about a vertical axis, you use vertical
rectangles with the Shell Method. No variables need to be converted—you
use x’s.

2 4
3

1

3
π x x

x
dx− + −⎛

⎝
⎞
⎠∫

2 4 32

1

3
π − + −( )∫ x x dx

2
3

2 3
3

2
1

3π − + −
⎛

⎝⎜
⎞

⎠⎟
x

x x

2
4
3

8
3

π π
• =

Washer Method: You need to convert the equations so that they are in terms of

y: x 5 4 2 y, x y= 3 . The boundaries of integration are now the y-boundaries

of the intersection, which are exactly the same as the x’s. The outer radius

will be R(x) 5 (4 2 y), and the inner radius is r x y( ) = 3 .

π 4
32

2

1

3
−( ) −

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟∫ y

y
dy

π 16 8 92 2

1

3
− + −( )−∫ y y y dy

π 16 4
3

92
3

1

3y y
y

y− + +
⎛

⎝
⎜

⎞

⎠
⎟

π π
24 21

1
3

8
3

− + =⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
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(c) In the problem set for known cross sections, we found that the area of an
isosceles right triangle is h2

4 , if h is the hypotenuse. The length of each
hypotenuse will be h 5 2x 1 4 2 3x21. Therefore, the volume is

1
4

4 3 1 2

1

3
− + + −( )−∫ x x dx

1
4

8 22
24 92

21

3
x x

x x
dx− + − +⎛

⎝
⎞
⎠∫

1
4 3

4 22 24
93

2
1

3x
x x x x− + − −

⎛

⎝
⎜

⎞

⎠
⎟ln

1
4

36 24 3
28
3

1
4

80
3

24 3− −⎛
⎝

⎞
⎠ = −⎛

⎝
⎞
⎠ln ln

2. To create a sphere of your very own, you need to rotate a semicircle. A circle
centered at the origin has equation x2 1 y2 5 r2. Solving for y gives you a

semicircle equation of y r x= −2 2 . When rotated about the x-axis, this graph
produces a sphere.

Use the Disk Method to find the volume.

π r x dx
r

r 2 2
2

−( )−∫
Remember that r is a constant, so treat it as you would any number as you
complete the problem.

π r x dx
r

r 2 2−( )−∫

π r x
x

r

r2
3

3
−

⎛

⎝
⎜

⎞

⎠
⎟ –

Now, plug r and 2r into the expression in place of x (just as you have always done
with the Fundamental Theorem).

π r
r

r
r3

3
3

3

3 3
−

⎛
⎝⎜

⎞
⎠⎟

− − +
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟

π •
( )4

3

3r
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3. (a) The area is top 2 bottom with x-boundary limits.

− + −( )∫ x dx2 1
0

1

− +( )∫ x dx1 2

0

1
1

− +⎛
⎝⎜

⎞
⎠⎟

2
3

3 2
0
1x x

2
2
3

+ 1 =
1
3

(b) There is no hole in the rotational solid, so you can use the Disk Method. To do
so, however, you have to put everything in terms of y, since the Disk Method
requires horizontal rectangles in this case. (You can use the Shell Method,
and you will get the same thing.)

y 5 =x 1 2

y 2 2 5 =x

x 5 (y 2 2)2

Now that the equation is in terms of y, use y boundaries and complete the
integration to find volume.

π y dy−( )( )∫ 2 2 2

1

2

π y dy−( )∫ 2 4

1

2

Set u 5 y 2 2, and this is a simple u-substitution problem.

π πy −( )⎛

⎝
⎜

⎞

⎠
⎟ =

2
5

2
1 5

5
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(c) Shell Method: You must use horizontal rectangles (since they are parallel to
y 5 21), and everything must be in terms of y.

2 1 2
2

1

2
π y y dy+( ) ( )[ ]∫ – –

2 3 43 2

1

2
π y y dy− +( )∫

2
4

4
4

3
1
2π y

y y− +
⎛
⎝⎜

⎞
⎠⎟ |

2 4
1
4

1 4π − − +⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

2
3
4

3
2

π π
• =

Washer Method: The washers will be in terms of x (since horizontal rectangles
are perpendicular to the vertical axis of rotation).
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The outer radius is R(x) 5 2=x 1 3, and the inner radius is r(x) 5 2.

π − +( ) −⎛
⎝

⎞
⎠∫ x dx3 2

2 2

0

1

π x x dx− +( )∫ 6 51 2

0

1 /

π x
x x

2
3 2

0

1

2
4 5− +

⎛

⎝
⎜

⎞

⎠
⎟

/

π π1
2

4 5
3
2

− + =⎛
⎝⎜

⎞
⎠⎟

4. (a) This graph has four distinct petals that are framed by radial lines u 5 0,

u 5
p

2
, u 5 p, u 5 θ π= 3

2 , and u 5 2p.

Because of the graph’s symmetry, we can find the area of the petal in the first
quadrant and multiply it by 4.

1
2

2 2

0

2
cos sinθ θ θ

π ( )∫ d

The area of the single petal is .0981747704, so the total area is approxi-
mately .393.

(b) When finding the perimeter of the region, you are technically finding the arc
length of its bounding function. To find polar arc length, you must first
convert to parametric form by using x 5 r cos u and y 5 r sin u:

x 5 cos2u sin u, y 5 sin2u cos u

Now, take the derivative of each with respect to the parameter (which is u

instead of t in this problem.)
dx

dθ
5 22cos u sin2u 1 cos3u

dy

dθ
5 2sin u cos2u 2 sin3u
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Now, plug these both into the formula

dx
d

dy
d

d
θ θ

θ
π ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

+∫
2 2

0

2

You’re crazy if you don’t use your calculator. Type it in very carefully. Here’s
what it should look like:

The total perimeter is four times that answer, which is approximately 4.844.

5. Again, you find the perimeter by calculating the arc length of the boundaries.

To find the length of the left boundary, you have to use the formula

1
2

+ ⎛
⎝⎜

⎞
⎠⎟∫ dx

dy
dy

a

b

The derivative (with respect to y, since the expression is in terms of y) is
x′ 5 2y 2 1. Therefore, the arc length is

1 2 1 2

1

2
+ −( )

−∫ y dy

4 4 2 5 6532

1

2
y y dy− + ≈

−∫ .

Therefore, the total perimeter is 5.653 1 3 5 8.653.
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6. Begin by drawing the bounded region and a darkened rectangle on it perpendicu-
lar to the x-axis.

The length of the rectangle is x 2 x2, and the region has x-boundaries 0 and 1.
Use this information to find the cross-sectional volumes separately.

Semicircle cross sections

The area of a semicircle is πr2

2
, and the dark rectangle would represent a

diameter of the semicircle. Therefore, x x− 2

2
would be its radius. Now, integrate

the formula for the area of a semicircle, substituting in the radius.

πr
dx

a

b 2

2∫

π
2 4

2 2

0

1 x x
dx

−( )
∫

π
8

2 2

0

1
x x dx−( )∫

The volume is .0130899694, so the cost of the part would be approximately $1.70.

Equilateral triangle cross sections

The area of an equilateral triangle is 3
4

2s , so the volume of this machine part
will be

3
4

01443375672 2

0

1
x x dx−( ) ≈∫ .

The resultant cost for the part is $1.87. Therefore, the part with the semicircle
cross sections is cheaper.
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SUMMING IT UP
• Just as derivatives have applications such as related rates and optimization,

integrating has its own application, which is primarily concerned with finding
area and volume generated by graphs.

• Remember, in the Shell Method, the rectangles will be parallel to the rotational
axis.

• The best method to use in rotational solid volumes is one that requires the least
amount of conversion.

• The four major calculator proficiencies you need for the test are

• Graphing
• Finding roots (solving equations)
• Evaluating numeric derivatives
• Evaluating definite integrals
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Differential Equations

OVERVIEW
• Hands-On Activity 10.1: Separation of variables
• Hands-On Activity 10.2: Slope fields
• Euler’s method (BC topic only)
• Exponential growth and decay
• Logistic growth (BC topic only)
• Technology: A differential equations calculator program
• Summing it up

A differential equation is simply an equation that contains a derivative. Your
typical goal in a differential equation problem is to find the equation that has
the given derivative; in other words, you are trying to find an antiderivative.
How is this different from the integrals you have been finding until now? Well,
it’s not very different at all. You will be using all of your integration tech-
niques to find particular solutions (no 1 C) using the method of separation of
variables. However, the vast majority of differential equations in the real
world cannot be solved using this method. We will then further examine those
solutions using slope fields and Euler’s Method. Finally, we will look at some
applications of differential equations in exponential and logarithmic growth.
After we’re done, we’ll go get an ice cream cone, and I’ll buy you that pony
you’ve always wanted.

HANDS-ON ACTIVITY 10.1: SEPARATION OF
VARIABLES
Even though the study of differential equations is complex, you are only
required to know and understand the easiest of all methods for solving them—
separation of variables. The name says it all, and you’ve already performed all
the tasks that are involved in the process. Therefore, this section represents a
new topic with nothing substantially new to learn (I love those kinds of topics).

1. What about the equation
dy
dx

5 2
x
y

makes it a differential equation?

c
h

a
p

te
r10
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2. Your goal will be to find an equation (in the form y 5 f(x)) whose derivative is 2
x
y
.

Why can’t you simply integrate right away? What makes this equation different

from the equation dy
dx x

= 4
3 , which you can integrate right away?

3. This topic is very similar to a differentiation topic for the reason you cited in
number 2. What is the name of that topic, and why is it similar?

4. Before you can integrate
dy
dx

= 2
x
y
, you must separate the variables (put all the y’s

on one side and the x’s on the other). How can you accomplish this in our
equation?

5. Go ahead and separate the variables using the method you named in number 4.
Now, you should be able to integrate both sides of the equation separately.
Integrate, remembering to include a C for any constant. What geometric shape is
the solution to the differential equation?

6. The answer we have is very general (because of the C). What if you knew that the
solution curve passed through the point (0,3)? Given this information, what
would your solution be?

7. Let’s try a new differential equation dy
dx

x x y= +2 2

3
. Separate the variables, and

integrate both sides separately.

8. Your y expression ends up contained in a natural log. In such cases, it is preferred
to solve the equation for y, not ln y. Solve for y.

9. If you knew that the particular solution you were looking for satisfied the
condition y(3) 5 5, what is C, and what is the solution to the differential
equation?

PART II: AP Calculus AB & BC Review408
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

www.petersons.com



SOLUTIONS TO HANDS-ON ACTIVITY 10.1

1. It contains a derivative.

2. dy
dx

x
y

= − contains both x’s and y’s; until now, all of our integrals have contained

just x’s.

3. This is similar to implicit differentiation; those expressions contained both x’s
and y’s and thus required a different method.

4. Separation can be accomplished in this problem by cross-multiplying. That may
not work for all problems, but separation is usually achieved through very simple
methods (see number 7).

5. Cross-multiplying gives you

ydy 5 2xdx

ydy xdx= −∫∫

y x C
2 2

2 2
= − +

Multiply everything by 2 and move the x term to get

x2 1 y2 5 C

Therefore, the solution to the differential equation is a circle. (Often, solutions
are written solved for y, but in this case, the answer is more clearly a circle when
you leave it in standard form for a circle. Either way, however, the answer is
right.)

6. Plug in the x 5 0 and y 5 3, since these values (if on the graph) must make the
equation true.

02 1 32 5 C

C 5 9

Now that we know the specific value for C, we can plug it into the solution:

x2 1 y2 5 9

So, this specific solution is a circle of radius 3.

7. Begin by factoring the x2 out of the numerator.

dy
dx

x y
=

+( )2 1
3

Divide both sides by (1 1 y), and multiply both sides by dx to separate the
variables.

dy
y

x
dx

1 3

2

+
=
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TIP
Even though you could

have grouped the 2 with

the y, it’s better to leave it

(and any constants a

problem might have) on

the side with the x’s; this

makes solving for y easier,

and most differential

equation solutions are in

that form.

TIP
This is not the same C as in

the previous step—it just

indicates an arbitrary

number. Some textbooks

use different constants

each time because of this,

but that’s silly—just

remember that C might

never be the same number.
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Notice how the constant stays with the x terms so that you can solve for y more
easily. Now, integrate both sides.

ln y
x

C+ = +1
9

3

8. To solve for y, raise e to the power of both sides to get

y e
x C

+ =
+

1

3

9

You can rewrite the right side of the equation as e e
x

c
3

9 ⋅ (using properties of
exponents), and eC is just another constant, which you can then write as C. This
gives you

y Ce
x

+ =1

3

9

y Ce
x

= −
3

9 1

9. y(3) 5 5 means that plugging a value of 3 into the equation (for x) gives an output
of 5; it’s similar to saying f(3) 5 5. If that confuses you, remember that y(3) 5 5
means the point (3,5) is on the graph. Either way, plug in x 5 3 and y 5 5 in order
to find C.

5 5 Ce27/9 2 1

6 5 Ce3

C
e

= 6
3

Therefore, the solution to this differential equation is

y
e

e
x

= −
⎛

⎝⎜
⎞

⎠⎟
6

1
3

3

9  or

y e e e
x x

= − = −−
−

•

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

6 1 6 13

3

9

3

9
3
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NOTE
Rewriting eSx3

9 + CD as e
x3

9 z ec

is the same thing as

rewriting x7 5 x512 5 x5
z x2.

NOTE
When you are given a

point value and can find C

in a differential equation,

the resulting solution is

called a particular solution,

since it is only one of many

possible solutions if no point

values were indicated.
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EXERCISE 1

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

DO NOT USE A CALCULATOR TO SOLVE THE FOLLOWING.

1. Find the particular solution to dy
dx

y
x

=
+16 2

that satisfies the condition that
y(0) 5 1.

2. What function has derivative f ′ (x) 5 ex csc y and passes through the origin?

3. In some cases, the rate of change of a quantity is proportional to the quantity
itself. This is written as

dy

dt
ky=

where y is the quantity and k is the proportionality constant. What is the general
solution to this very important differential equation?

4. A particle moves along the x-axis with acceleration at time t given by a(t) 5 3t.
Find the function describing the particle’s position if it travels at a rate of 2 ft/sec
when t 5 0 and is 3 feet to the right of the origin when t 5 1.

5. If a ball is thrown upward and reaches its maximum height when t 5 2 seconds,
answer the following questions:

(a) Give the function representing the ball’s velocity.
(b) If the ball is 85 feet off the ground when t 5 1.5 seconds, what is the

position function for the ball?

ANSWERS AND EXPLANATIONS

1. Divide both sides by y , and multiply by dx to separate the variables.

dy
y

dx
x

=
+16 2

y dy dx
x

− =
+∫∫ 1 2

16 2

2 1
4 4y x C= +arctan

y x C= +⎛
⎝⎜

⎞
⎠⎟

1
8 4

2

arctan

Now, plug in the given values for x and y, and you find (easily) that C 5 1.
Therefore, the particular solution is

y
x= +⎛

⎝⎜
⎞
⎠⎟

1
8 4

1
2

arctan

e
xe
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s
Chapter 10: Differential Equations 411

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

www.petersons.com



2. Begin by rewriting the equation like this:

dy

dx

e

y

x

=
sin

Now, cross-multiplying will separate the variables.

sin y dy e dxx = ∫∫
2cos y 5 ex 1 C

y 5 arccos (2ex 1 C)

Now, plug in the point (0,0).

cos (0) 5 cos (arccos (21 1 C))

21 1 C 5 1

C 5 2

The final answer is y 5 arccos (2ex 1 2).

3. Divide both sides by y, and multiply them by dt to get the necessary separation.
Remember that k is a constant.

dy

y
k dt= ∫∫

ln y kt C= +

e ey kt Cln = +

e e ey kt cln = •
y 5 Cekt

4. (a) The integral of acceleration is velocity, and we know that v(0) 5 2. So, find the
antiderivative of a(t), and plug in the given information.

v t t dt( ) = ∫3  

v t t C( ) = +3
2

2

v C0
3
2

0 22( ) = + =•

C 5 2

Therefore, the equation for velocity is v(t) 5
3
2

t2 1 2. In order to find position,

integrate again, and use the fact that s(1) 5 3.

s t t dt( ) = +⎛
⎝

⎞
⎠∫ 3

2
22

s t t t C( ) = + +1
2

23
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NOTE
Your solution to problem 3 is

the foundation for the

section on exponential

growth and decay, where

all the quantities in question

have the property problem

3 describes.

NOTE
When you multiply by a

negative, you don’t have

to write “2 C”, since C

could already be negative!

It’s a mystery number

for now.
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s C1
1
2

2 3( ) = + + =

C = 1
2

Therefore, the position equation is s t t t( ) = + +1
2

2 1
2

3 .

5. (a) Remember that the equation for projectile position is s(t) 5 216t2 1 v0t 1 h0,
where v0 is the initial velocity and h0 is the initial height. You are looking for
the velocity equation, so take the derivative:

v(t) 5 232t 1 v0
The ball reaches its maximum height when t 5 2. Therefore, the derivative
must equal 0 when t 5 2. This allows you to find v0.

v(2) 5 232(2) 1 C 5 0
C 5 64

Therefore, the velocity equation is v(t) 5 232t 1 64.

(b) To find position, integrate velocity, and use the fact that s(1.5) 5 85.

s t t dt( ) = − +( )∫ 32 64

s(t) 5 216t2 1 64t 1 C

s(1.5) 5 236 1 96 1 C 5 85

C 5 25

Therefore, the position equation for the ball is

s(t) 5 216t2 1 64t 1 25

HANDS-ON ACTIVITY 10.2: SLOPE FIELDS
Slope fields sound like dangerous places to play soccer but are, instead, handy ways to
visualize differential equations. Remember back in the section on linear approxima-
tions when we discussed the fact that a derivative has values very close to its original
function at the point of tangency? When that fact manifests itself all over the coordi-
nate plane, it’s truly something to behold. So, you’d better be holding on to something
when you undertake this activity.

1. Let’s return to the first differential equation from activity 10.1:
dy
dx

x
y

= − . What
exactly does this equation tell you about the general solution?

2. If the solution to
dy
dx

x
y

= − contained the point (0,1), what could you determine

about the graph of the solution at that point?

3. What would the tangent line to the solution graph look like at the point (22,0)?
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4. Calculate the slopes at all of the points indicated on the axes below, and draw a
small line segment with the correct slope. The slope at point (0,1) has already
been drawn as an example.

5. The general solution to
dy
dx

x
y

= − (according to our work in the last chapter) was

x2 1 y2 5 C. How does the solution relate to the drawing you made in problem 4?

6. What is the purpose of a slope field?

7. Draw the particular solution to
dy
dx

x
y

= − that passes through the point (2,0) on
the slope field above.

8. Draw the slope field for dy
dx

5 2x2y on the axes below.

9. Use the slope field to draw an approximate solution graph that contains the point

−⎛
⎝

⎞
⎠

1
2

1
2

, .

10. Find the particular solution to dy
dx

5 2x2y that contains −⎛
⎝

⎞
⎠

1
2

1
2

, using separation
of variables.

11. Use your calculator to draw the graph of the particular solution you found in
problem 10. It should look a lot like the graph you drew in problem 9.
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SELECTED SOLUTIONS TO HANDS-ON ACTIVITY 10.2
Note: All slope fields in the solution are drawn with a computer and hence with more
precision than in the exercises. Your slope fields should look similar, though not as
detailed. See the technology section at the end of this chapter for a program to help you
draw slope fields with your TI-83.

1. It tells you the slope, dy
dx

, of the tangent lines to the solution graph at all points
(x,y).

2. You would know that the slope of the tangent line to the graph at (0,1) would be
dy
dx

= − =0
1

0 . The graph would have a horizontal tangent line there.

3. The slope of the tangent line (also called the slope of the solution curve itself) is
dy
dx

= 2
0

, which is undefined. Therefore, the tangent line there is vertical (since a

vertical line has an undefined slope).

4. All you have to do is plug each (x,y) point into dy
dx

to get the slope. Draw a small

line segment with approximately that slope. It doesn’t have to be exact, but a

slope of
1
2

should be much shallower than a slope of 2.

5. The tangent segments in the slope field trace out the circular shape of the
solution graph. Remember that a tangent line has values very close to its original
graph near the point of tangency. So, if we draw nothing but little tangent lines so
small that all the points on the segment are close to the point of tangency, the
result looks like the solution graph.

6. A slope field gives you a basic idea of the shape of the solution graph.

7. The particular solution will be a circle centered at the origin with radius 2.
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8.

9.

10. Divide by y and multiply by dx to separate variables.

dy

y
x dx= ∫∫ 2 2

ln y
x

C= +2
3

3

y Ce
x

=
2 3

3

To find C, plug in the point S2
1
2

,
1
2D.

1
2

1
2

1 12

1 12

=

=

−Ce

C e

/

/

The final (unsimplified) solution is y e e
x

= ⋅
1 12 2

3

2

3/
.
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EXERCISE 2

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

DO NOT USE A CALCULATOR FOR ANY OF THESE PROBLEMS.

1. Sketch the slope field of dy
dx

5 2x2 1 y.

2. (a) Draw the slope field for dy
dx

y xy
x

= + .

(b) Find the solution of the differential equation that passes through the point
(1,2e).

3. (a) Use the slope field of f ′(x) 5
x
y to draw an approximate graph of f(x) if

f(22) 5 0.

(b) Find f(x) specified in 3(a).

4. Explain how the slope field of dy
dx

5 3x2 describes its general solution.

5. Which of the following differential equations has the slope field below?

(A)
dy
dx

5 x 2 y

(B) dy

dx
y x= −

(C)
dy
dx

5 2xy

(D) dy
dx

x
y

= 2

e
xe
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ANSWERS AND EXPLANATIONS

1. All kinds of weird stuff happens close to the origin. Plot enough points so that you
can see what’s going on. Remember, all you have to do is plug in any points (x,y)

into the differential equation
dy
dx

; the result is the slope of the line segment you

should draw at that point.

2. (a)

(b) Solve the differential equation using separation of variables. You’ll have to
factor a y out of the numerator to do so.

dy

dx

y x

x
dx= +( )1

dy
y

x
x

dx= +∫∫ 1

dy

y
x dx= +( )−∫∫ 1 1

ln lny x x C= + +

e e e ey x x cln ln= • •

y Cxex=

PART II: AP Calculus AB & BC Review418
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

www.petersons.com



Now, plug in the point (1,2e).

2e 5 C(1)e

C 5 2

Therefore, the solution is y 5 2xex. If you graph it using your calculator
(although the problem doesn’t ask you to do so), you’ll see that it fits the slope
field perfectly.

3. (a) This slope field sort of looks like the big-bang theory—everything is exploding
out of the origin. The solution just screams, “I am a hyperbola! Love me!
Accept me! Tell me that I am handsome!”

(b) It’s the revenge of separation of variables. In fact, this problem is very similar

to the equation all of us are growing tired of:
dy
dx

5 2
x
y
. Begin by cross-

multiplying.

dy
dx

x
y

= −

ydy xdx= ∫∫
y x

C
2 2

2 2
= +

y2 5 x2 1 C

Now, find the C (Caspian).

0 5 4 1 C

C 5 24
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All that remains is to plug in everything. Remember that the standard form
for a hyberbola always equals 1.

y2 2 x2 5 24

x y2 2

4 4
1− =

This is the equation of the hyberbola in part 3(a).

4. Elementary integration tells you that if
dy
dx

5 3x2, then y 5 x3 1 C. The slope field

for
dy
dx

5 3x2 outlines the family of curves y 5 x3 1 C.

5. If you drew all four slope fields, you wasted valuable time; if this were the AP
test, you’d have wasted five precious minutes on a very simple question in
disguise. Look at the defining characteristic of the slope field: it has horizontal
tangents all along the x- and y-axes. In other words, if either the x-coordinate of

the point is 0 or the y-coordinate of the point is 0, then
dy
dx

equals 0. That is only

true for one of the four choices: (C). For example, choice (D) is undefined at points
that have y 5 0; choices (A) and (B) won’t have horizontal tangents anywhere
except for the origin.

EULER’S METHOD (BC TOPIC ONLY)
If you could solve all differential equations using separation of variables, the world
would be a much happier place. However, only a very small portion of differential
equations can be solved that way. There are a slew of other methods you’d have to learn
to become Supreme Ruler of Differential Equations, but luckily you don’t have to. Enter
Euler, famous Swiss mathematician, and his method of finding approximate solutions to
nonintegrable differential equations. Even though Euler’s Method only uses tangent
lines and is quite simple in premise, you can use it to find an approximate answer to a
differential equation.

Before we dive into Euler’s Method, we need to focus on one simple concept. Let’s say

that a line has slope
12
7

and contains point (1,0). If you start at the point and go
1
2

unit

to the right, how many units must you go up to stay on the line? What y-coordinate
completes the point on the following page?
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Believe it or not, the answer is quite easy. Take the slope formula that you’ve used
since elementary algebra: m 5

∆
∆

y
x . Solve it for Dy.

Dy 5 m z Dx

In our line problem, the slope is
12
7

, and the change in x (Dx) from (1,0) is
1
2

. Plug these

values into the new formula.

∆y = =•
12
7

1
2

6
7

This tells you that the point S1
2

,
6
7D is also on the line with slope

12
7

and point (1,0). If

you went
1
2

unit right of (1,0), you’d have to go
6
7

unit up to stay on the line. This is a

very important part of Euler’s Method, although most textbooks do not explain what
it means or why it is so important. Now, let’s map out the goal of Euler’s Method.

A typical differential equation contains a derivative and a point through which the
solution graph passes. We will find the slope, m1, of the tangent line at that starting
point. Then, we will travel a fixed distance right or left (Dx) and use the method above
to find the corresponding Dy. Basically, we are finding another point on the tangent
line we just drew.

This works because a tangent line has values close to the graph it’s tangent to (around
the point of tangency). Once we find that new point, we repeat the process and find yet
another point until we reach our approximation. The problem will typically tell you
how many steps you should take to reach the solution, and (just like integration) the
smaller the steps you take, the more accurate your answer. This probably sounds very
complicated, but it’s quite easy. How many licks does it take to get to the Tootsie-Roll
center of Euler’s Method? Let’s find out.
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Example 1: Use Euler’s Method to approximate y(1) if
dy
dx

5 2
x
y

and y(0) 5 3. Use two

steps of length Dx 5 .5 when finding the solution.

Solution: This is the same differential equation we have seen numerous times now.
We already know that its solution is a circle with radius 3, but let’s pretend we don’t,
since most differential equations using Euler’s Method will not be solvable. We will
have to repeat the method two times, once when x 5 .5 and once when x 5 1 (since we

are taking two steps of length
1
2

along the x-axis from x 5 0 to x 5 1, as the problem

indicates).

What is the slope of the tangent line to the solution curve at (0,3)? Plug the values

into
dy
dx

:

dy
dx

5 2
0

3
5 0

We will move
1
2

unit to the right along the tangent line (since Dx 5
1
2

); in order to stay

on the line (since it is horizontal), we should move neither up nor down. Our new point

will be (
1
2

,3). It’s sort of like tightrope walking toward the solution—the tightrope is

horizontal, and we edge our way
1
2

unit to the right along the high wire and stop there.

Now, repeat the process with the point (
1
2

,3). The slope of the tangent line here will be

dy
dx

5 2

1

2
3

1

6
= –

Again, we will move
1
2

unit to the right along this new tangent line. However, how

much should we go up or down to stay on the new tangent line? Use the formula from
the beginning of the section.

Dy 5 m z Dx

Dy 5 – –
1

6

1

2

1

12
• =
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Therefore, the new point is 1
2

1
2

3 1
12

1 35
12

+ −⎛
⎝

⎞
⎠ = ⎛

⎝
⎞
⎠, , , and we’re finished.

Our approximation for f(1) is
35
12

. Since we already know the actual solution of the

differential equation is x2 1 y2 5 9, we can find the actual solution of =8 '

2.828427. Our estimate S35
12D is approximately 2.916667, so the approximation has

an error of .08824.

Had we used more than two steps (which means a smaller Dx) in Example 1, the
answer would have been even more accurate. In the next example, we’ll use four steps
to travel the same distance. Furthermore, you won’t be able to solve Example 2 by
separation of variables. You’ll be out in the wild, untamed forest with only one
weapon—Euler’s Method. Make sure you know how to use it!

Example 2: Approximate the value of y(2) for the differential equation
dy
dx

5 x 2 y

using four steps of length Dx 5
1
4

, given that the point (1,2) is on the solution curve.

Solution: We will have to repeat the process four times. If you want to use decimals
instead of fractions, that’s okay, but remember not to round off until the very end.
However, fractions will give you the exact answer—and don’t be shy about your
calculator’s ability to add, subtract, and multiply fractions faster than you can.

Point (1,2): The slope of the line tangent to the solution is
dy
dx

5 x 2 y 5 1 2 2 5 21.

The corresponding Dy will be

∆y = −( )⎛
⎝

⎞
⎠ = −1 1

4
1
4

The new point will be 1 1
4

2 1
4

5
4

7
4

+ −⎛
⎝

⎞
⎠ = ⎛

⎝
⎞
⎠, , .

Point 5
4

7
4

5
4

7
4

1
2

, :⎛
⎝

⎞
⎠ = − = −dy

dx . The corresponding Dy will be

∆y = −⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠ = −1

2
1
4

1
8

The new point will be 5
4

1
4

7
4

1
8

3
2

13
8

+ −⎛
⎝

⎞
⎠ = ⎛

⎝
⎞
⎠, , .
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Point 3
2

13
8

3
2

13
8

1
8

, :⎛
⎝

⎞
⎠ = − = −dy

dx . The corresponding Dy will be

∆y = −⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠ = −1

8
1
4

1
32

The new point will be 3
2

1
4

13
8

1
32

7
4

51
32

+ −⎛
⎝

⎞
⎠ = ⎛

⎝
⎞
⎠, , .

Point 7
4

51
32

7
4

51
32

5
32

, :⎛
⎝

⎞
⎠ = − =dy

dx . The corresponding Dy will be

Dy 5 S 5
32DS1

4D =
5

128

The new point will be S7
4

+
1
4

,
51
32

+
5

128D = S2,
209
128D. Therefore, your approximation of

y(2) 5
209
128

' 1.633.

There you have it—Euler’s Method is quite mechanical, and besides the ugly fractions
and/or decimals, it is a very handy way to approximate solutions to differential
equations that we, as elementary calculus students, can solve no other way.
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EXERCISE 3

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR TO SIMPLIFY YOUR ARITHMETIC FOR ALL
PROBLEMS, BUT DON’T USE THE EULER’S METHOD CALCULATOR PROGRAM UNTIL
PROBLEM 4.

1. Use Euler’s Method to approximate y(6) for
dy
dx

=
1
x

given that y(5) 5 2. Use three

steps of size Dx 5
1
3

.

2. (a) If the points (1,3) and (4,c) are on the solution graph to dy
dx

x y
x

= + , approxi-

mate c using Euler’s Method and three steps of length Dx 5 1.

(b) What limitations are evident in this approximation?

3. (a) Use Euler’s Method to approximate y(2
1
2

) for
dy
dx

5 axy (where a is a real

number) if y(0) 5 22. Use two steps of length Dx 5
1
4

.

(b) What is the error on your approximation if a 5 3?

4. Approximate y(0) using 10 steps of length Dx 5 .1 for
dy
dx

5 y2 given that y(21)

5 1. Fill out the chart below; it will help organize your information.

5. Give an example of a differential equation for which Euler’s Method gives the
exact value rather than just an approximation.

ANSWERS AND EXPLANATIONS

1. The given point is (5,2) and Dx 5
1
3

. We’ll start there and apply Euler’s Method

three times.

Point (5,2):
dy
dx

5
1
x

5
1
5

. The corresponding Dy is

Dy 5
1
5

z
1
3

The new point will be S5 +
1
3

, 2 +
1

15D = S16
3

,
31
15D.
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Point 16
3

31
15

,( ): dy
dx

= 3
16

.

∆y = =•
3

16

1

3

1

16

The new point will be S16
3

+
1
3

,
31
15

+
1

16D = S17
3

,
511
240D.

Point 17
3

511
240

3
17

, :⎛
⎝

⎞
⎠ =dy

dx .

Dy 5
3

17
z
1
3

5
1

17

The correct approximation for y is 511
240

1
17

2 188+ ≈ . .

2. (a) This question is just asking you to find y(4) given a starting point of (1,3) and

three steps of length 1 to get there.

Point (1,3): dy
dx

= =4
1

4; Dy 5 4 z 1 5 4. The new point will be (1 1 1, 3 1 4) 5

(2,7).

Point (2,7): dy
dx

= 9
2

; ∆y = =⋅9

2
1

9

2
. The new point will be

2 1 7 9
2

3 23
2

+ +⎛
⎝

⎞
⎠ = ⎛

⎝
⎞
⎠, , .

Point 3 23
2

29
2
3

29
6

1 29
6

, : ;⎛
⎝

⎞
⎠ = = =dy

dx
y∆ .

Therefore,C = + = ≈23
2

29
6

49
3

16 333.

(b) The y-value is changing pretty dramatically as the x-value only changes by 1.
With such a huge change in y, the approximation can’t be very accurate; it
turns out to be within about 1 unit of the correct answer, but that is not
nearly as accurate an approximation as you can get with a less steep graph.
Of course, you can always increase the number of steps by decreasing Dx; that
will always make your approximation more accurate.

3. (a) This one has only two steps, thank goodness. We will be stepping backward

from x 5 0 to x 5 2
1
2

, so Dx must be negative: Dx 5 2
1
4

.

Point (0,22):
dy
dx

5 a(0)(22) 5 0; Dy 5 (2
1
4

)(0) 5 0. The new point will be

(0 2
1
4

,22 2 0).

Point (2
1
4

,22):
dy
dx

5 a(2
1
4

)(22) 5
a
2 ; Dy 5 S2

1
4DSa

2D 2
a
8

. The new point will

be S2
1
2

, 22 2
a
8D.
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Therefore, Euler’s Method gives an approximation of 22 2
a
8

. The number a

could be anything, so leave it as a.

(b) If a 5 3, you have the equation
dy
dx

5 3xy; our work above gives an approxi-

mation of y(2
1
2

) 5 22 2
3
8

5 22.375. To find out the actual value of y(2
1
2

),

you have to solve
dy
dx

using separation of variables:

dy
dx

5 3xy

dy

y
xdx∫ ∫= 3

ln y x C= +3
2

2

y Ce x= 3 22

Plug in the given point (0,22) to find C:

22 5 C z 1

The solution equation will be y = 22e3x2/2

; its value for x 5 2
1
2

(which we

predicted to be 22.375) is actually

y e−⎛
⎝

⎞
⎠ = − = −1

2
2 2 9099828293 8 .

The error in the approximation was about .535.

4. The correct approximation for y(0) is nearly 6.129.
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5. If
dy
dx

5 c, where c is any real number, the solution to the differential equation is

just a line. Because Euler’s Method gets its value from the tangent line (and the
tangent line to a linear equation is just the line itself), you will be stepping
through the graph of the solution during Euler’s Method, and the answer will be
exact. Try it, and see for yourself. Pick a value for c and a given point through
which the solution line will pass; use Euler’s method to approximate something,
and then double check it with separation of variables. The values will match.

EXPONENTIAL GROWTH AND DECAY
You have probably alluded to exponential growth in everyday conversation without even
realizing it. Perhaps you’ve said things like, “Ever since I started carrying raw meat in
my pockets, the number of times I’ve been attacked by wild dogs has increased
exponentially.” Exponential growth is sudden, quick, and relentless. Mathematically,
exponential growth or decay has one defining characteristic (and this is key): the rate of
y’s growth is directly proportional to y itself. In other words, the bigger y is, the faster it
grows; the smaller y is, the slower it decays.

Mathematically, something exhibiting exponential growth or decay satisfies the dif-
ferential equation

dy

dt
ky=

where k is called the constant of proportionality. A model ship might be built to a 1:35
scale, which means that any real ship part is 35 times as large as the model. The
constant of proportionality in that case is 35. However, k in exponential growth and
decay is never so neat and tidy, and it is rarely (if ever) evident from reading a
problem. Luckily, it is quite easy to find.

In the first problem set of this chapter (problem 3), you proved that the general

solution to
dy
dt

5 kt is y 5 Cekt. I find the formula easier to remember, however, if you

call the constant N instead of C (although that doesn’t amount to a hill of beans
mathematically). Why is it easier to remember? It sounds like Roseanne pronouncing
“naked”—“nekkit.”

y Nekt=

In this formula, N stands for the original amount of material, k is the proportionality
constant, t is time, and y is the amount of N that remains after time t has passed.
When approaching exponential growth and decay problems, your first goals should be
to find N and k; then, answer whatever question is being posed. Don’t be intimidated
by these problems—they are very easy.

Example 3: The new theme restaurant in town (Rowdy Rita’s Eat and Hurl) is being
tested by the health department for cleanliness. Health inspectors find the men’s
room floor to be a fertile ground for growing bacteria. They have determined that the
rate of bacterial growth is proportional to the number of colonies. So, they plant 10
colonies and come back in 15 minutes; when they return, the number of colonies has
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risen to 35. How many colonies will there be one full hour after they planted the
original 10?

Solution: The key phrase in the problem is “the rate of bacterial growth is propor-
tional to the number of colonies,” because that means that you can apply exponential
growth and decay. They started with 10 colonies, so N 5 10 (starting amount). Do not
try to figure out what k is in your head—it defies simple calculation. Instead, we know
that there will be 35 colonies after t 5 15 minutes, so you can set up the equation

35 10 15= ( )ek

Solve this equation for k. Divide by 10 to begin the process.

7
2

15= e k

ln 7
2

15= k

k =
ln 7

2
15

k 5 .0835175312

Now you have a formula to determine the amount of bacteria for any time t minutes
after the original planting:

y 5 10e(.0835175312)t

We want the amount of bacteria growth after 1 hour; since we calculated k using
minutes, we’ll have to express 1 hour as t 5 60 minutes. Now, find the number of
colonies.

y 5 10e(.0835175312)(60)

y ' 1500.625

So, almost 1,501 colonies are partying along the surface of the bathroom floor. In one
day, the number will grow to 1.7 3 1053 colonies. You may be safer going to the
bathroom in the alley behind the restaurant.

Example 4: The Easter Bunny has begun to express his more malevolent side. This
year, instead of hiding real eggs, he’s hiding eggs made of a radioactive substance
Nb-95, which has a half-life of 35 days. If the dangerous eggs have a mass of 2
kilograms, and you don’t find the one hiding under your bed, how long will it take that
egg to decay to a “harmless” 50 grams?

Solution: The egg starts at a mass of 2,000 g. A half-life of 35 days means that in 35
days, exactly half of the mass will remain. After 70 days, one fourth of the mass will
remain, etc. Therefore, after 35 days, the mass will be 1,000. This information will
allow us to find k.
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1,000 5 2,000ek(35)

1
2 = e35k

ln
1
2

= 35k

ln
1
2

35
= k

k = 2.0198042052

Now that we know N and k, we want to find t when only 50 grams are left. In this
case, t will be in days (since days was the unit of time we used when determining k).

50 5 2,000e2.0198042052t

1
40

0198042052= −e t.

ln
.

1
40

0198042052− = t

t ' 186.267 days

You should be safe by Thanksgiving. (Nothing wrong with a little premature hair loss
and a healthy greenish glow, is there?)
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EXERCISE 4

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR ALL OF THESE PROBLEMS.

1. If Pu-230 (a particularly stinky radioactive substance) has a half-life of 24,360
years, find an equation that represents the amount of Pu-230 left after time t, if
you began with N grams.

2. Most men in the world (except, of course, for me, if my wife is reading this) think
that Julia Roberts is pretty attractive. If left unchecked (and the practice were
legal), we can assume the number of her husbands would increase exponentially.
As of right now, she has one husband, but if legal restrictions were lifted she
might have 4 husbands 2 years from now. How many years would it take her to
marry 100 men if the number of husbands is proportional to the rate of increase?

3. Assume that the world population’s interest in the new boy band, “Hunks o’
Love,” is growing at a rate proportional to the number of its fans. If the Hunks
had 2,000 fans one year after they released their first album and 50,000 fans five
years after their first album, how many fans did they have the moment the first
album was released?

4. Vinny the Talking Dog was an impressive animal for many reasons during his
short-lived career. First of all, he was a talking dog, for goodness sakes! However,

one of the unfortunate side-effects of this gift was that he increased his size by
1
3

every two weeks. If he weighed 5 pounds at birth, how many days did it take him
to reach an enormous 600 pounds (at which point his poor, pitiable, poochie heart
puttered out)?

ANSWERS AND EXPLANATIONS

1. Because the rate of decrease is proportional to the amount of substance (the
amount decreases by half), we can use exponential growth and decay. In other
words, let’s get Nekt. In 24,360 years, N will decrease by half, so we can write

N Nek

2
24360= ( )

Divide both sides by N, and you get

1
2

5 e24360k

ln
.

1
2

24360
0000284543178= = −k

Therefore, the equation y 5 Ne(2.0000284543178)t

will give you the amount of Pu-230
left after time t if you began with N grams.

e
xe

rc
ise

s
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2. This problem clearly states the proportionality relationship required to use expo-
nential growth and decay. Here, N 5 1, and y 5 4 when t 5 2 years, so you can set
up the equation:

4 1 2= ⋅ek

ln .4
2

6931471806= =k

Now that we have k, we need to find t when y 5 100.

100 5 1e.6931471806t

ln 100 5 .6931471806t

t ' 6.644 years

3. Our job in this problem will be to find N, the original number of fans. We have the
following equations based on the given information:

2,000 5 Nek(1) and 50,000 5 Nek(5)

Solve the first equation for N, and you get

N
ek

= 2 000,

Plug this value into the other equation, and you can find k.

50 000
2 000 5

,
,= •
e

e
k

k

50,000 5 2,000e5k2k

25 5 e4k

ln . 25
4 8047189562≈ =k

Finally, we can find the value of N by plugging k into N 5
2 000,

ek
.

N 5
2 000
8047189562

,
.e

N ' 894.427 original fans

4. Oh, cruel fate. If Vinny weighed 5 pounds at birth, he weighed 5 1
1
3

z 5 5
20
3

or

6.667 pounds 14 days later. Notice that we will use days rather than weeks as our
unit of time, since the final question in the problem asks for days.

20
3

5 14= ( )ek

4
3

14= e k

ln
.

4
3

14
0205487195= =k

We want to find t when y 5 600.

600 5 5e(.0205487195)t

ln 120 5 .0205487195t

t 5 232.982 days
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The poor guy lived almost 8 months. The real tragedy is that even though he
could talk, all he wanted to talk about were his misgivings concerning contempo-
rary U.S. foreign policy. His handlers were relieved at his passing. “It was like
having to talk to a furry John Kerry all the time,” they explained.

LOGISTIC GROWTH (BC TOPIC ONLY)
In addition to exponential growth, BC students need to be familiar with logistic growth.
The major difference between the two is that exponential growth assumes that there are
no restrictions on the quantity growing. Although billions upon billions of bacteria
colonies can grow in a small area, the same is not true of, let’s say, deer. Only so many
deer can be supported by a particular ecosystem; this number is called the carrying
capacity for that species. After the carrying capacity has been reached, there are no
longer enough natural resources to support the extended population, and it’s almost
impossible for deer to get reservations in any deer restaurants (except as the main
course). So, once too many deer inhabit an area, nature puts the brakes on deer-
population growth.

Logistic growth looks like exponential growth at the beginning, but then changes
concavity and levels out towards the carrying capacity (the upper limit for growth).

exponential growth logistic growth

y L L is

In exponential growth, the rate of change of the quantity is proportional to the
quantity itself. In logistic growth, this is also true, but the quantity is also propor-
tional to its distance from the upper bound. This translates into the formula

dy
dt

5 ky(L 2 y)

where L is the carrying capacity (upper bound) and k is the constant of proportional-
ity. If you solve this differential equation using a very tricky separation of variables,
you get the general solution:

y
L

ce Lkt
=

+ −1

It’s not worth actually solving, but both of the formulas above need to be memorized.

Example 5: A highly contagious “pinkeye” (scientific name: Conjunctivitus itchlike-
crazius) is ravaging the local elementary school. The population of the school is 900
(including students and staff), and the rate of infection is proportional both to the
number infected and the number of students whose eyes are pus-free. If seventy-five
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people were infected on December 15 and 250 have contracted pinkeye by December
20, how many people will have gotten the gift of crusty eyes by Christmas Day?

Solution: Because of the proportionality statements in the problem, logistic growth is
the approach we should take. The upper limit for the disease will be L 5 900; it is
impossible for more than 900 people to be infected since the school only contains 900
people. This gives us the equation

y
ce kt

=
+ −

900

1 900

We will interpret t 5 0 as December 15, since that is the earliest information given.
Therefore, we know that y(0) 5 75. Plug that information into the equation.

75
900

1 0
=

+ ce

75 1 75c 5 900

c = =825
75

11

Five days later, 250 people have contracted pinkeye, so plug that information (and the
c we just found) to find k:

250
900

1 11 900 5
=

+ − ⋅e k

250~1 1 11e24500k! 5 900

11 13
5

4500e k− =

24500k 5 21.442383838

k 5 .0003205297

Finally, we have the equation y
e t=

+ −
900

1 11 900 0003205297(. ) . We want to find the number of

infections on December 25, so t 5 10.

y
e

=
+ − ( )( )

900
1 11 900 0003205297 10.

y ' 557.432

So, almost 558 students have contracted pinkeye in time to open presents.

Logistic growth can model a lot of real-world behavior; in fact, some retailers have
harnessed a key feature of logistic growth. Every year, there seems to be a new toy on
the market that everyone wants (Tickle Me Elmo, Furby, Cabbage Patch Kid), and fad
toys like these follow a logistic sales pattern. Some stores compute the logistic growth
curve (just as we did in Example 4) and stop purchasing the fad toys when the
concavity of the curve changes (which means that the sales are still increasing but
now at a decreasing rate). This practice helps cut down on piles of unsold product and
thus decreases unnecessary spending by the store.
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EXERCISE 5

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR THESE PROBLEMS.

1. The big toy for the holiday season this year is the Tickle Me Ben Stein Doll. When
you gently squeeze his tummy, Ben will giggle and talk to you about his work in
the Nixon administration. The kids love it! Research shows that the rate of sales
is proportional to the number sold and the number in the target audience who
haven’t yet purchased it. Assume that the target audience number is 4 million. If
950,000 have been sold by 12 a.m. on October 1, and 3.5 million have been sold by
12 a.m. on December 1, on what day did the company sell to exactly half of its
target audience?

2. The carrying capacity for deer in a particular small town is 2,200, and the rate of
increase in their numbers is proportional to both the number, n, of deer and
2,200 2 n. If there were 1,000 deer one month ago and 1,150 deer now, how many
months will it take the deer to number 2,100?

3. Assume that the rate of fans being seated in Oriole Park at Camden Yards (home
to the Baltimore Orioles) is proportional both to the number of fans already
seated and the number of empty seats; the park has a capacity of 48,262 fans.
One hour before game time, only 10 percent of the seats are filled. At game time,
85 percent of the seats are filled. Assuming that no one leaves early, what
percentage of the seats are filled 2 hours into the game?

4. For what value of y is
dy
dt

increasing the fastest in a logistic growth curve? Justify

your answer mathematically.

ANSWERS AND EXPLANATIONS

1. In this problem, L 5 4,000,000. The first objective is to find c using the fact that
y(0) 5 950,000. (For our purposes, t 5 0 is October 1.)

950 000 4 000 000
1 4 000 000 0, , ,

, ,= + − ⋅ ⋅ce k

950 000 4 000 000
1

, , ,= + c

950,000(1 1 c) 5 4,000,000

c = 61
19

e
xe

rc
ise

s
Chapter 10: Differential Equations 435

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

www.petersons.com



If t 5 0 equates to the beginning of October 1, then t 5 1 is October 2, t 5 30 is
October 31, and t 5 61 is December 1. We know that y(61) 5 3,500,000.

3 500 000
4 000 000

1 61
19

4 000 000 61
, ,

, ,
, ,

=
+ − ⋅ ⋅e k

61

19

1

7
4 000 000 61e k− =⋅ ⋅, ,

e k− =244 000 000 19

427
, ,

k =
−

=
ln

, ,
.

19
427

244 000 000
0000000128

Now that we have c and k, we want to find t when y 5 2,000,000 (half of the
target audience).

2 000 000
4 000 000

1 61
19

4 000 000 0000000128
, ,

, ,
, , .

=
+ − ( )e t

1
61
19

20512+ =−e t.

e t− =.0512 19
61

t =
−

≈
ln

.
.

19
61

0512
22 782

Therefore, the sales figure was reached after t 5 22 but before t 5 23; this
translates to October 23.

2. L 5 2,200; y(0) will translate to a month ago and y(0) 5 1,000; y(1) 5 1,150. Use
all of this information the same way you did in number 1 to find c and k. First,
find c.

1 000
2 200

1 2200 0
,

,=
+ − ⋅ce k

1,000(1 1 c) 5 2,200

c = 6
5

Now find k.

1150
2 200

1 6
5

2200 1
=

+ ⋅−

,

e k

1
6

5

44

23
2 200+ =−e k,
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e k− =2 200 35

46
,

k =
−

=
ln

,
.

35
46

2 200
0001242242

Our final goal in this problem is to calculate t when y 5 2,100.

2 100
2 200

1 6
5

2 200 0001242242
,

,
, .

=
+ − ( )e t

1
6

5

22

21
2 200 0001242242+ =− ( )e t, .

e t− =( )2 200 0001242242 5

126
, .

t =
−

=
ln

.
.

5
126

273293335
11 807

Since t 5 1 translates to this month, t 5 11.807 translates to 10.807 months from
now.

3. L 5 48,262; y(0) is one hour before game time, and y(0) 5 .10L 5 4,826.2; y(1) 5

.85L 5 41,022.7. Begin by finding c.

4 826 2
48 262

1 48 262 0
, .

,
,

=
+ − ⋅ce k

4 826 2
48 262

1
, .

,
=

+ c

c 5 9

Now find k using y(1).

41 022 7
48 262

1 9 48 262 1
, .

,
,

=
+ − ⋅e k

1 1 9e248,262k 5 1.176470588

e248,262k 5 .0196078431

k 5 .0000814684

The problem asks us to find y when t 5 3.

y
e

=
+ − ( )

48 262

1 9 48 262 0000814684 3

,
, .

y 5 48,258.7258

Two hours into the game, 48 258 7258
48 262

99 993, .
,

.= percent of the seats are filled.
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4. In this problem, you are trying to maximize
dy
dt

. Treat this like any optimization

problem—start by finding its derivative and setting it equal to 0. (Remember, the

derivative of
dy
dt

is written d y
dt

2

2 .) You’ll have to use the Product Rule. Because a

logistic relationship is evident, we use its general form.

dy

dt
ky L y= −( )

d y

dt
k L y

dy

dt
ky

dy

dt

2

2 0= −( ) + −⎛
⎝

⎞
⎠ =

k
dy

dt
L y y• − −( ) = 0

Since
dy
dt

is not zero, we can divide both sides by k z
dy
dt

and say that

L y

y
L

− =

=

2 0

2
Therefore, the rate of change is the greatest halfway to the upper boundary for
the logistic growth. This makes sense geometrically, because the slope of the
tangent lines will increase to that point and then become less steep afterward.

TECHNOLOGY: A DIFFERENTIAL EQUATIONS CALCULATOR
PROGRAM
BC students may be a little disappointed in the BC topics so far. All of them seem to be
very computational in nature. Arc lengths, slope fields, etc., are all basically formulas
you have to memorize. Even worse, the major BC topic in differential equations (Euler’s
Method) requires mindless, repetitive work. Luckily, the calculator can save the day.

Thanks to Greg Hoerst, a former 5-er on the BC test and a student of mine, your
calculator can help drag you through the doldrums of slope fields and Euler’s Method.
Some students were so appreciative of Greg’s program, they set up small shrines in
their basement in honor of him, and have voted for him as a write-in candidate for
every presidential election ever since.

At the end of this section, you’ll find a relatively short program that will take the
drudgery out of Euler’s and slope fields. All you have to do is type in some basic
information, and the calculator takes care of the rest. Does this mean you shouldn’t
know the formulas and techniques for the two methods it simplifies? No, no, no!
Essentially half of the AP test is now done without a calculator, so make sure you
don’t grow too dependent on the calculator. If you’d rather not type the program in,
and you (or your teacher) have a TI Graphlink that hooks into your computer, you can
download the program from my Web site www.calculus-help.com.

Example 6: Let’s look back at the differential equation
dy
dx

5 2x2y; you graphed its

slope field back in Hands-on Activity 10.2. Of course graphing it with the calculator
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will be significantly easier. Before we run the program, make sure to set the window
you want. In the exercises, we used an x interval of [21.5,1.5] and a y interval of
[0,1.5]. Push the [Window] button, and enter these values into the appropriate spots.

Now, run the program by pressing [Prgm], pressing [Enter] to select the program, and
then pressing [Enter] again; you should see the title screen. Press [Enter] to go to the
menu, and select “Slope Field.”

The program now asks you to type the numerator and denominator separately. In this
example, the denominator is simply 1. Use the [Alpha] button to get X and Y. The
program then asks you what the length of the line segments should be. Because this
window setting is so detailed, you should use a small number; I used length 5 .25. On
larger windows, you will need to use a larger length, such as 1.

Now, wait as the calculator draws the slope field for you. Once it’s finished, press
[Enter] to return to the menu screen.

The only drawback to this program is that you can’t tell the calculator exactly where
to draw the line segments, but in the grand scheme of things, that matters little. If
you have a PC, go to the Web site www.graphmatica.com and download the program
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Graphmatica. It draws incredible slope fields and easily draws solution graphs to a
slope field when you click the initial point (x,y).

Example 7: Use Euler’s Method to approximate y(6) for dy
dx x

= 1 given that y(5) 5 2;

use three steps of size Dx 5
1
3

.

Solution: This is one of the problems following the section on Euler’s method. Let’s
solve it with the calculator. Run the program, and select “Eulers” from the menu.
Enter all the information requested by the program. The “Known X” and “Known Y”
prompts correspond to the point (x,y) that is on the solution to the differential
equation; in this case, that point is (5,2). Before it begins its calculations, the program
asks “See Steps? (Y51). If you want to see each step of Euler’s method, press [1] and
then press [Enter]. If you just want the solution, press any other number and press
[Enter]. Press [1] so we can see all of the steps.

The calculator begins with the given point and takes a step toward the final approxi-
mation each time you press [Enter].

The answer is 2.188, which matches the answer we got the hard way.
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Differential Equation Tools, By Greg Hoerst
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EXERCISE 6

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR PROBLEMS 5 THROUGH 8.

1. If f ′′(x) 5 3x 1 1, f ′(1) 5 2, and f(2) 5 3, find f(x).

2. Which conic section is the solution to the differential equation
dy
dx

x
y

= −18 4
9 ?

Justify your answer mathematically.

3. What is the position function of a particle moving along the x-axis with velocity

v(t) 5
3
2

t3 1 4t 1 3 if the particle passes through the origin when t 5 2?

4. If
dy
dx

5 x2 2 y2,

(a) draw the slope field for
dy
dx

at all indicated points on the axes below.

1 2−1−2

−1

−2

1

2

*(b) use Euler’s Method to approximate y(2) using 4 steps if y(0) 5 1.

5. A human zygote consists of 1 cell at conception, and the number of cells grows to
8 by the end of one week. Assuming that the rate of cell increase is proportional
to the number of cells, how many weeks will it take the baby-in-process to amass
1,000 cells?

*6. Sarah likes mollies above all other tropical fish. Her fish must really like each
other, because they are reproducing like crazy. The rate of increase of the fish is
proportional to both the population and the number of additional fish the tank
could support. Her tank has a carrying capacity of 50 mollies. If she bought 10
fish to start the tank two months ago (none of which died) and has 25 fish now,
how many fish will she have in one month?

7. Newton’s Law of Cooling states that an object cools down at a rate proportional to
the difference between its temperature and the temperature of the ambient
(surrounding) air. If my coffee was 100°F ten minutes ago, the temperature of my
room is a constant 75°F, and the coffee is only 90°F now, what will the tempera-
ture of my coffee be in 15 minutes?
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8. James’ Diabolical Challenge: The population of a species of jellyfish in a small
harbor, appropriately called Sting Harbor, is directly proportional to 450 2 Q(t),
where Q is the population (in thousands) and t is the time (in years). At t 5 0
(1990) the population was 100,000, and in 1992, the population was 300,000.

(a) What was the population in 1993?
(b) In what year did the population reach 400,000?

*a BC-only question

ANSWERS AND EXPLANATIONS

1. First, find f ′(x) by integrating f ′′(x):

′( ) = +( )∫f x x dx3 1

f ′(x) 5
3
2

x2 1 x 1 C

Since you know that f ′(1) 5 2, use that information to find C.

f ′(1) 5
3
2

1 1 1 C 5 2

C 5 2
1
2

Now, repeat the process to find f(x).

f x x x dx( ) = + −⎛
⎝

⎞
⎠∫ 3

2
1
2

2

f x x x x C( ) = + − +1
2 2

1
2

3
2

f(2) 5 4 1 2 2 1 1 C 5 3

C 5 22

Therefore, f x x x x( ) = + − −1
2 2

1
2

23
2

.

2. Solve this differential equation by separating the variables.

9 18 4ydy x dx= −( )∫∫
9
2

18 22 2y x x C= − +

2 18 9
2

2 2x x y C− + =

4x2 2 36x 1 9y2 5 C

This is an ellipse, since the squared terms have unlike coefficients with the same
sign. There’s no need to put it in standard form.
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3. We are looking for s(t) knowing that s(t) 5 *v(t)dt and s(2) 5 0.

s t t t dt( ) = + +⎛
⎝

⎞
⎠∫ 3

2
4 33

s t t t t C( ) = + + +3
8

2 34 2

s(2) 5 6 1 8 1 6 1 C 5 0

C 5 220

Therefore, the position equation is s(t) 5
3
8

t4 1 2t2 1 3t 2 20.

4. (a)

20
0

−2

−2

2

2

(b) Start at point (0,1), and take 4 steps of size Dx 5
1
2

.

Point (0,1):
dy
dx

5 0 2 1 5 21; Dy 5
1
2

z (21) 5 2
1
2

. The new point will be

(0 1 12, 1 2 12)

Point S1
2

,
1
2D:

dy
dx

5
1
4
2

1
4

5 0; Dy 5 0 z
1
2

5 0. The new point will be

S1
2

1
1
2

,
1
2

1 0D
Point S1,

1
2D:

dy
dx

5 1 2
1
4

5
3
4

; Dy 5
3
4

z
1
2

5
3
8

. The new point will be

S1 1
1
2

,
1
2

1
3
8D

Point S3
2

,
7
8D:

dy
dx

5
9
4
2

49
64

5
95
64

; Dy 5
95
64

z
1
2

5
95

128
. The new point will be

3

2

1

2

7

8

95

128
+ +⎛

⎝
⎞
⎠,

The approximation given by Euler’s method is y(2) 5
207
128

1 617≈ . .

5. Because of the proportional relationship described, it’s time to use Nekt. Clearly,
the initial value (N) is 1; find k if t is measured in weeks.

8 5 1ek(1)

k 5 ln 8
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You can write k as a decimal, but for once, k is not messy in its exact form, so you
can leave it for now. Time to find t when y 5 1,000:

1,000 5 1e(ln 8)t

t ' 3.322 weeks

That baby’s growing like a weed.

6. This situation calls for a logistic growth model, and we know that y(0) 5 10
(if t equals two months ago):

10
50

1 50 0
=

+ − •ce k

10
50

1
=

+ c
10c 5 40

c 5 4

Now, use c and the fact that y(2) 5 25 to find k:

25
50

1 4 100
=

+ −e k

4e2100k 5 1

k =
−

=
ln

.
1
4

100
0138629436

The problem asks us to find y (number of fish) when t 5 3 (one month from now):

y
e

=
+ − ( )( )

50

1 4 50 0138629436 3.

y 5 33.333

Sarah will have 33 fish and some fish “on the way.”

7. If the rate of change of the temperature is proportional to the difference between
the temperature and the ambient air, then this translates to the differential
equation

dy

dt
k R y= −( )

where y is temperature of the cooling object, R is the room temperature, and k is
the constant of proportionality. You cannot use y 5 Nekt or logistic growth to
model the temperature, as the rate of growth is not proportional to the tempera-
ture. However, it is not difficult to translate the given information into the above
differential equation. Since R is 75, let’s plug it in and then solve by separation of
variables.

dy

dt
k y= −( )75

dy

y
kdt

75 −
= ∫∫

ln   75 − = +y kt C
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75 2 y 5 Cekt

y 5 75 2 Cekt

Use the fact that y(0) 5 100 (temperature 10 minutes ago) to find C:

100 5 75 2 Ce0

C 5 225

Now, use C and the fact that y(10) 5 90 to find k:

90 5 75 2 (225e10k)

15 5 25e10k

ln
.

3
5

10
0510825624= = −k

The temperature of my coffee 15 minutes later (t 5 25) will be

y 5 75 2 (225e25(2.0510825624))

y 5 81.971°F

8. Much like problem 7, this problem translates into the differential equation

dQ

dt
k Q= −( )450

If you solve it using separation of variables, you get

Q 5 450 2 Cekt

Now, use the fact that Q(0) 5 100 to find that C 5 350. Then, use the fact that
Q(2) 5 300 to find k:

300 5 450 2 350e2k

ln
.

3
7

2
4236489302= = −k

Now we can solve the individual parts of the question.

(a) Find Q if t 5 3:
Q 5 450 2 350e2.4236489302z3

Q ' 351.802.
There should be almost 352,000 jellyfish in Sting Harbor.

(b) We want to find t when Q 5 400:
400 5 450 2 350e2.4236489302zt

ln

.
.

1
7

4236489302
4 593

−
= ≈t

The population will reach 400,000 during mid-1994.
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SUMMING IT UP
• A differential equation is simply an equation that contains a derivative.

• Your typical goal in a differential equation problem is to find the equation that
has the given derivative; in other words, you are trying to find an antiderivative.

• You will use your calculator a lot in Euler’s Method. If you are allowed to use a
calculator to answer an Euler’s Method question on the free response section, you
still have to show your work and the setup.
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Sequences and Series
(BC Topics Only)

OVERVIEW
• Introduction to sequences and series, nth term divergence test
• Convergence tests for infinite series
• Power series
• Taylor and Maclaurin series
• Technology: Viewing and calculating sequences and series

with a graphing calculator
• Summing it up

As a BC calculus student, you have come a long way since your first limits and
derivatives. There may have been a time when you feared the Chain Rule, but
that time is long since past. You are now a member of the elite Calculus Club.
(First rule of Calculus Club: Don’t talk about Calculus Club.) And your mem-
bership is complete with sequences and series.

Once you get an idea of what sequences and series are, we will focus primarily
on infinite series. For a couple of sections, you’ll use various tests to determine
the convergence of infinite series. Once that is complete, we’ll discuss power
series and use Taylor and Maclaurin series to approximate the values of
functions. Sound good? Your Jedi training is almost complete . . . the Force is
strong with this one.

INTRODUCTION TO SEQUENCES AND SERIES, NTH
TERM DIVERGENCE TEST
A sequence is basically a list of numbers based on some defining rule. Nearly
every calculus book begins with the same example, and it’s so darn fine that I

will bow to peer pressure and use it as well. Consider the sequence 1
2

⎛
⎝

⎞
⎠

⎧
⎨
⎩

⎫
⎬
⎭

n

. The

number n will take on all integer values beginning at 1, so the resulting
sequence of numbers will be

1
2

1
2

1
2

1
2

1 2 3
⎛
⎝

⎞
⎠

⎧
⎨
⎩

⎫
⎬
⎭

= ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

n

, , ,…

1
2

1
2

1
4

1
8

1
16

1
32

1
64

⎛
⎝

⎞
⎠

⎧
⎨
⎩

⎫
⎬
⎭

=
n

, , , , , ,…

c
h

a
p

te
r11
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In some cases, for the sake of ease, we will let n begin with 0 instead of 1—but you’ll
know exactly when to do that, so don’t get stressed out or confused.

Our singular goal in sequences is to determine whether or not they converge. In other
words, is the sequence heading in some direction—toward some limiting number? You
can graph the sequence above to see that it is headed toward a limit of 0.

Each term of the sequence is half as large as the term before, and the sequence
approaches a limit of 0 very quickly. Mathematically, we write

lim
n

n

→∞
⎛
⎝

⎞
⎠ =1

2
0

Because this sequence has a limit as n approaches infinity, the sequence is said to
converge; if no limit existed, the sequence would be described as divergent.

Example 1: Determine whether or not 3 2 7
4 5 6

3

2 3
n n

n n
− −

− +
⎧
⎨
⎩

⎫
⎬
⎭

is a convergent or divergent
sequence.

Solution: The sequence will converge if its limit at infinity exists and will diverge if
the limit does not exist.

lim  
n

n n

n n→∞

− −
− +

3 2 7

4 5 6

3

2 3

This is a rational function with equal degrees in the numerator and denominator;

therefore, the limit is the ratio of the leading coefficients:
3
6

=
1
2

. Therefore, the

sequence converges to
1
2

. This is further evidenced by the graph of the sequence below:

A series is similar to a sequence, but in a series, you add all the terms together. Series
are written using sigma notation and look like this:

1

2

1

2

1

4

1

8

1

16

1

32

1

64
1

⎛
⎝

⎞
⎠ = + + + + + +

=

∞

∑
n

n

…
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NOTE
The Force is with you

always, and it equals mass

times acceleration.

NOTE
The Technology section at

the end of this chapter

explains how to graph

sequences and series on

your TI-83. You should

probably read that before

you go any further.
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The notation is read “the sum from 1 to infinity of S1
2Dn

” and gets its value from the

sum of all the terms in the sequence. However, how can you tell if a series with an
infinite number of terms has a finite sum? At first glance, it seems impossible—how
can you add infinitely many numbers together to get a real sum? Consider the

diagram below, which should help you visualize the infinite series 1
21

⎛
⎝

⎞
⎠

=

∞

∑
n

n

:

1
32

1
64

1
161

8

1
4

1
2

If the large box represents one unit and you continuously divide the box into halves,
the sum of all the pieces will eventually (if you add forever and ever) equal the entire

box. Thus, 1
21

⎛
⎝

⎞
⎠

=

∞

∑
n

n

5 1.

You won’t be able to draw pictures like this for the majority of series, but, in the next
section, you’ll learn a much easier way to find the above sum. Mathematically, you
need to know that a series gets its value from the sequence of its partial sums (SOPS).
A partial sum is the sum of a piece of the series, rather than the entire thing; it is
written Sn, where n is the number of terms being summed. Let’s use good old

1
21

⎛
⎝

⎞
⎠

=

∞

∑
n

n

as an example:

S1 5
1
2

S2 5
1
2

1
1
4

5 .75

S3 5
1
2

1
1
4

1
1
8

5 .875

Therefore, the SOPS is .5, .75, .875, .... This is the important thing to remember: If the
SOPS converges, then the infinite series converges, and its sum is equal to the limit at
which the SOPS converged. For the most part, you will use the fantastic formula
alluded to earlier in order to find sums. However, if all else fails, you can use the
SOPS to find the sum of a series.

Example 2: Find the sum of the series 1 1
21 n nn

− +
⎛
⎝

⎞
⎠

=

∞

∑ .

Solution: Construct the sequence of partial sums to gain some insight on this series:

S1 5 1 2
1
3

S2 5 1 2
1
3

1
1
2

2
1
4

S3 5 1 2
1
3

1
1
2

2
1
4

1
1
3

2
1
5
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one example of a

telescoping series; the

terms in these series cancel

out as the SOPS progresses.
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See what happened there? The 2 1
3 and 1

3 will cancel out. In S4, the 2 1
4 and 1

4 will

cancel out. In fact, each partial sum will cancel out another term all the way to
infinity, and the only two numbers left will be 1 1 1

2. Therefore, the sum of the series
is 3

2. You can use your calculator to calculate S500 to verify that the SOPS is indeed
approaching 3

2:

It makes sense that each term in a sequence needs to get smaller if the series is going
to converge. You are adding numbers for an infinite amount of time; if you are not
eventually adding 0 in this infinite loop, your sum will grow and grow and never
approach a limiting value. We showed that the sequence of the terms that make up

1
2

1
( )

=

∞

∑ n

n

have a limit of 0 early in this section, and that infinite series has a sum.

However, if the limit, as n approaches infinity, of the sequence that forms an infinite
series does not equal 0, then that infinite series cannot converge. This is called the nth
Term Divergence Test, and it is the easiest way to immediately tell if a series is going
to diverge.

nth Term Divergence Test: If lim
n na

→∞
≠ 0 , then an

n=

∞

∑
1

is a divergent series.

Example 3: Show that n
nn

+
=

∞

∑ 1
1

is divergent.

Solution: Because lim
n

n
n→∞
+ =1 1 (and this limit must equal 0 for the series to be conver-

gent), the series diverges by the nth Term Divergence Test. That’s all there is to it. If
you think about it, since the limit at infinity is 1, as n approaches infinity, you’d be
adding 1 1 1 1 1 1 1 1 1 1 1 forever, and that clearly approaches no limiting or
maximum value.

Be careful! Just because lim
n

na
→∞

= 0 , that does not mean that the series will converge!

For example, the harmonic series 1
1 nn=

∞

∑ is divergent even though lim
n→∞

1
n 5 0. If the

limit at infinity is 0, you can conclude nothing from the nth Term Divergence Test. It
can only be used to show that a series diverges (if its limit at infinity does not equal 0);
it can never be used to show that a series converges.
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EXERCISE 1

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE YOUR GRAPHING CALCULATOR FOR PROBLEM 4 ONLY.

1. Determine if the sequence
ln x

x2
⎧
⎨
⎩

⎫
⎬
⎭

converges.

2. Find the nth term of each sequence (in other words, find the pattern evidenced by
the sequence), and use it to determine whether or not the sequence converges.

(a) 2
3

4

4

9

5

16

6

25
, , , , ,…

(b) 1
1

2

1

6

1

24

1

120
, , , , ,…

3. Use the nth Term Divergence Test to determine whether or not the following
series converge:

(a)
1 3

4 5 2

2 3

3
1

+ +
− +=

∞

∑ n n

n nn

(b)
1
2

1 xn=

∞

∑

4. (a) What is the sum of
1

1
1

31 n nn +
−

+
⎛
⎝

⎞
⎠

=

∞

∑ ?

(b) Calculate S500 to verify that the SOPS is bounded by the sum you found.

ANSWERS AND EXPLANATIONS

1. The sequence converges if lim ln
n

x
x→∞ 2  exists. You’ll have to use L’Hôpital’s Rule:

lim  
n

x

x→∞

1

2

lim  
n x→∞

=1

2
0

2

The sequence converges.

2. (a) This is the sequence n
n

n

+

=

∞ { }∑ 1

1
2 . Use L’Hôpital’s to show that the sequence

converges.

lim
n→∞

1
2

0
n

=

e
xe

rc
ise

s
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(b) This is the sequence 1

1
n

n
!

=

∞

∑ . How can we tell that it converges? It is very clear

that lim  
!n n→∞

=1 0; in fact, this sequence converges to 0 significantly faster than

H1
xJ, since the former’s denominator will grow larger much faster than the

latter’s.

3. (a) lim
n→∞

1 3
4 5 2

1
4

2 3

3
+ +

− +
=n n

n n
, since the expression is rational and the degrees of the

numerator and denominator are equal. Because the limit does not equal 0,
this series diverges by the nth Term Divergence Test.

(b) lim
n→∞

1
2x

5 0, but this does not necessarily mean that the series is conver-

gent. You will find out that it does converge very soon (in the Integral Test
subsection), but you can never conclude that any series converges using the
nth Term Divergence Test; it can only be used to prove divergence. Therefore,
you can draw no conclusion.

4. (a) This is a telescoping series; if you write out the fourth partial sum (S4), you
can see what terms will cancel out in the long run and which ones will
remain:

S4

1

2

1

4

1

3

1

5

1

4

1

6

1

5

1

7
= − + − + − + −

The only terms that will remain as n approaches infinity are
1
2

+
1
3

, so the

infinite sum is
5
6

' .833333.

(b) Use your calculator to find S500. Of course, this is not the limit at infinity, but
it will give us an idea of where SOPS is heading at that point.

S500 is closing in on .8333, but it has all of infinity to get there—so what’s the
rush?
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CONVERGENCE TESTS FOR INFINITE SERIES
Your major focus in infinite series will be in determining whether or not the series
converge; in some rare instances, you will also be able to provide the sum at which the
series converge. Each of these tests works best for certain kinds of series, so make sure
to learn the series characteristics that indicate which tests to use as well as how to apply
the tests themselves. So, don’t just learn one or two and expect to be able to apply them
in all situations; you need to know them all. I know, no rest for the wicked. . . .

Geometric Series
Geometric series have the easiest test for convergence of them all, but first you need to
know what a geometric series is. Every geometric series has the form

ar n

n=

∞

∑
0

where a is a constant that can be factored out of each term and r is the ratio, the
identical portion of each term raised to an increasing power as the terms increase. The
major difference between this series and most other infinite series is that geometric
series begin with n 5 0 and not n 5 1. However, that makes the a term very easy to
find; the a term will be the first term in the geometric series when expanded, since it

is multiplied by r0, which is just 1. Let’s expand the geometric series 2 1
3

0
( )

=

∞

∑ n

n

to get
a feel for these puppies:

2 2 1
3

2 1
3

2 1
3

2 1
3

2 3 4

+ ⎛
⎝

⎞
⎠ + ⎛

⎝
⎞
⎠ + ⎛

⎝
⎞
⎠ + ⎛

⎝
⎞
⎠ + …

2 2
3

2
9

2
27

2
81

+ + + + + …

Not only will you be able to tell if this series actually adds up to something (con-
verges), but we can actually find out exactly what the sum of the series is.

Geometric Series: The geometric series ar n

n=

∞

∑
0

will diverge for UrU ≥ 1. It will only

converge if 0 , UrU, 1. If the series does converge, it will converge to the sum a
r1− .

Therefore, the series 2 1
30

⎛
⎝

⎞
⎠

=

∞

∑
n

n

converges since the ratio, 1
3 , is between 0 and 1.

Furthermore, the sum of the series will be

a
r1

2
2

3
2

3
2
3

−
= = =•

Example 4: Determine whether or not the following series converge; if they do, find
the sum of the series.

(a) 3
15
4

75
16

375
64

+ + + +…
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The first term is a, so a 5 3. You also know that each term of the series contains a, so
factor it out to determine r:

3 1
5
4

25
16

125
64

+ + + +⎛
⎝

⎞
⎠…

So, the n 5 0 term is 1, the n 5 1 term is
5
4

, and the n 5 2 term is
25
16

. The numerators

are powers of 5, and the denominators are powers of 4. This is just the series

3 5
4

0
( )

=

∞

∑ n

n

. However, 5
4 ≥ 1, so the series diverges.

(b)
1
2

1
4

1
8

1
16

1
32

1
64

+ + + + + +…

Recognize this problem? We have already decided that the answer must be 1, so let’s

finally prove it. First of all, a 5
1
2

, so factor that out of everything:

1
2

1
1
2

1
4

1
8

1
16

1
32

+ + + + + +⎛
⎝

⎞
⎠…

The ratio is definitely S1
2D, making the series 1

2
1
20

⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

=

∞

∑
n

n

. Therefore, the sum will be

1
2

1
2

1
2
1
21

1
−

= =

just as we thought it would be.

(c)
1
4

1
6

1
9

2
27

4
81

+ + + + +…

Again, since a is the first term, 1
4 , divide it out of all the other terms.

1
4

1
4
6

4
9

8
27

16
81

+ + + + +⎛
⎝

⎞
⎠…

The 4
6 term can be reduced to 2

3 , and the series in parentheses has ratio 2
3. Thus, the

series converges (since 2
3 is between 0 and 1), and it has sum

1
4

2
3

1
4
1
31

1
12−

= =
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NOTE
Dividing the other terms by
1
4

is the same as multiplying

them by 4.
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The Integral Test and P-Series
To help you remember the necessary conditions that must exist in order to apply the
integral test, memorize the following phrase: In prison, dogs curse. The mneumonic
device reinforces that in order to apply the Integral Test, the function must be positive,
decreasing, and continuous. In essence, the Integral Test shows that an infinite series
and an integral with an infinite upper bound have a lot in common: either they will both
converge or both diverge.

The Integral Test: If an 5 f(n) is a positive, decreasing, continuous function, then

an
n=

∞

∑
1

and f n dn( )∞
∫1 either both converge or both diverge. As an example, consider

1
1 nn=

∞

∑ , the harmonic series. We already know that the sequence 1
n{ } converges, but

does the infinite series converge? According to the Integral Test, it will if the integral

dnn

1

1∞

∫ does. Therefore, try to evaluate this improper integral:

lim

lim ln

lim ln

b

b

b

b

b

n
dn

n

b

→∞

→∞

→∞

∫ 1
1

1

As x approaches infinity, ln x will approach a height of infinity; the graph has no
horizontal asymptote or limiting value and will increase forever (although more
slowly than many other graphs). Therefore, the integral diverges, and the infinite
series must diverge, too.

The justification for the Integral Test lies in geometry. Remember that an integral is
really the sum of an infinite number of rectangle areas; the above series was an
infinite sum of numbers. If a function creates rectangles whose areas grow and result
in divergence, then that same function will create outputs whose sums grow too much
and also create divergence.

This leads us back to a brief discussion we began in the Improper Integrals section of
Chapter 8. At that time, we discussed the set of improper integrals of the form

1

1 x p dx
∞

∫ . We said that this integral will diverge for any p ≤ 1 but will converge for

p . 1. We can now apply this fact to infinite series.

P-series: A p-series is a series of the form 1

1
n

n
p

=

∞

∑ , where p is a positive number. A

p-series will converge if p . 1 but will diverge if p ≤ 1. In the case of the harmonic

series 1
n , p 5 1, so it will diverge; you don’t have to apply the Integral Test as we did

above, but if you do, it will become very clear exactly why the harmonic series
diverges.

Example 5: Determine whether or not the following series converge, and explain how
you arrived at your answer:

(a) n
n

−

=

∞

∑
2
3

1
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NOTE
It makes sense that p must

be positive. If p 5 22, that

creates the series (
n = 1

`

n2,

which definitely has an

infinite height as x

approaches infinity.

NOTE
The fact that I have not

peppered this discussion on

p-series with low-brow

humor is a testament to my

self-control.
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If you rewrite the series as 1

1
2 3n

n
/

=

∞

∑ , it is a p-series with p 5 2
3. Since 2

3 ≤ 1, the series

will diverge.

(b)
3

2 32
1

n

nn +=

∞

∑

According to the Integral Test, the convergence of this series is correlated with the

convergence of the related improper integral. Therefore, try to integrate:

3
2 3

3
2 3

21

21

n
n

dn

n
n

dn
b

b

+

+

∞

→∞

∫

∫lim

You should use u-substitution, with u 5 2n2 1 3. Don’t forget to replace 1 and b with

u-boundaries.

lim ln
b

bu
→∞

+( )⎛
⎝

⎞
⎠3 1

4 5
2 32

This integral definitely grows infinitely large as x approaches infinity, so both it and

the series will diverge.

The Comparison Test
This test is useful when the series at hand looks similar to a series for which you already
know—or can easily determine—the convergence. Now that you know how to apply the
integral, geometric, and p-series tests, you can use them in conjunction with the
Comparison Test in order to determine the convergence of series that are almost (but not
quite) geometric or p-series or that are nearly (but not quite) integrable. As was the case
with the Integral Test, all the terms of the series involved must be positive to apply the
Comparison Test.

The Comparison Test: If San and Sbn are both positive series and every term of San

is less than or equal to the corresponding Sbn term,

(1) if Sbn converges, then San converges.

(2) if San diverges, then Sbn diverges.

Consider the following diagram of the first few terms of each sequence. Notice that
an , bn for all n. The figure also contains the functions a(x) and b(x) from which the
terms of the series get their value.
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NOTE
The Comparison Test is also

called the Direct

Comparison Test.

ALERT!
If an ≤ bn, and bn is

divergent or an is

convergent, you can draw

no conclusions about the

other series.
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a2 a3

a5a4

a1

b1

b2
b3

b5b4
a(x)

b (x)

If bn
n=

∞

∑
1

converges, then according to the Integral Test, b x dx( )∞
∫1 is finite. In other

words, there is a number that represents the area trapped between b(x) and the
x-axis. Since the area beneath a(x) must be less than the area beneath b(x) (since all
the function values for a are less than or equal to b’s values), then the area beneath
a(x) must also be finite. How can an area less than a finite area be infinite? Similarly,

if a x
n

( )
=

∞

∑
1

diverges, then the area a x dx( )∞
∫1 must be infinite. If b has larger values

than this divergent integral, then bn must be divergent, too.

This test works just like the restriction signs for kiddie rides at theme parks: “You
cannot be taller than this to ride this ride.” I am too tall to ride kids’ rides, but Papa
Smurf can ride any of them. If an individual comes along who is taller than I am, then
he will not be able to ride either (the divergence part of the rule). However, if someone
shorter than Papa Smurf strolls up, then he will be able to ride (the convergence part
of the rule).

Example 6: Use the Comparison Test to determine the convergence of the following
series:

(a)
e

n

n

n +=

∞

∑ 31

Compare this to the series 1
31 nn +=

∞

∑ . Without a doubt, the numerator en is much larger

than the other numerator, 1. Therefore, each term of the series e
n

n

n +=

∞

∑ 31

will be larger

than the comparsion series, 1
31 nn +=

∞

∑ . However, using the Integral Test, it is easy to

see that 1
31 nn +=

∞

∑ is divergent. Because e
n

n

n +=

∞

∑ 31

is larger than a divergent series, it

must also be divergent by the Comparison Test.

(b) 3
7 11

n

n
n +=

∞

∑
Compare this to the series

3

7
1

⎛
⎝

⎞
⎠

=

∞

∑
n

n

, which is a convergent geometric series (since r 5

3
7

, which is less than 1). Since each of the denominators of 3
7 11

n

n
n +=

∞

∑ are greater than

the corresponding denominators in the geometric series
3

7
1

⎛
⎝

⎞
⎠

=

∞

∑
n

n

, that will result in a
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The trickiest part of the

Comparison Test is deciding

what to compare the given

series to. Most of the time,

you pick a series that is

close to, but simpler than,

the given series.
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smaller overall value for each term (in the same way that
1
6

,
1
5

, even though 6 . 5).

Therefore, 3
7 11

n

n
n +=

∞

∑ is smaller than a convergent series, so it must be convergent, too.

The Limit Comparison Test
This test operates in a slightly different way from previous tests but has many of the
same characteristics as the Comparison Test. For one thing, you’ll need to invent a
comparison series, and both your original and the new series must contain positive
terms. In practice, the Limit Comparison Test allows you to take ugly series and
compare them to very simple p-series to determine their convergence. There is even
good news, pessimistic mathematician: It’s very easy to pick a comparison series with
this test. When you’ve stopped cheering, you may continue reading.

The Limit Comparison Test: If San and Sbn are positive series, and

lim
n

n

n

a
b

N
→∞

=

(where N is a positive number), then both series either converge or diverge. If the limit
does not equal a finite number, you can draw no conclusion from this test.

Translation: To determine whether or not a series San converges, you will first invent
a comparison series Sbn. Then, find the limit at infinity of the quotient

a
b

n

n
. If that

limit exists (in other words, if the limit is a finite number), then either both series will
converge or both will diverge. Because of this, you should choose a Sbn that is
obviously convergent or divergent to cut down on your work.

Just like the Comparison Test, the convergence or divergence of the series, an, is
dependent upon the convergence of the series to which it is compared, bn. Although a
bit strange, the Limit Comparison Test is more straightforward than its predecessor
and is, in practice, easier to use.

Example 7: Use the Limit Comparison Test to determine whether or not the following
series converge:

(a)
3 6

1 5 7 2
1

n

n nn

+
− +=

∞

∑
As the tip above explains, use the highest powers of n in the numerator and denomi-

nator to create a comparison series of
n
n2 or

1
N

.

lim
n→∞

3 6
1 5 7

1

2
n
n n

n

+
− +

Multiply the numerator and denominator of this mega fraction by
n
1

to get

lim
n→∞

3 6

1 5 7

2

2
n n

n n

+
− +
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When choosing the

comparison series, use only

the highest powers of n in

the numerator and

denominator of the original

series.
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Because this is a rational function with equal degrees in the numerator and denomi-
nator, the limit is the ratio of the leading coefficients: 3

7. Therefore, both series will
either converge or diverge; so which is it? We already know that

1
n∑ diverges, so both series diverge. If you forgot that it was a harmonic series, you

still know that 1
n∑ is a divergent p-series (since p 5 1).

(b)
n

n n
n

+
•=

∞

∑ 5

3 4
1

This one is trickier. You’re supposed to use the highest powers of n only, so what do
you do with the 4n? Answer: include it also—with an n power, it has to be important.

Therefore, the comparison series is n
n n

• 4
or 1

4n .

lim
n→∞

n

n n

n

+
•

5
3 4

1
4

Multiply the top and bottom of that giant fraction by 4n to get

lim
n→∞

n

n

+ =5
3

1
3

We got the number we needed—now, to determine if the series converge or not. The

comparison series can be rewritten as
1

4
1

⎛
⎝

⎞
⎠

=

∞

∑
n

n

, which is a convergent geometric

series (since r 5 1
4 , 1). Therefore, both of the series must be convergent.

The Ratio Test
Yet again, this test works only for series with positive terms. (The next series test will
finally address series with positive and negative terms.) The Ratio Test works best for
series that contain things that grow extremely large as n increases, like powers of n or
factorials involving n. In essence, you take the limit at infinity of the ratio of a generic
series term an and the next consecutive generic term an 1 1; you can determine the
convergence of the series based on what happens after you find the limit.

The Ratio Test: If San is a series whose terms are positive, and

lim
n→∞

a

a
n

n

+1
5 N

(where N is a real number), then

(1) San converges if N , 1.

(2) San diverges if N . 1.

(3) If N 5 1, we don’t know diddly squat: the series could converge or diverge, but to
determine which, we’ll have to use a different test; the Ratio Test doesn’t help.
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A limit of

1
3

does not mean

that either series has a sum

of
1
3
. All that’s important is

that
1
3

is a finite number

(not `).
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Example 8: Use the Ratio Test to determine whether or not the following series
converge:

(a)
n

nn

3

1 !=

∞

∑
Your best bet is the Ratio Test because of the factorial in the series. In this case, an 5

n
n

3

!
; to get an 1 1, substitute (n 1 1) for n:

an 1 1 5
n

n

+( )
+( )

1
1

3

!

Now you can set up the limit that is the heart of the Ratio Test:

lim
n→∞

a

a
n

n

+1

lim
n→∞

n
n

n
n

+( )
+( )
1
1

3

3
!

!

To simplify the fraction, multiply the numerator and denominator by the reciprocal of
the denominator. (This is always the second step.)

lim
n→∞

n

n
n

n

+( )
+( ) •
1 3

1 3!
!

lim
n→∞

n n

n n n

+( )
+( )

•

• •

1

1

3

3

!

!

lim
n→∞

n

n

+( )1 2

3

lim
n→∞

n n

n

2

3

2 1
0

+ + =

The limit at infinity is 0; since 0 , 1, the series converges according to the Ratio Test.

(b)
2
2

1 nn=

∞

∑

This doesn’t have anything that grows so large as to make the Ratio Test our first
choice, but we have to follow directions.
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lim
n→∞

2
1

2

2

2

n

n

+( )

lim
n→∞

n

n n

2

2 2 1
1

+ +
=

Since the limit equals 1, no conclusion can be drawn using the Ratio Test. So, let’s try
something else even though the directions don’t tell us to—we’re rebels! Notice that

2
2n

is almost a p-series, so the better bet would have been the Limit Comparison Test.

A good comparison series is 1
2n

:

lim
n→∞

2

1

2

2

2n

n

=

Because 2 is a finite number (and 1
2n

is a convergent p-series) both series converge
according to the Limit Comparison Test.

The Alternating Series Test
Until now, you have determined convergence for lots of different series. Most of those
tests required the terms of the series to be positive. Finally (exhale here), the Alternat-
ing Series Test (inhale nervously here) allows you to consider series with negative
terms. However, these series must alternate back and forth between positive and

negative terms. For example,
−( ) +

=

∞

∑ 1 1

1

n

n
n

is an alternating series:

−( ) = − + − + − +
+

=

∞

∑ 1
1 1

2
1
3

1
4

1
5

1
6

1

1

n

n n
…

The series has a positive term, then a negative term, then a positive term, etc. In
contrast, the series

1
1
2

1
3

1
4

1
5

1
6

− − + − − +…

is not an alternating series. Not only do the signs have to alternate, but they also have
to alternate every other term.

The Alternating Series Test: If San is an alternating series; each term, an 1 1, is
smaller than the preceding term an; and lim

n na
→∞

= 0 , then San converges.

Translation: In order for an alternating series to converge, (1) the terms must de-
crease as n increases (in fact, each term has to be smaller than the term before it), and
(2) the series must pass the nth Term Divergence Test—the nth term must have a
limit of 0. If both conditions are satisfied, the alternating series converges.
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Example 9: Determine whether or not the following series converge using the Alter-
nating Series Test:

(a)
−( ) +

=

∞

∑ 1 1

1

n

n
n

It’s the alternating series form of a harmonic series. You may want to answer “diver-
gent” as a reflex. Let’s see what happens. If we write out a few terms

1
1
2

1
3

1
4

1
5

1
6

− + − + − +…

it’s clear that this is an alternating series and that each term is smaller than the
previous one. Don’t worry about the positive and negative signs. Clearly, 1

3
1
4

1
5> > ,

etc. That satisfies the first requirement of the test. The second requirement involves
the following limit:

lim 
n n→∞

=1
0

The limit is very easy to find, and we again ignore the possibility of a negative sign
when evaluating the limit. The test takes care of the negative sign without our having
to worry about it. Because both conditions are satisfied, this series converges.

(b) −( ) ⋅ +( )
=

∞

∑ 1 3
21

n

n

n
n

To begin, let’s write out a few terms of the series:

− + − + − + +2
5

4
1

7

8

4

5

3

4
…

The series is definitely alternating, and (ignoring the signs) each term is less than the
term preceding it. However,

n

n

n→∞

+ = ≠lim
3

2

1

2
0

Therefore, this series fails the second condition of the Alternating Series Test. In fact,
this series outright fails the nth Term Divergence Test and therefore diverges. Even
though it’s an alternating series, it (like all series) must pass the nth Term Divergence
Test in order to converge.

In some series, the alternating series test will not apply, even though we want it to so

badly. Let’s take, for example, −( ) ⋅
=

∞

∑ 1 4
1

n
n

n n !
. The series definitely alternates; that’s not

the problem. If we write a few terms out, we get

− + − + − +4 8
32
3

32
3

128
15

…
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The terms (at least in this small sample) definitely don’t seem to be getting uniformly
smaller. They will later, but at first, things are pretty weird. Furthermore, let’s try to
find the required limit for the Alternating Series Test:

n

n

n→∞
lim

!

4

This is the indeterminate form
`

`
, so our natural instinct would be to use L’Hôpital’s

Rule. How do we find the derivative of (n!)? Things are looking ugly—the Alternating
Series Test isn’t cutting the mustard. In cases such as these, we will look for absolute
convergence. It will allow us to ignore the pesky negative signs and still determine if
the alternating series converges.

Absolute Convergence: If SUanU converges, then San is said to converge absolutely,
and the original series, San, automatically converges. If SUanU diverges but San con-
verges, the series is said to converge conditionally.

Example 10: Does −( ) ⋅
=

∞

∑ 1 4
1

n
n

n n !
converge?

Solution: Because the Alternating Series Test doesn’t work, as we showed above, we
will test to see if

−( ) =•

=

∞

=

∞

∑ ∑1
4 4

1 1

n
n

n

n

n
n n! !

converges instead. Because of the large quantities involved, the Ratio Test is your best
bet.

lim !

!
n

n

n

n

n
→∞

+( )
+4
1

4

1

lim
n n→∞ +

=4
1

0

Because 0 , 1, this series converges by the Ratio Test. Here’s the great part: Because
the absolute value of the series converged, the series converges absolutely, and

−( ) •

=

∞

∑ 1 4

1

n n

n
n! converges automatically! Handy, eh?

You may wonder why absolute convergence works. In essence, it says to ignore all
negative terms in a series and make them positive. If that all-positive series still
converges to a single number, then allowing some of those terms to be negative will
not cause that sum to get any larger and possibly diverge. In fact, the inclusion of
negative terms will make that sum smaller.

The final important characteristic of alternating series is the error-bound that they
can report. Like most other series tests (excluding geometric), you cannot find the sum
of the infinite series. You still can’t with Alternating Series (Booooo!), but you can tell
approximately how close your partial sum approximation is. Here’s the important
factoid to remember: The error inherent in an alternating series’ partial sum Sn is less
than the absolute value of the next term, an 1 1. This may sound tricky, but it’s really
easy!
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Example 11: Find the interval in which the actual sum of
−( ) +

=

∞

∑ 1 1

2
1

n

n n
is contained if

S5 is used to approximate it.

Solution: S5 is the partial sum that includes only the first five terms of the series. So,
this problem is approximating the sum of the series by adding only those terms
together:

S5 1
1
4

1
9

1
16

1
25

838611= − + − + ≈ .

Although that’s not the sum of the infinite series, we will soon be able to tell just how
close of an approximation it is. The maximum possible error will be the absolute value

of the next term, a6
1

36 027777= − ≈ . . The actual infinite sum for the series will
fall within .027777 of .838611. Therefore, the actual sum is somewhere in the interval

(.838611 2 .027777,.838611 1 .027777)

(.810833,.866388)

Conclusion
After learning all of these tests for series convergence, most students think that it will
be a miracle if they can simply remember them all on a test—I agree. However, it is a
miracle that helps me remember all the tests. Whenever you face an ugly, squirming,
gross series problem, remember Moses parting the Red Sea. Not only is it relaxing, it
also forms a mnemonic phrase to help you remember all the series you’ve learned:

PARTING C

(Okay, I had to be a little creative with “C,” but cut me some slack.) Each letter
represents one of the tests you just learned. As you attempt each of the problems in
the Problem Set, use the Moses phrase to help decide which test to use:

P P-series: Is the series in the form 1
n p ?

A Alternating series: Does the series alternate? If it does, are the terms
getting smaller, and is the nth term 0?

R Ratio Test: Does the series contain things that grow very large as n in-
creases?

T Telescoping series: Will all but a couple of the terms in the series cancel
out?

I Integral Test: Can you easily integrate the expression that defines the
series?

N Nth Term Divergence Test: Is the nth term something other than 0?

G Geometric series: Is the series of the form arn

n=

∞

∑
0

?

C Comparison Tests: Is the series almost another kind of series (e.g., p-series
or geometric series)? Which would be better to use: the Comparison or the
Limit Comparison Test?

Just think of it: Moses was fleeing from the Egyptians and captivity. You’ve
probably never had to part anything larger than your hair. Unless you are a
member of the ’80s band Poison, the tasks aren’t even comparable.
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EXERCISE 2

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

DO NOT USE A GRAPHING CALCULATOR FOR ANY OF THESE PROBLEMS.

For 1 through 12, determine whether or not the series converge using the appropriate
convergence test (there may be more than one applicable test). If possible, give the sum
of the series.

1. 2
70

⎛
⎝

⎞
⎠

=

∞

∑
n

n

2.
4
3

1 nn=

∞

∑

3.
n

n
n

2

1 5=

∞

∑

4.
1

553
1 nn +=

∞

∑

5.
n

n

n

n !=

∞

∑
1

6.
1
5

1
6

1
7

1
8

1
9

+ + + + +…

7. 2
1
2

1
8

1
32

+ + + +…

8.
5 6 3

7 8

2

3
1

n n

n nn

− +
− +=

∞

∑

9.
cosn

nn

π

=

∞

∑
1

10.
3 4

21

n

n
n

+

=

∞

∑

11.
8 6

12 9

3 5

4 5
1

n n

n nn

−
+=

∞

∑

12.
3 1

25
1

n

nn

+
+=

∞

∑
13. Determine if the series

−( )
+=

∞

∑ 1

3 45
1

n

n n
converges absolutely, converges conditionally,

or diverges.
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s
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ANSWERS AND EXPLANATIONS

1. This is a geometric series with a 5 1 and r = 2
7 . Because 0 12

7< < , the series
will converge, and it will converge to

a

r1
1

1
1 7

52
7

5
7−

=
−

= =  

2. This looks like a p-series with p 5 3. However, the 4 makes it a little different.
Because the 4 will be multiplied by every term in the series, we can rewrite the
series as

4
1
3

1 nn=

∞

∑
(You can pull out the constant, just like you did with definite integrals.) There-
fore, the 4 does not affect the series at all. Since p . 1, the series converges.

3. This series is a good candidate for the Ratio Test because of 5n; this quantity will
grow large quickly as n increases.

n

n

n

n

n→∞

+

+( )
lim

1

5

5

2

1

2

n
n

nn

n→∞
+ •

+( )
lim

1

5

5
2

1 2

n

n n

n→∞

+ + =lim
2

2

2 1

5

1

5

Because
1
5

< 1, this series converges according to the Ratio Test. (Remember,
1
5

just tells you that the series converges—it does not mean that the sum of the

series is
1
5

.)

4. Compare this to the series
1
5 3

1 nn
/

=

∞

∑ . The original series has denominators that

are slightly greater than each corresponding denominator in the second series. A

larger denominator means a smaller value. Therefore, each term of

1

553
1 nn +=

∞

∑ will be smaller than the corresponding term of
1
5 3

1 nn
/

=

∞

∑ . Notice that

1
5 3

1 nn
/

=

∞

∑ is a simple p-series, and since p = >5
3 1 , it converges. Because
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1

553
1 nn +=

∞

∑ is smaller than a convergent series, it must converge by the Com-

parison Test, too.

5. The Ratio Test is our best bet, as nn and n! will grow large quickly as n increases.

n

n

n

n

n

n
n

→∞

++( )
+( )

lim
!

!

1

1

1

n

n

n

n n

n n→∞

+
•

•

+( )
+( )lim

!

!

1

1

1

n

n

n

n

n n→∞

+

•

+( )
+( )lim

1

1

1

You can cancel an (n 1 1) term out of the top and bottom, leaving you with

n

n

n

n

n→∞

+( )
lim

1

Here’s the tricky part: If you rewrite this limit, you get

n

nn

n→∞

+⎛
⎝

⎞
⎠lim

1

n

n

n
e

→∞
+⎛

⎝
⎞
⎠ =lim 1

1

Remember that limit you memorized a long time ago? There it is again. Since
e . 1 (e is approximately 2.718), the series diverges.

6. This is actually the series
1

41 nn +=

∞

∑ . Use the Integral Test to see if it converges.

dn

n +
∞

∫ 41

b

b dn

n→∞ +∫lim
41

b
n

b

→∞
+lim ln 4

1

lim ln ln
b

b
→∞

+( ) −⎡⎣ ⎤⎦ = ∞4 5

Therefore, both the integral and the series diverge.

7. This is a geometric series with a 5 2. Factor 2 out of all the terms in the series to
get the following ratio:

2 1
1
4

1
16

1
64

+ + + +⎛
⎝

⎞
⎠…
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n
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e
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s
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The denominators are consecutive powers of 4, so the ratio is r = 1
4 , and the

series is 2 1
40

⎛
⎝

⎞
⎠

=

∞

∑
n

n

. The series converges since
1
4

is between 0 and 1, and it has sum

a

r1

2
2

4

3

8

33
4−

= = =•
  

8. This is a Limit Comparison problem. Take the highest powers of the numerator

and denominator to create the comparison series n
n n

2

3
1= .

n

n

n n
n n

n
n n n
n n

→∞

→∞

− +
− +

− +
− +

= =

lim

lim

5 6 3
7 8
1

5 6 3
7 8

5
1

5

2

3

3 2

3

Since
1
n

is a divergent p-series, and the above limit exists, both series diverge by

the Limit Comparison Test.

9. Although this series looks funky, it’s just an alternating series. The numerators
will be cos p, cos 2p, cos 3p, cos 4p, etc., which are just the numbers 1, 21, 1, 21,
etc. Each successive term will definitely get smaller (since the denominators will
grow steadily). Therefore, all that’s left in the Alternating Series Test is the limit:

n n→∞
lim /

1
1 2

The limit does equal zero (consider the graph). Therefore, this alternating series
converges by the Alternating Series Test.

10. Each term of this series is greater than each corresponding term of the 3
2

1
( )

=

∞

∑ n

n

,

which is a divergent geometric series. Because 3 4
2

1

n

n

n

+

=

∞

∑ is greater than a diver-

gent series, it must diverge by the Comparison Test, too.

11. Although this problem may look complicated, it is actually quite easy. This series
diverges by the nth Term Divergence Test. Notice that

n

n n

n n→∞

−
+

= − = −lim
8 6

12 9

6

9

2

3

3 5

4 5

Because the limit at infinity of the nth term is not 0, this series cannot converge

(you will eventually be adding 2
2
3

forever).

12. If you rewrite the series as

3 1

25
1

n

nn

+

+=

∞

∑
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you can use the Limit Comparison Test. Take the highest powers of n in the

numerator and denominator to create the comparison series n
n n

1 2

5 2 4 2
1/

/ /= .

n

n

n

n
→∞

+

+
lim

3 1

2
1

5

4

(If you leave n4 unsimplified, it’s more obvious to multiply the radicals to-
gether.)

n

n n

n→∞

+

+
= =lim

3

2

3

1
3

5 4

5

Because 1 1
4 2

1 n nn

=
=

∞

∑ is a convergent p-series, both series must converge.

13. First of all, test the absolute convergence by ignoring the (21)n. This gives the

series
1

3 45
1 nn +=

∞

∑ . This is similar to the p-series 1
1 5n / , so use the Limit Compari-

son Test:

n

n

n
→∞

+
lim

/

1
3 4

1

5

1 5

n

n

n→∞ +
lim

5

5 3 4

Because this is a rational function with equal powers in both parts of the fraction,

the limit is 1
3

5 . Because that is a finite number, both series diverge according to

the Limit Comparison Test. The conclusion? This series does not converge abso-
lutely. Next, we need to determine whether or not the series converges condition-
ally by leaving the (21)n in place.

The series
−( )

+=

∞

∑ 1

3 45
1

n

n n
is definitely alternating, and, because the denominators

will grow steadily, the terms will lessen in value as n increases. Now, to test the
nth term (the last hurdle in the Alternating Series Test):

n n→∞ +
=lim

1

3 4
0

5

According to the Alternating Series Test, this series converges but only condition-
ally, since the absolute value of the series diverged.
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POWER SERIES
Thus far, you have dealt exclusively with series of the form San; all the series have been
runs of constants. The final two sections of this chapter deal with series that contain
variables, and the AP test has more questions on these topics than all the other
sequences and series topics combined. Power series, the first of the essential topics, are

series of the form a xn
n

n=

∞

∑
0

or a x cn
n

n

−( )
=

∞

∑
0

; the first is said to be centered about

x 5 0, while the second form is centered about x 5 c. Strangely enough, most of our
information concerning power series does not come from mathematicians, but rather
from Shirley MacLaine, famous new-age celebrity. In her most recent book Out on a
Leash, she claims that, among her many reincarnations, three of them were spent as
power series. “It wasn’t an exciting life,” she says in the book, “but I always felt centered
swimming in the c.”

Your major goal with power series will be (surprise, surprise) to determine where they
converge. Notice that we are not trying to determine if they converge, but rather
where they converge. All power series will converge at the x-value at which they are
centered (x 5 c). To test this, plug x 5 c into the generic power series centered at c:

a x c a a c c a c c an

n

n n
n

n n−( ) = + −( ) + −( ) + =
=

∞

∑ 1

0

2
...

Will power series converge at other points? Possibly. One of three things will happen:

(1) The power series will only converge when x 5 c.

(2) The power series will converge at c and some distance around c (called the radius
of convergence, or ROC). For example, if a series centered about 3 (c 5 3) has a
radius of convergence of 4, then the series will converge when x is between 21
and 7.

(3) The power series will converge for all x (in this case, the radius of convergence
is `).

To find the ROC for a power series, you’ll use the Ratio Test, since power series by
definition contain powers of n, which grow large quickly as n increases. In fact, you
will always test for absolute convergence when finding the ROC to simplify matters.
Once you find the ROC, you will sometimes be asked whether or not the series
converges at the endpoints of that interval. For example, our series centered about 3
with ROC 5 4 have an interval of convergence (IOC) of [21,7),(21,7],[21,7], or (21,7),
depending upon which endpoints cause the series to converge.
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Example 12: Find the radius of convergence for the following power series:

(a)
−( )

+ +

−
•

=

∞

∑ 1
5 4

1

2
0

n n

n

x

n n

Use the Ratio Test to see if the series converges absolutely:

n

x n

n n

x n

n n
→∞

( ) ( )
+

+ + + +

+ +

lim

1

1
2

5 1 4

2 5 4

n

n n x

n n→∞

+ +( )
+ +

lim
2

2

5 4

7 10

As n approaches infinity, n n

n n

2

2

5 4

7 10

+ +
+ +

approaches 1.

n
x

→∞
•lim 1

Remember, the Ratio Test only guarantees convergence if that limit is less than one.
Since the limit is x, the series will only converge if UxU , 1 or 21 , x , 1. The series
is centered at c 5 0 and has ROC 5 1.

(b)
3

10

x

n

n

n +( )=

∞

∑ !

This is another power series centered at c 5 0. To see where it converges, use the
Ratio Test to see if the series converges absolutely:

n

n

n

x
n

x
n

→∞

+
+( )

+( )
lim

!

!

3 1

2

3
1

n

x

n→∞ +
lim

2

Remember that x is some number you’ll plug in later, so even though it’s technically a
variable, you can treat it like a number. Whatever number it is, it’s irrelevant in this
problem. The denominator will grow infinitely large, so

n

x

n→∞ +
=lim

2
0

The Ratio Test only guarantees convergence when the limit is less than 1. In this case,
the limit is 0, which is always less than 1, regardless of what x is. Therefore, this
series converges for all x, and the radius of convergence is `.
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Example 13: On what interval does the series
−( ) +( )

⋅=

∞

∑ 1 2
20

n

n
n

x
n

converge?

Solution: For a change, this power series is centered at c 5 22, since (x 2 (22)) 5

(x 2 c). This question asks for the IOC; we still need to find the ROC first:

n

x
n

n n

x
n

n n

→∞

( )
( )•

( )
•

+ +

+ +

+
lim

2
1

1 2 1

2

2

n

n x

n→∞

+( )
+( )lim

2

2 1

As n approaches infinity, n
n2 1+( ) approaches

1
2

, so the limit is x+2
2 . Remember that

this must be less than 1 in order for the series to converge:

x + <2

2
1

x + <2 2

The radius of convergence is 2. The series is centered at x 5 22, so the series
converges on (22 2 2,22 1 2) 5 (24,0).

We’re not done yet! We need to see if the series converges at the endpoints of the
interval, x 5 24 and x 5 0. Let’s plug each separately into the original series to see
what happens.

x 5 24:

−( ) − +( )
•=

∞

∑ 1 4 2

20

n n

n
n n

−( ) −( )
•=

∞

∑ 1 2

20

n n

n
n n
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Regardless of what n is, the numerator will be positive in this series. In essence, you
will have the series

2

20

n

n
n n •=

∞

∑
If you cancel out the 2n, you have

1

0 nn=

∞

∑
which is the divergent harmonic series. Therefore, the series does not converge for
x 5 24.

x 5 0:

−( ) •

•=

∞

∑ 1 2

20

n n

n
n n

−( )
=

∞

∑ 1

0

n

n
n

This is the alternating harmonic series that satisfies all the conditions of the Alter-
nating Series Test and thus converges. Therefore, the series does converge
when x 5 0.

The IOC for
−( ) +( )

•=

∞

∑ 1 2

20

n n

n
n

x

n
is (24,0].

Because power series contain x’s, they can also be used to define functions:

a x f xn
n

n

= ( )
=

∞

∑
0

As long as the series converges on the interval (c,d), it will return a sum for any value
between c and d; that sum will be the function value for the given input. Functions
defined as power series have two important characteristics:

(1) Derivatives or integrals of functions defined by power series have the same radius
of convergence as the original function. However, the endpoints may act differ-
ently, so you’ll have to check them again. Thus, although the radius of convergence
will be equal, the interval of convergence may not be.

(2) To find the derivative or integral of a function defined by a power series, simply
differentiate or integrate the given power series just as you have done previously.
All of the techniques you have used to find derivatives and integrals of regular
functions still apply for power series functions.
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is the radius of

convergence.
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Example 14: If f(x) 5
3
40

x
n

n

⎛
⎝

⎞
⎠

=

∞

∑ , find the interval of convergence for f(x) and *f(x)dx.

Solution: This power series (centered at x 5 0) is actually just a geometric series with

a 5 1 and r 5
3x
4

. Geometric series only converge when UrU , 1:

3
4

1x <

x < 4
3

The radius of convergence for this series is
4
3

, so the series converges on −⎛
⎝

⎞
⎠

4

3

4

3
, . To

find the interval of convergence, plug in the endpoints:

x 5 2
4
3

:

−( )
=

∞

∑ 1
0

n

n

This is a divergent alternating series.

x 5
4
3

:

1
0

n

n=

∞

∑
This diverges by the nth Term Divergence Test.

Therefore, the IOC for f(x) 5 −⎛
⎝

⎞
⎠

4

3

4

3
, . The next part of the question asks you to find

the IOC for *f(x)dx, so begin by integrating the series with u-substitution:

3

4

x n

dx⎛
⎝

⎞
⎠∫

u
x

du dx du dx= = =3
4

3
4

4
3

; ;

4
3

u dun∫

4
3 1

1
•

+

+
u
n

n

f x dx
n

x n

n

( ) =
+( )

⎛
⎝

⎞
⎠

+

=

∞

∑∫ 4
3 1

3
4

1

0
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The integral will have the same ROC, but we need to recheck the endpoints to see if
the IOC changes:

x 5 2
4
3

:

4
3 1

1
1

0 n
n

n +( ) −( ) +

=

∞

∑
This is a convergent alternating series.

x 5
4
3

:

4
3 1

1
0

1

nn

n

+( ) ( )
=

∞
+∑

4
3 30 nn +=

∞

∑

You can compare this with the series
1
n

and apply the Limit Comparison Test:

lim
n

n

n
→∞

+ =
4

3 3
1

4
3

Therefore, both series diverge.

The interval of convergence for f x dx( ) ⎡

⎣
⎢

⎞
⎠⎟

= −∫ 4
3

4
3

, .
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EXERCISE 3

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

DO NOT USE A GRAPHING CALCULATOR FOR THESE PROBLEMS.

1. Find the radius of convergence for each of the following:

(a)
−( ) •

=

∞

∑ 1 2

0

n n

n

x

n!

(b)
n x

n

n

n

! +( )
=

∞

∑ 3
2

1

2. The series
n x n

n
n

2

4
0=

∞

∑ converges on what interval?

3. If f x x
x x( ) = +( ) +

+( ) +
+( ) +1

1
2

1
3

2 3

…, give the interval of convergence for f ′(x).

ANSWERS AND EXPLANATIONS

1. (a) Apply the Ratio Test to see if the series converges absolutely:

n

x
n

n

x n

n
→∞

+

+

( )
( )

lim
!

!

2

2

1

1

n

x
n→∞ +

=lim
2

1
0

Remember, the n approaches infinity while the x stays the same; therefore,
the limit is 0, regardless of x. Because 0 , 1 (still), this series converges for all
x, and the radius of convergence is `. The interval of convergence is (2`,`), if
you’re curious.

(b) Apply the Ratio Test. Once you simplify the complex fraction, you get

n

n x

n
n

n x

n

n
→∞

+ +

+ +
( ) ( )

( ) ( )

+

•lim
!

!

1 3

1 3

1

2

2

n

n n x

n→∞

+ +

+
( )( )

( )lim
2

2

1 3

1

n

x n n

n n→∞

+ +

+ +
= ∞

( )( )
lim

3

2 1

3 2

2
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Because the degree of n in the numerator is higher, this rational expression
will become infinitely large. Therefore, this limit is never less than 1 and can
never converge, according to the Ratio Test. Remember that all power series
converge—at least for the x value at which they are centered. Therefore, the
series converges only for x 5 23, and the radius of convergence is 0.

2. Begin by finding the radius of convergence:

n

n x n

n

n x n

n
→∞

+( ) • +

+
lim

1 2 1

4 1

2

4

n

x n n

n
x

x

→∞

+ +( )
= =•lim

2

2

2 1

4

1

4 4

According to the Ratio Test, the series converges if

x

4
1<

UxU,4

So, the radius of convergence is 4 for this series centered at 0. The series must
converge on (0 2 4, 0 1 4) 5 (24, 4). Now you have to see whether or not the
series converges at the endpoints by plugging them in for x:

x 5 24:

n n

n
n

2

0

4

4

−( )
=

∞

∑

n n

n

2

0

1• −( )
=

∞

∑
This diverges by the nth Term Divergence Test.

x 5 4:

n n

n
n

2

0

4
4=

∞

∑

n
n

2

0=

∞

∑
This diverges by the nth Term Divergence Test, too, and both endpoints have
failed us.

Therefore, the series n x
n

n

2

0 4=

∞

∑ converges on (24, 4).

a
n
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s
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3. The function and its derivative will both have the same radius of convergence, so
you can find the ROC of the original function first.

n

x n

n

x n

n
→∞

+ +

+
+

( )

( )lim
1 1

1

1

n

n x

n→∞

+
+

( )
lim

1

1

As n approaches infinity, n
n+1 approaches 1.

n
x x

→∞
+ = +lim 1 1

According to the Ratio Test, the series converges if Ux 1 1 U, 1, so the radius of
convergence (as always) is that number on the right side once we’ve solved for
Ux 2 cU ; in this case, the ROC is 1. Since the power series is centered at c 5 21, we
know (so far) that the series converges on the interval (21 2 1, 21 1 1) 5 (22, 0).

Now, it’s time to take the derivative of the series and test the endpoints x 5 22
and x 5 0. Use the Power Rule to take the derivative:

n x

n

n

n

+( ) −

=

∞

∑ 1 1

1

x
n

n

+( ) −

=

∞

∑ 1 1

1

Both endpoints make the series diverge by the nth Term Divergence Test if you
plug them in, so the interval of convergence is (22, 0).

TAYLOR AND MACLAURIN SERIES
At the end of the power series section, we saw that a function can be defined using a
power series. Taylor series are specific forms of the power series that are used to

approximate function values. For example, you know cos p and cos
p

2
by heart, but if

asked to evaluate cos
1
2

, you’d probably be stumped. (Arccos
1
2

is very easy; that is
p

3
, but

cos
1
2

is rough.) We can create a very simple Taylor series that will approximate cos
1
2

very nicely. We will create a power series centered around a very easily obtained value

of cosine that is also close to
1
2

. The best choice is c 5 0, since 0 is close to
1
2

and cos 0 is

easy to evaluate; cos 0 5 1.

Taylor series for f(x) centered about x 5 c:
f c x c

n

n n

n

( ) ( )( )−
=

∞

∑ !0

.

f x f c f c x c
f c x c f c x c( ) ( ) ( )( ) ( )( ) ( )( )= + ′ − + ′′ −

+ ′′′ −
+

2 3

2 3! !
…
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Just like power series, Taylor

series are stressed very

heavily on the AP test.

NOTE
Remember, the notation

f~n!~x! means the nth

derivative of f(x).
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Most of the time, you will not use an infinite series to approximate function values.
Instead, you will use only a finite number of the series’ terms. In these cases, the
Taylor series is often called a Taylor polynomial of degree n (where n is the highest
power of the resulting polynomial). A Maclaurin series is the specific case of a Taylor

series that is centered at c 5 0, resulting in the simpler-looking series
f x

n

n n

n

( ) ( )
=

∞

∑ 0

0
!

.

f x f f x
f x f x f x

n

n n

( ) ( ) ( ) ( ) ( ) ( )= + ′ + ′′ + ′′′ + + +
( )

0 0
0
2

0
3

02 3

! ! !
… …

Example 15: Use a fourth-degree Taylor polynomial of order (degree) 4 centered at 0

to approximate cos S1
2D.

Solution: Since this Taylor series is centered at c 5 0, it is actually a Maclaurin
series. We will have to use the Maclaurin series expansion up to n 5 4, since the
requested degree is 4. In order to find the series, we will have to find f(0), f ′(0), f ′′(0),
f ′′′ (0), and f(4)(x):

f(x) 5 cos x; f(0) 5 1

f ′(x) 5 2sin x; f ′(0) 5 0

f ′′(x) 5 2cos x; f ′′(0) 5 21

f ′′′(x) 5 sin x; f ′′′(0) 5 0

f(4)(x) 5 cos x; f(0) 5 1.

To get the Maclaurin polynomial, plug these into the Maclaurin formula and stop
when n 5 4:

cos
! ! !

x f f x
f x f x f x

≈ + ′ +
′′

+
′′′

+( ) ( ) ( ) ( ) ( )( )
0 0

0

2

0

3

0

4

2 3 4 4

cos
! ! !

x x x x x≈ + − + +• • •1 0
2

0
3

1
4

2 3 4

cos
! !

x
x x≈ − +1
2 4

2 4

The resulting polynomial will give you the approximate value of cos x. To find the

approximate value of cos
1
2

, plug
1
2

in for x:

cos
! !

1

2
1

2 4

1
2

2 1
2

4

≈ −
( )

+
( )

cos .
1

2
1

1

8

1

384
8776041667≈ − + ≈
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All Maclaurin series are also

Taylor series; they are just

special Taylor series.
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The actual value for cos
1
2

(according to the calculator) is .8775825619, so the approxi-

mation wasn’t too shabby at all. Just like Riemann sums, the accuracy of your
prediction will increase as you increase the number of terms in your Taylor polyno-
mial; in other words, the greater the n, the more accurate the result. Below, the graph
of y 5 cos x is compared with the graphs of three Maclaurin polynomials for cos x
centered about 0.

Maclaurin polynomial,
n = 0

Maclaurin polynomial,
n = 2

Maclaurin polynomial,
n = 4

y = 1

y = 1 − x2

2!

y = 1 − x2

2!
x4

4!

A couple of things are clear from the graphs. First of all, the greater the degree of the
polynomial, the closer its graph is to the graph of cos x. However, none of the
approximations are very good for approximating values far away from x 5 0. If you
need to approximate other values, you will have to use a Taylor polynomial centered
about a different value. For example, to estimate cos (3.2), you might use a Taylor
series centered about c 5 p, since p is close to 3.2.

Although it wasn’t too difficult to come up with the Maclaurin polynomial for cos x,
you shouldn’t have to construct it like that on the AP test. It is one of four functions for
which you should have the Maclaurin expansions memorized—doing so will save you
much-needed time.

Maclaurin Series to Memorize

cos
! ! !

x
x x x= − + − +1
2 4 6

2 4 6

…

sin
! ! !

x x
x x x= − + − +

3 5 7

3 5 7
…
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A Taylor series is

guaranteed to give the

exact function value only

for x 5 c, the value around

which the series is

centered. All other values

will likely be

approximations.
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e x
x x xx = + + + + +1
2 3 4

2 3 4

! ! !
…

1

1
1 2 3 4

−
= + + + + +

x
x x x x …

Not all of the series on the AP test will be based on these four functions, but most of
them will. Any other series can be constructed using the method of Example 15.

Example 16: Derive the Maclaurin series for sin x from the Maclaurin series for cos x.

Solution: We know that *cos x dx 5 sin x. Taylor series act just like their parent
functions; if you integrate each term of the cos x Maclaurin series, you will end up
with the Maclaurin series for sin x. This is not only useful for impressing your friends,
however.

cos
! !

x dx
x x

dx ∫ ∫= − + +
⎛
⎝⎜

⎞
⎠⎟

1
2 4

2 4

…

sin
! !

x x
x x= − + +
• •

3 5

3 2 5 4
…

sin
! !

x x
x x= − + +

3 5

3 5
…

The resulting series is exactly the one for sin x that you are to memorize.

Example 17: Determine a power series for sin x2.

Solution: Besides acting like their parent functions, Taylor series are also handy
because they are very flexible. We already know the Maclaurin series for sin x (and
Taylor and Maclaurin series are just special power series anyway). To find the series
for x2, just plug x2 in for x. That’s all there is to it.

sin
! ! !

x x
x x x= − + − +

3 5 7

3 5 7
…

sin
! ! !

x x
x x x

2 2
2 3 2 5 2 7

3 5 7
= − + − +

( ) ( ) ( )
…

sin
! ! !

x x
x x x2 2

6 10 14

3 5 7
= − + − +…

If the question had asked you to find a series for sin (2x 1 3), all you would do is plug
(2x 1 3) in for x. Simple!
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ALERT!
Each of the Maclaurin

series listed will converge

on (2`,`), except for
1

1 2 x
.

That series has an interval of

convergence of (21,1) and

will not work well for x’s

outside that interval.

ALERT!
Even though the sin x series

is written “x 2
x3

3!
+

x5

5!
,” the

next term in the series, 2
x7

7!
,

is still negative. The series still

alternates; it’s just common

notation to write a “1” at

the end of an infinite series,

regardless of the sign of the

next term.
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Like alternating series, there is a way to tell how accurately your Taylor polynomial
approximates the actual function value: you use something called the Lagrange
remainder or Lagrange error bound. It is the trickiest part of Taylor series.

Lagrange Remainder: If you use a Taylor polynomial of degree n centered about c to
approximate the value x, then the actual function value falls within the error bound

R x
f z x c

nn

nn

( ) ( )( )
( )=

−
+

+( ) +1 1

1 !

where z is some number between x and c.

Translation: Similar to alternating series, the error bound is given by the next term in
the series, n 1 1. The only tricky part is that you evaluate f (n11), the (n 1 1)th
derivative, at z, not c. What the heck is z, you ask? It is the number that makes
f(n11)(z) as large as it can be. This error bound is supposed to tell you how far off you
are from the real number, so we want to assume the worst. We want the error bound
to represent the largest possible error. In practice, picking z is relatively easy—really,
you’ll see.

Example 18: Approximate cos (.1) using a fourth-degree Maclaurin polynomial, and
find the associated Lagrange remainder.

Solution: We already know the fourth-degree Maclaurin polynomial for cosine, so
plug .1 in for x to get the approximation:

cos
! !

x
x x= − +1
2 4

2 4

cos .
.

!
.

!
. 1 1

1
2

1
4

99500416667
2 4

= − + ≈

The associated Lagrange remainder for n 5 4 (denoted R4(x)) is

R x
f z x c

4

5 5

5
( ) = ( ) −( )( )

!

The fifth derivative of cos x is 2sin x, so f(5)(z) 5 2sin z. Now, plug in x 5 .1 and c 5 0
to get

R
z

4

5

1
1

5
.

sin .
!

( ) = −( )( )
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We need 2sin z to be as large as it can possibly be. The largest value of 2sin x is 1,
since 2sin x, like sin x, has a range of [21,1]. By assuming 2sin z is the largest
possible value, we are creating the largest possible error; so, plug in 1 for 2sin z. The
actual remainder will be less than this largest possible value.

R4

5 5
1

1 1
5

1
5

0000000833.
.
!

.
!

.( ) < = =•

Therefore, our approximation of .99500416667 is off by no more than .0000000833. In
fact, it is only off by .0000000014.
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f~n11!~z! will often have a

value of 1 on AP problems,

making the Lagrange

remainder simply the value

of the next term in the

series, as it turned out to be

in Example 18.
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EXERCISE 4

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR PROBLEMS 3 AND 4.

1. (a) Verify that the Maclaurin expansion for f x e x
x xx( ) = + + + + is 1
2 3

2 3

! !
…

(b) Show that the Maclaurin series for ex (like the function it represents) is its
own derivative.

2. (a) Create a Maclaurin series for g(x) 5 cos (ex).

(b) Use a sixth-degree Mauclaurin series to approximate cos e2.

(c) Explain why the approximation in 2(b) is so horrid.

3. Estimate the value of =1.3 using the third-degree Taylor polynomial for y 5 =x
centered about x 5 1.

4. Let P(x) 5 4 2 (x 2 2) 1 3(x 2 2)2 2 5(x 2 2)3 be a Taylor polynomial of degree 3
for f(x) centered about 2.

(a) What is f ′′(2)?
(b) Use a second-degree Taylor polynomial to approximate f ′(2.1).

ANSWERS AND EXPLANATIONS

1. (a) The Maclaurin series is
f x

n

n n

n

( ) ( )
=

∞

∑ 0

0
!

. To write out the expansion, we’ll

need f(0), f 8(0), f 88(0), etc.

f(x) 5 ex; f(0) 5 e0 5 1

f 8(x) 5 ex; f 8(x) 5 e0 5 1

In fact, each derivative of ex is ex, and each derivative’s resulting value at
x 5 0 will be 1. Therefore, the series is

f f x
f x f x

0 0
0

2

0

3

2 3

( ) + ′( ) + ′′( ) + ′′′( ) +
! !

…

1 1 1
2

1
3

2 3
+ + + +•

• •x x x
! !

…

which is the expansion we all know and love.
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(b) Find the derivative of each term of the series separately:

d

dx
e

d

dx
x

x x xx( ) = + + + + +
⎛
⎝⎜

⎞
⎠⎟

1
2 3 4

2 3 4

! ! !
…

d

dx
e

x x xx( ) = + + + + +0 1
2
2

3
3

4
4

2 3

! ! !
…

d

dx
e x

x xx( ) = + + + +1
2 3

2 3

! !
…

2. (a) You already know the Maclaurin series for cos x, so just plug ex in for each x:

cos
! !

e
e e

x
x x

( ) = −
( )

+
( )

+1
2 4

2 4

…

cos
! !

e
e ex

x x

( ) = − + +1
2 4

2 4

…

(b) Based on your work for 2(a), the sixth-degree Maclaurin polynomial for cos x
is

cos
! ! !

e e e ex
x x x

( ) ≈ − + −1
2 4 6

2 4 6

To approximate cos e2, plug 2 in for x:

cos
! ! !

.e
e e e2

4 8 12

1
2 4 6

128 1408≈ − + − ≈ −

Whoa, how can cosine have a value lower than 21? Yikes!

(c) Remember that a Taylor series is only accurate around the value at which it
is centered. Because this is a Maclaurin series, it’s centered at c 5 0. Using
this approximation to evaluate cos (e2) is irresponsible, since e2 ≥ 7.389, which
is nowhere close to c 5 0. As you can see from the graph of y 5 cos (ex) and the
Maclaurin series in 2(b), the graphs are nowhere close to each other as you
get farther away from x 5 0.

y = 1 − +e2x

2!
e4x

4!
+ e6x

6!

cos (ex )

a
n

sw
e

rs
e
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rc

ise
s
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3. To find the third-degree Taylor polynomial for f(x) centered at c 5 1, we’ll need
the value of the first three derivatives of f evaluated at 1; these are required by
the formula.

f(x) 5 x1/2; f(1) 5 1

f 8(x) 5
1
2

x21/2; f 8(1) 5
1
2

f 88(x) 5 2
1
4

x23/2; f 88(1) 5 2
1
4

f 888(x) 5
3
8

x25/2; f 888(1) 5
3
8

Therefore, the Taylor polynomial is

x f f x
f x f x≈ ( ) + ′( ) −( ) + ′′( ) −( ) + ′′′( ) −( )

1 1 1
1 1

2

1 1

3

2 3

! !

x x x x
≈ + − −

−
+

−( ) ( )
• •

1 1
2

1

4 2

3 1

8 3

2 3

! !

x
x x x≈ + − − −( ) + −( )

1
1

2
1

8
1

16

2 3

Finally, plug in x 5 1.3 to get the approximation of 1.1404375, which is relatively
close to the actual value of 1.140175.

4. (a) We know that the squared term in any Taylor polynomial is given by

′′( ) −( )f c x c 2

2!
. In this problem, that term should be ′′( ) −( )f x2 2

2

2

!
. In the

actual expansion, the squared term is 3(x 2 2)2. Therefore,

′′( ) −( ) = −( )f x
x

2 2

2
3 2

2
2

!

′′( ) =f 2

2
3

!

f 88(2) 5 6

(b) This question asks you to approximate the value of the derivative of f. Since a
Taylor series acts like its parent function, you can approximate f 8(x) by taking
the derivative of each term:

P8(x) 5 21 1 6(x 2 2) 2 15(x 2 2)2

This is the second-degree polynomial to which the problem is alluding. You
can use it to find your approximation since 2.1 is close to 2, the value at which
the series is centered:

f 8(2.1) ' 21 1 6(.1) 2 15(.1)2 ' 2.55

Isn’t that bizarre? We don’t even know the function that P approximates, but
we can still approximate its derivative.
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TECHNOLOGY: VIEWING AND CALCULATING SEQUENCES
AND SERIES WITH A GRAPHING CALCULATOR
Your calculator can serve three major functions to assist you in this chapter: it can graph
sequences, graph series, and calculate partial sums. Be warned ahead of time: The
calculator commands to accomplish these tasks are not as friendly as the commands
used to evaluate a definite integral. It may take a bit of practice before these techniques
become second nature.

In the first problem set, way back in the beginning of this chapter, you had to

determine whether or not the series
1 3

4 5 2

2 3

3
1

+ +
− +=

∞

∑ n n

n nn

converged. Hopefully, this prob-

lem is much easier now; the series clearly diverges because of the nth Term Diver-
gence Test, since

n

n n

n n→∞

+ +
− +

=lim
1 3

4 5 2

1
4

2 3

3

In order to show that the sequence approaches
1
4

as n approaches infinity, you’ll have

to change the [Mode] to “seq”uence. This changes the [Y5] screen to the “u(n)” screen;
type the sequence in for u(n). (The [x,t,u,n] button will now display an “n.”)

If you choose friendly [Window] settings and press [Graph], the sequence clearly levels

off. If you enter a second sequence of
1
4

for v(n), it’s easier to see that the sequence does

indeed begin to level off at
1
4

.
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NOTE
The [Window] settings for

my graph are nMin 5 1,

nMax 5 50, PlotStart 5 1,

PlotStep 5 1, Xmin 5 0,

Xmax 5 50, Xscl 5 5, Ymin

5 .1, Ymax 5 .5, and

Yscl 5 1.
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Remember that although the sequence converges to
1
4

, the series will diverge by the

nth Term Divergence Test. In order to visualize this, we can graph that series. To do
so, however, you’ll need to make some minor setting changes on your calculator. First
of all, go to the [Mode] screen and select “Par”ametric mode and “Dot” rather than
connected. Now, go to the [Y5] screen and set X1T 5 T. The Y1T is the tricky part:

To get the “sum” command, you need to press [2nd]→[Stat]→“Math”→“sum”, (and the
“seq” command comes from [2nd]→[Stat]→“Ops”→ “seq”. (The “N” used is the letter N,
which is the result of pressing [Alpha]→[Log]. The syntax for a sequence is seq(se-
quence of n,n,whatever n5 in sigma, T,1).

Choose nice [Window] settings for the graph (it might take a couple of tries to pick
good settings), and you get a good picture of the series:

This series is definitely divergent—it approaches no limiting height. Furthermore, at
approximately n 5 10 (on the graph t 5 10), the terms progress almost in a linear
fashion. Can you guess what the slope of that line is? I’ll spare you the suspense: it’s
1
4

, since the sequence tells us we will be adding approximately
1
4

to each term forever.

If you aren’t all that impressed with the series-graphing capability of the calculator
(we really did have to force it, didn’t we?), then you’ll probably be equally unimpressed
with the calculator’s ability to calculate partial sums. The process is very similar to
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NOTE
My [Window] settings for

this graph are Tmin 5 1,

Tmax 5 35, Tstep 5 1, Xmin

5 0, Xmax 5 35, Xscl 5 5,

Ymin 5 5, Ymax 5 15, and

Yscl 5 1.
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the series graph. Although the series
1 3

4 5 2

2 3

3
1

+ +
− +=

∞

∑ n n

n nn

diverges, you can still find the

sum of its first n terms. Let’s use the calculator to find S200. You do not have to use the
[Y5] screen, as this is simply a command you can type out on the regular screen:

Therefore, S200 ' 58.869. You can easily tell that this series diverges if you calculate
S300 ' 84.173. Clearly, the series is not “leveling out” and approaching a limiting
value even when the n is this large. However, the calculator does have its limitations.
If you type too large a value for n, you will get an error message. Texas Instruments
technicians explain that this occurs because the calculator is “tired of adding so many
dang numbers, for Pete’s sake . . . let it do something interesting for a change.”
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EXERCISE 5

Directions: Solve each of the following problems. Decide which is the best of
the choices given and indicate your responses in the book.

YOU MAY USE A GRAPHING CALCULATOR FOR PROBLEMS 6 AND 7 ONLY.

1. Determine whether or not the series 1
1

1

+⎛
⎝

⎞
⎠

−

=

∞

∑ n

n

n

converges, and justify your
answer.

2. Find the interval of convergence for the power series:

1
3 2 9 6 27

2 3
− + − +

• •

x x x …

3. If P(x) 5 2 1 3(x 1 1) 2 6(x 1 1)2 is a Taylor polynomial for f(x), write a

third-degree Taylor polynomial for m x P t dt
x

( ) = ( )
−∫ 1

.

4. Does the series
−( )

+( )

+

=

∞

∑ 1

3 2

1

0

n

n
n !

converge absolutely, converge conditionally, or di-
verge?

5. Find the value of a so that the radius of convergence for the series

a x

n

n n

n

2

2
1

1

3

( ) −( )

=

∞

∑ is
1
4

and a . 0.

6. If g(x) 5 esin x, use a fourth-degree Maclaurin polynomial to approximate g′(.3).

7. Find the sum of each of the following series. If you cannot find the exact sum, find
it accurate to four decimal places:

(a) 3
3
2

3
4

3
8

− + − +…

(b) −( ) •

=

∞
−∑ 1

1

3n

n

ne 

(c)
1 1

3
1

n n
n

−
+

⎛
⎝

⎞
⎠

=

∞

∑

8. James’ Diabolical Challenge: Prove the convergence or divergence of the

series
3

3
1πnn=

∞

∑ using four different convergence tests.
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ANSWERS AND EXPLANATIONS

1. The nth term of the series is
1

1 1+( )n

n ; as n approaches infinity, you get
1
e
, which is

not 0. Therefore, this series fails the nth Term Divergence Test and therefore

diverges.

2. This is the series
−( )

•=

∞

∑ 1

3
0

n n

n
n

x

n!
. To find the interval of convergence, use the Ratio

Test to see where the series converges absolutely:

n

n

n

n

n

x

n

n

x→∞

+

• + •
+( )lim

!

!1

11 3

3

n

x

n→∞ +( )lim
3 1

Regardless of x, this limit will be 0 as the denominator will grow infinitely large.
Therefore, this limit is always less than 1, so this series always converges. The
interval of convergence will be (2`,`). No need to test endpoints, since an
interval can’t be closed at an unbounded (infinite) endpoint.

3. To find m(x), integrate:

2 3 1 6 1 2

1
+ +( ) − +( )( )−∫ t t dt

x

2
3
2

1
6
3

12 3
1

t t t
x

+ +( ) − +( )
−

Apply Fundamental Theorem Part One:

2
3
2

1 2 1 2 1 02 3x x x+ +( ) − +( ) − −( ) +( )
All of the polynomial terms will cancel out when you plug in x 5 21, except for
2(21). You can write your final answer by simplifying:

2 1 2x 1
3
2

(x 1 1)2 2 2(x 1 1)3

or by factoring out a 2.

2(x 1 1) 1
3
2

(x 1 1)2 2 2(x 1 1)3

Either of those answers is acceptable.
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s
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4. First, ignore the fact that it is an alternating series to see if the convergence is
absolute. The Ratio Test serves the best to test for convergence because of the
factorial.

n

n

n
→∞

( )⎛
⎝⎜

⎞
⎠⎟

( )

+ +

+
lim

!

!

1
3 1 2

1
3 2

n

n
n→∞

+( )
+( )lim

!
!

3 2
3 5

n n n n→∞ +( ) +( ) +( )lim
1

3 5 3 4 3 3

As n approaches infinity, this value will grow extremely small. Each of the
binomials in the denominator will be huge, and their product will be even larger.
1 divided by a high number is 0. Since 0 , 1, this series converges absolutely.
Remember, this means that the original alternating series converges automati-
cally.

5. Find the radius of convergence as usual, using the Ratio Test:

n

a
n

x n

n

a
n

x n

n

→∞

( ) +
−( ) +

+( )

( ) −( )
lim

2 1
1 1

3 1 2

2 1

3 2

n

a x n

n→∞

−( )
+( )lim

2 2

2

1

1

As n approaches infinity, the limit of
n

n+( )1 2 is 1, making the overall limit

Ua2(x 2 1)U
This limit must be less than 1 to make the series converge.

Ua2(x 2 1)U, 1

x
a

− <1
1
2

We also know that the radius of convergence is
1
4

; we had a shortcut that said

whenever we solve for Ux 2 cU , the number on the other side of the inequality is
the radius of convergence. Thus,

1 1
42a

=

a2 5 4

a 5 2

a cannot equal 22, since the problem specified that a . 0.
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6. We already know the Maclaurin series for ex, so plug sin x in for x to get the
Maclaurin polynomial for esin x:

e x
x x xx = + + + + +1
2 3 4

2 3 4

! ! !
…

g x e x
x x xx( ) = = + + + + +sin sin

sin
!

sin
!

sin
!

1
2 3 4

2 3 4

…

If you read the question carefully, you see that it asks you to find an approxima-
tion for g8(x), the derivative of the series above. However, the series above has one
too few terms written. Since the equation above is of degree 4, its derivative will
have degree 3, so add another term when you take the derivative.

′( ) ≈ + + + +g x x
x x x x x x x x

cos
sin cos

!

sin cos

!

sin cos

!

sin cos

!

2

2

3

3

4

4

5

5

2 3 4

Use this ugly monster to approximate g′(.3) by plugging .3 in for x. The resulting
approximation is 1.2837864. The actual value for g′(x) 5 (cos x)(esin x) 5

1.2838053.

7. (a) This is the geometric series 3 1
20

−⎛
⎝

⎞
⎠

=

∞

∑
n

n

. The infinite sum is given by

S
a

r
=

−
=

− −( )1
3

1 1
2

S = =  3
23

2

(b) This is a convergent alternating series, according to the Alternating Series
Test. However, you cannot usually find the sum of such a series (with the
exception of part (a) above). Instead, remember that the remainder (or error
bound) in an alternating series is the absolute value of the first omitted term.
Therefore, we should calculate the values of a few terms in the alternating
series until one of the term’s values ensures accuracy to four decimal places.

a
e e

2 2 8
1 1

0003354633= = = .

The term a2 is the remainder for S1, the sum of the n 5 1 term. The above
means that S1 is accurate to three decimal places, but the fourth decimal
place could be off by as much as 3, so try a3:

a
e e3 33 27

121 1 1 880 10= = = × −.

This one definitely cinches it. The sum S2 will be accurate to 11 decimal
places. All that remains is to find S2:

S a a
e e2 1 2 8
1 1 3675= + = − + ≈ −.

If you are dubious, use your calculator to find S500, and you’ll find that we
were quite accurate, even after only two terms.
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(c) This is a telescoping series, and you can find the exact sum by expanding the
series to determine which terms will cancel out as n approaches infinity:

1 1
3

1 1
4

1
2

1
5

1
3

1
6

1
4

1
7

1
n n

n

− + = − + − + − + − +⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟=

∞

∑ …

Every number from
1
4

lower will be canceled out by its opposite as the sum

gets longer and longer. Therefore, the exact sum is composed of the only
numbers that do not get canceled: 1 1 8333331

2
1
3

11
6+ + = ≈ . .

8. Okay, so four tests is a little overkill; although it’s true that only one is necessary,
this problem wouldn’t be diabolical otherwise, would it?

P-series Test: If you factor the
3
p

out of the series, you get 3 1
3

1π nn=

∞

∑ . 1
3n

is a p-series

with p 5 3, so the series converges. The fact that you multiply the sum by
3
p

when

you’re finished does not change the fact that the sum is a finite number.

Integral Test: The series will converge if

b

b
x dx

→∞

−∫⎛
⎝⎜

⎞
⎠⎟lim

3 3

1π
exists.

b x

b

→∞
− ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟lim

3

2

1
2 1π

b b→∞
− −⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟lim

3

2

1
12π

− −( ) =3
2

1 3
2π π

Because the limit is a finite number, both the integral and the series converge.

Limit Comparison Test: Compare the series to
1
n3.

n

n

n
→∞

=lim

3
3

1
3

3π
π

 

Because the limit is a finite number, and
1
n3 is a convergent p-series, then both

series must converge.

Comparison Test: Each term in the series 3
3

1 πnn=

∞

∑ is less than the corresponding

term in the series 1
3

1 nn=

∞

∑ . You know this because
3
p

, 1. When you multiply
1
n3 by

a value less than one, the result is smaller than
1
n3. Notice that

1
n3 is a convergent

p-series. Because the terms of 3
3

1 πnn=

∞

∑ are less than a convergent series, it must

also converge by the Comparison Test.
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SUMMING IT UP
• A sequence is basically a list of numbers based on some defining rule.

• The Comparison Test is also called the Direct Comparison Test.

• The trickiest part of the Comparison Test is deciding what to compare the given
series to. Most of the time, you pick a series that is close to, but simpler than, the
given series.

• When choosing the Comparison Series, use only the highest powers of n in the
numerator and denominator of the original series.
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PRACTICE TEST 3 AP Calculus BC
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ANSWER SHEET PRACTICE TEST 1

Section I, Part A
1. OA OB OC OD OE

2. OA OB OC OD OE

3. OA OB OC OD OE

4. OA OB OC OD OE

5. OA OB OC OD OE

6. OA OB OC OD OE

7. OA OB OC OD OE

8. OA OB OC OD OE

9. OA OB OC OD OE

10. OA OB OC OD OE

11. OA OB OC OD OE

12. OA OB OC OD OE

13. OA OB OC OD OE

14. OA OB OC OD OE

15. OA OB OC OD OE

16. OA OB OC OD OE

17. OA OB OC OD OE

18. OA OB OC OD OE

19. OA OB OC OD OE

20. OA OB OC OD OE

21. OA OB OC OD OE

22. OA OB OC OD OE

23. OA OB OC OD OE

24. OA OB OC OD OE

25. OA OB OC OD OE

26. OA OB OC OD OE

27. OA OB OC OD OE

28. OA OB OC OD OE

Section I, Part B
29. OA OB OC OD OE

30. OA OB OC OD OE

31. OA OB OC OD OE

32. OA OB OC OD OE

33. OA OB OC OD OE

34. OA OB OC OD OE

35. OA OB OC OD OE

36. OA OB OC OD OE

37. OA OB OC OD OE

38. OA OB OC OD OE

39. OA OB OC OD OE

40. OA OB OC OD OE

41. OA OB OC OD OE

42. OA OB OC OD OE

43. OA OB OC OD OE

44. OA OB OC OD OE

45. OA OB OC OD OE

--------------------------------------------------------------------------------------------------------------------------------------------
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Practice Test 1: AP
Calculus AB

SECTION I, PART A

55 Minutes • 28 Questions

A CALCULATOR MAY NOT BE USED FOR THIS PART OF THE EXAMINATION.

Directions: Solve each of the following problems, using the available
space for scratchwork. After examining the form of the choices, decide
which is the best of the choices given and fill in the corresponding oval on
the answer sheet. No credit will be given for anything written in the test
book. Do not spend too much time on any one problem.

In this test: Unless otherwise specified, the domain of a function f is
assumed to be the set of all real numbers x for which f(x) is a real
number.

1. e dxx2

0

1
=∫

(A) e2 2 1

(B) e2

(C) e2

2

(D) e2 1

2

−

(E) 2e2 2 2

2. If f(x) 5 tan(e sinx ), then f8(x) 5

(A) − ( )e x ex xsin sincos sec2

(B) e x ex xsin sincos sec2 ( )
(C) − ( ) ( )e e ex x xsin sin sinsec tan

(D) e ex xsin sinsec2 ( )
(E) e e ex x xsin sin sinsec tan( ) ( )

3. If F x t dt
x( ) = ∫ 2

2

2

, then F(2) 5

(A) 64

3

(B) 64

(C) 16

3

(D) 16

(E) 56

3

p
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c
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e
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4. If f(x) 5 tan2x 1 sin x, then ′⎛⎝
⎞
⎠ =f

π
4

(A) 4 2

2

+

(B) 2 2

2

+

(C) 8 2

2

+

(D) 8 2

2

−

(E) 4 2

2

−

5. At which of the following points is
the graph of f(x) 5 x4 2 2x3 2 2x2 2 7
decreasing and concave down?

(A) (1,210)
(B) (2,215)
(C) (3,2)
(D) (21,26)
(E) (22,17)

6. Which of the following are an-
tiderivatives of f(x) 5 cos3x sinx ?

I. F x
x( ) = − cos4

4

II. F x
x x( ) = −sin sin2 4

2 4

III. F x
x( ) = −1

4

4cos

(A) I only
(B) II only
(C) III only
(D) I and III
(E) I, II, and III

7. d

dx
e x⎛

⎝
⎞
⎠ ( ) =sin 2

(A) 2 cos2xesin2x

(B) cos2xesin2x

(C) 2esin2x

(D) 2cos2xesin2x

(E) 2 2cos2xesin2x

QUESTIONS 8 AND 9 REFER TO THE
GRAPH BELOW OF THE VELOCITY OF A
MOVING OBJECT AS A FUNCTION OF
TIME.

8. At what time has the object reached
its maximum speed?

(A) 0
(B) 2
(C) 3
(D) 5
(E) 6

9. Over what interval does the object
have the greatest acceleration?

(A) [0,2]
(B) [2,3]
(C) [2,4]
(D) [3,5]
(E) [5,6]

10. An equation of the line tangent to

y 5 sinx 1 2cosx at Sp

2
, 1D is

(A) 2x 2 y 5 p 2 1
(B) 2x 1 y 5 p 1 1
(C) 2x 2 2y 5 2 2 p

(D) 4x 1 2y 5 2 2 p

(E) None of the above
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11. The graph of the function f is given
below.

Which of these graphs could be the
derivative of f ?

(A)

(B)

(C)

(D)

(E)

12. The function f is given by f(x) 5 x4 2

8x3 1 24x2 2 32x 1 15.

All of these statements are true EX-
CEPT

(A) 1 and 3 are zeros of f.
(B) f ′ (2) 5 0.
(C) f ′′ (2) 5 0.
(D) (2, 2 1) is a point of inflection

of f.
(E) (2, 2 1) is a local minimum of f.

13. The function f is given by f(x) 5

3e sinx .

f is decreasing over which interval?

(A) [0,p]

(B) – ,
π π
2

⎡
⎣⎢

⎤
⎦⎥2

(C)
π π
2

3
,  

2
⎡
⎣⎢

⎤
⎦⎥

(D)
3
2

5π π
,

2
⎡
⎣⎢

⎤
⎦⎥

(E) [2`,`]
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14. Let f and g be twice differentiable
functions such that f8(x) ≥ 0 for all x
in the domain of f. If h(x) 5 f(g8(x))
and h8(3) 5 2 2, then at x 5 3

(A) h is concave down.
(B) g is decreasing.
(C) f is concave down.
(D) g is concave down.
(E) f is decreasing.

15. In the diagram below, f has a vertical
tangent at x 5 1 and horizontal tan-
gents at x 5 2 and at x 5 5. All of
these statements are true EXCEPT

1 3

f

2 4 5 6

(A) lim lim
x x

f x f x
→ →+ −

( ) = ( )
3 3

(B) lim
x

f x f
→

( ) = ( )
5

5

(C) lim
h

f h f

h→

+ −
=( ) ( )

0

2 2
0

(D) lim lim
h h

f h f

h

f h f

h→ − → +

+ −
=

+ −( ) ( ) ( ) ( )
0 0

4 4 4 4

(E) lim lim
. .

.x h
f x

f h f

h→ →
( ) ( ) ( )>

+ −
2 5 0

2 5 2 5

16. What is the area of the region
bounded by the curves y 5 x3 1 1
and y 5 2 x2 from x 5 0 to x 5 2?

(A) − 26
3

(B) − 10
3

(C)
10
3

(D)
20
3

(E)
26
3
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17. Determine
dy
dx

for the curve defined

by x3 1 y3 5 3xy.

(A) x
y x

2

2 −

(B) x
x y

2

2−

(C) y x
y x

−
−

2

2

(D)
1

1
−
−

x
y

(E) x y
y x

2

2

−
−

18. sin
 

2
0

4

x dx =∫
π

(A) 2 1

(B) − 1
2

(C) 0

(D)
1
2

(E) 1

19. The graph of f(x) 5 (x 2 4)3(3x 2 1)3

has a local minimum at x 5

(A) 2 4

(B) − 1
3

(C)
1
3

(D)
13
6

(E) 4

20. What is the average value of y 5

sin2x over π π
4 ,  3[ ] ?

(A) − 6
π

(B) − 1
6π

(C)
3
π

(D) 3p

(E)
6
π

21. lim
x

x x
x x→∞
+ −

+ −
=5 7 3

2 3 11

2

2

(A) − 3
2

(B) − 5
11

(C) 0

(D)
7
3

(E) It is nonexistent.
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22. The graph of f(x) 5
1

12

−
−
x

x
is concave

down over which interval(s)?

(A) ( 2 `, 2 1)
(B) ( 2 1, `)
(C) (21,1) ∪ (1,`)
(D) (2`,1)
(E) (2`,`)

23.
y = x2

y = √x√

1

1

The area of the shaded region in the
diagram above is equivalent to

(A) x x dx2

0

1
−( )∫

(B) π x x dx4

0

1
−( )∫

(C) x x dx−( )∫ 2

0

1

(D) 2 2

0

1
π x x x dx−( )( )∫

(E) π x x dx−( )∫ 2 2

0

1

24. lim
h

hh 0→

+ −
=( )tan tan2 8 4

π π

(A)
3
2

(B) 2

(C) 2 2

(D) 4

(E) 4 2

25. ln22

1

x
x

dx
e ⎛

⎝⎜
⎞

⎠⎟∫ =

(A) 7
3 2e

(B)
4
2e

(C) 2

(D)
7
3

(E)
8
3

26. A particle’s position is given by s(t) 5

sint 1 2cost 1
t
p

1 2.

The average velocity of the particle
over [0,2p] is

(A) − +π
π

1

(B) − 1
3

(C) 0

(D)
1
π

(E) π
π
+1

27. then

lim
lnx

f x
→

( ) =
2

(A)
1
2

(B) ln 2

(C) 2

(D) e2

(E) It is nonexistent.
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28.

10

h

θ

In the triangle shown above, u is in-
creasing at a constant rate of 15

26 ra-
dians per minute.

At what rate is the area of the tri-
angle increasing, in square units per
minute, when h is 24 units?

(A)
338

5

(B) 39

(C)
195

4

(D) 182

(E) 195

STOP
END OF SECTION I, PART A. IF YOU HAVE ANY TIME LEFT, GO OVER
YOUR WORK IN THIS PART ONLY. DO NOT WORK IN ANY OTHER PART
OF THE TEST.
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SECTION I, PART B

50 Minutes • 17 Questions

A GRAPHING CALCULATOR IS REQUIRED FOR SOME QUESTIONS IN THIS PART OF
THE EXAMINATION.

Directions: Solve each of the following problems, using the available space
for scratch work. After examining the form of the choices, decide which is the
best of the choices given and fill in the corresponding oval on the answer
sheet. No credit will be given for anything written in the test book. Do not
spend too much time on any one problem.

In this test: (1) The exact numerical value of the correct answer does not
always appear among the choices given. When this happens, select from
among the choices the number that best approximates the exact numerical
value. (2) Unless otherwise specified, the domain of a function f is assumed to
be the set of all real numbers x for which f(x) is a real number.

29. If f x e
x

x( ) = 3

2sin
then f ′(x) 5

(A) e x x x
x

x3
2 2

2 2

3 2sin cos
sin

−

(B) 3
2

3

2

e
x x

x

cos

(C) e x x x
x

x3
2 2

2 2

2 3cos sin
sin

−

(D) e x x x
x

x3
2 2

2 2

3 2sin cos
sin

+

(E) − 3
2

3

2

e
x x

x

cos

30. Which of the following is an equation
for a line tangent to the graph of f(x)
5 e2x when f ′(x) 5 10?

(A) y 5 10x 2 8.05
(B) y 5 x 2 8.05
(C) y 5 x 2 3.05
(D) y 5 10x 2 11.5
(E) y 5 10x 2 3.05

31.

2 4 6−1

−2

−3

−4

1

2

3

4
f ′

The graph of the derivative of f is
shown above.

Which of the following statements is
true?

(A) f(0) , f(6) , f(2) , f(4)
(B) f(6) , f(0) , f(2) , f(4)
(C) f(0) , f(2) , f(4) , f(6)
(D) f(2) , f(0) , f(6) , f(4)
(E) f(0) , f(2) , f(6) , f(4)
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32. Let f be a function such that

lim
h

f h f
h→

+( ) − ( )
=

0

5 5
3.

Which of the following must be true?

I. f(5) 5 3

II. f ′(5) 5 3

III. f is continuous and differentiable
at x 5 5.

(A) I only
(B) II only
(C) III only
(D) I and II
(E) II and III

33. The function f whose derivative is
given by f ′(x) 5 5x3 2 15x 1 7 has a
local maximum at x 5

(A) 21.930
(B) 21.000
(C) 0.511
(D) 1.000
(E) 1.419

34. Car A is traveling south at 40 mph
toward Millville, and Car B is travel-
ing west at 30 mph toward Millville.

If both cars began traveling 100
miles outside of Millville at the same
time, then at what rate, in mph, is
the distance between them decreas-
ing after 90 minutes?

(A) 35.00
(B) 47.79
(C) 50.00
(D) 55.14
(E) 68.01

35. Let f x
x

x
( ) =

−
−

2 1

1 . Which of these

statements is true?

I. f is continuous at x 5 21.

II. f is differentiable at x 5 1.

III. f has a local maximum at x 5 21.

(A) I only
(B) II only
(C) III only
(D) I and III
(E) II and III

36. If y 5 3x 2 7 and x ≥ 0, what is the
minimum product of x2y?

(A) 25.646
(B) 0
(C) 1.555
(D) 2.813
(E) 3.841

37. What is the area of the region
bounded by y 5 sinx, y x= −1

4 1, and
the y-axis?

(A) 0.772
(B) 2.815
(C) 3.926
(D) 5.552
(E) 34.882

38. A region R located in the first quad-
rant is bounded by the x-axis, y 5

sinx, and y x= ( )1
2 . Determine the

volume of the solid formed when R is
rotated about the y-axis.

(A) 1.130
(B) 2.724
(C) 3.265
(D) 16.875
(E) 17.117

p
ra

c
tic

e
te

st
Practice Test 1: AP Calculus AB 513

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

www.petersons.com



39. Let f be the function given by

f x x

e x
( ) = 3 3

. For what value of x is

the slope of the line tangent to f

equal to 21.024?

(A) 29.004
(B) 24.732
(C) 1.029
(D) 1.277
(E) 4.797

40.

a b c d

The graph of f is shown above. If

g x f t dt
a

x( ) = ( )∫ , for what value of x

does g(x) have a relative minimum?

(A) a
(B) b
(C) c
(D) d
(E) It cannot be determined from

the information given.

41. The graph of the function y 5 x5 2 x2

1 sinx changes concavity at x 5

(A) 0.324
(B) 0.499
(C) 0.506
(D) 0.611
(E) 0.704

42.

Let f x h t dt
x( ) = ( )∫0

 , where h is the

graph shown above. Which of the fol-
lowing could be the graph of f?

(A)

(B)

(C)

(D)

(E)
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43.
x 0 1

2 4
4

1 3
5
2

6
51

3
f (x )

2

A table of values for a continuous
function f is shown above.

If three equal subintervals are used

for [0,6], which of the following is

equivalent to a right-hand Riemann

Sum approximation for f x dx( )∫0

6
 ?

(A) 14
(B) 17
(C) 20
(D) 24
(E) 27

44.

The graph of a function f is shown
above. Which of these statements
about f is false?

(A) f is continuous but not differen-

tiable at x 5 a.

(B) lim lim
x a x a

f x a f x
a

f x a f x
a→ − → +

+ −
≠

+ −( ) ( )⎛

⎝
⎜

⎞

⎠
⎟

( ) ( )⎛

⎝
⎜

⎞

⎠
⎟.

(C) f(a) is defined, but f(c) is not.

(D) f ′(b) 5 0.

(E) lim lim
x c x c

f x f x
→ →− +

( )( ) ≠ ( )( ).

45. Let f be defined as follows:

−x2, x ≤ 0
f (x ) =

√x,xx > 0√

Let g(x) 5 f t dt
x

( )∫–2
. For what

value of x Þ 22 would g(x) 5 0?

(A) 0
(B) 2
(C) 2
(D) 2 23

(E) 2 2

STOP
END OF SECTION I, PART B. IF YOU HAVE ANY TIME LEFT, GO OVER
YOUR WORK IN THIS PART ONLY. DO NOT WORK IN ANY OTHER PART
OF THE TEST.
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SECTION II, PART A

45 Minutes • 3 Questions

A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF
PROBLEMS IN THIS PART OF THE EXAMINATION.

SHOW ALL YOUR WORK. It is important to show your setups for these
problems because partial credit will be awarded. If you use decimal approxi-
mations, they should be accurate to three decimal places.

1. At time t, 0 ≤ t ≤ 10, the velocity of a
particle moving along the x-axis is
given by the following equation: v(t)
5 1 2 4sin(2t) 2 7cos t.

(a) Is the particle moving left or
right at t 5 5 seconds? Explain
your reasoning.

(b) What is the average velocity of
the particle from t 5 0 to t 5

10?
(c) What is the average accelera-

tion of the particle from t 5 0
to t 5 10?

(d) Given that p(t) is the position
of the particle at time t and
p(0) 5 5, find p(2).

2. Let R be the region bound by y 5 2x2

2 8x 1 11 and y 5 x2 2 4x 1 10.

(a) Sketch the region on the axes
provided.

2

4

2 4 6 8 10

6

8

10

(b) Determine the area of R.
(c) Determine the volume when R

is rotated about the y-axis.
(d) The line x 5 k divides the

region R into two regions such
that when these two regions
are rotated about the y-axis,
they generate solids with equal
volume. Find the value of k.
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3. Water is leaking out of a conical res-
ervoir at a rate proportional to the
amount of water in the reservoir;

that is,
dy
dx

5 ky where y is the

amount of water left for any time t.
Initially, there were 100 gallons in
the reservoir, and after 10 hours,
there were 70 gallons.

(a) Write an expression for A(t)—
the amount of water in the
reservoir for any time t.

(b) How much water would have
leaked out after 5 hours?

(c) What is the average amount of
water in the reservoir during
the first 20 hours?

(d) After how many hours of
leaking will the amount from
part C be in the reservoir?

STOP
END OF SECTION II, PART A. IF YOU HAVE ANY TIME LEFT, GO OVER
YOUR WORK IN THIS PART ONLY. DO NOT WORK IN ANY OTHER PART
OF THE TEST.
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SECTION II, PART B

45 Minutes • 3 Questions

A CALCULATOR IS NOT PERMITTED IN THIS PART OF THE EXAMINATION.

4. Consider the differential equation
dy
dx

=
x + 1

y
. All of the following ques-

tions refer to this differential equa-
tion.

(a) Draw the slope field for
dy
dx

at

the indicated points on the
below coordinate axis.

(b) The solution to this differential
equation can be classified as
which conic section? Justify
your answer mathematically.

(c) Find the specific solution to the
differential equation, given that
it contains the point (2,4).

5. Consider the curve defined by y4 5 y2

2 x2.

(a) Verify that
dy

dx

x

y y
=

– 2 3 .

(b) Write the equation for any
horizontal tangents of the
curve.

(c) Write the equation for any
vertical tangents of the curve.

(d) At what ordered pair (x,y) is
the line 4x 3 4− y 5 1 tangent
to the curve y4 5 y2 2 x2?

6. The graph of a function f consists of

two quarter circles and two line seg-

ments, as shown below. Let g be the

function given by

g x f x dx
x( ) = ( )∫3

 .

3 6 9

f

12 15−1
−2
−
−4
−5

1
2
3
4
5

(a) Find g(0) and g(8).
(b) What is the maximum value of

g on [3,16]?
(c) Write the equation for the line

tangent to g at (11, g(11)).
(d) Find the x-coordinate of any

points of inflection of g on
[0,16].

STOP
END OF SECTION II, PART B. IF YOU HAVE ANY TIME LEFT, GO OVER
YOUR WORK IN THIS PART ONLY. DO NOT WORK IN ANY OTHER PART
OF THE TEST.
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ANSWER KEY AND EXPLANATIONS

Section I, Part A

1. D
2. B
3. E
4. C
5. A
6. E

7. D
8. D
9. E

10. B
11. B
12. D

13. C
14. D
15. D
16. E
17. C
18. D

19. D
20. C
21. B
22. C
23. C

24. D
25. E
26. D
27. C
28. E

1. The correct answer is (D). Solve
this integral using u-substitution.
Let u 5 2x, so du 5 2 dx.

e dxx2

0

1

∫ becomes 1
2 0

2
e duu∫ , which

yields 1
2

2 1e −( ) .

2. The correct answer is (B). This is
a rather complicated Chain Rule ap-
plication. The derivative of tan u is
sec2u du, but we mustn’t forget to
also take the derivative of esinx. Since

d
dx

e x ex xsin sincos( ) =  ,

d
dx

x x xe e x etan sec cossin sin sin( ) = ( )2  

3. The correct answer is (E). Be
careful here. Although it resembles a
Fundamental Theorem Part Two
problem, it is not. The problem asks
for F(2), not F′(2)! So,

F t dt2 2 56
32

4
( ) = =∫  .

4. The correct answer is (C).
Straight-forward evaluation of a de-
rivative at a point problem: f ′(x) 5

2tanxsec2x 1 cosx. So,

′( ) = +f π
4

4 2
2

, which is 8 2
2

+ .

5. The correct answer is (A). We
need both the first and second de-
rivatives to be negative for this func-
tion to be decreasing and concave
down. f ′(x) 5 4x3 2 6x2 2 4x and
f ′′(x) 5 12x2 2 12x 2 4. By using the
wiggle graph below,

we can easily see that choices (B)
and (C) can be eliminated, so we
must check out the values of f ′′(22),
f ′′(21), and f ′′(1). f ′′(1) 5 24 , 0.

6. The correct answer is (E). Here,
we should take the derivative of each
I, II, and III and see what we get.

d
dx

x x x

x x

−⎛
⎝⎜

⎞
⎠⎟

= − −( )

=

cos cos sin

cos sin

4 3

3

4
4

4

d
dx

x x

x x x x

sin sin

sin cos sin cos

2 4

3

2 4

4
4

−⎛
⎝⎜

⎞
⎠⎟

=

−

5 sinx cosx2 sin3xcosx 5

sinxcosx(12sin2 x) = sinx cosx(cos2x)
5 cos3x sinx

d
dx

x x x

x x

1 4

4
4 3

4

3

−⎛

⎝
⎜

⎞

⎠
⎟ =

− −( )

=

cos cos sin

cos sin

7. The correct answer is (D). An-
other lengthy Chain Rule—just don’t
forget to take the derivative of 2x,
the argument of the argument. Since
the derivative of eu is eu du and the

a
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derivative of sinu is cosu du, then
d
dx

x xe xesin sincos2 22 2= .

8. The correct answer is (D). Re-
member, speed is the absolute value
of velocity. Since − >15 10 , the
maximum speed is reached at t 5 5
seconds.

9. The correct answer is (E). Accel-
eration can be thought of as the ab-
solute value or slope of velocity. The
slope of the velocity curve is steepest
on [5,6].

10. The correct answer is (B). In or-
der to write the equation for a line,
we need its slope and a point on that
line. We already have the point,

π
2 1,( ) , so the big problem is deter-

mining its slope, which is the deriva-
tive of the curve when x = π

2 . y′ 5

cosx 2 2sinx, so ′ ⎛
⎝

⎞
⎠ = −y π

2
2. Using

point Þ slope form, the equation for
the line could be written as

y x− = − −( )1 2
2
π . Since this is not a

choice, we must change this to stan-
dard form, 2x 1 y 5 p 1 1.

11. The correct answer is (B). Since
the f is decreasing over (2`,21), its
derivative, f ′, must be negative over
this same interval. This eliminates
choices (C), (D), and (E). Examining
the interval (21,0), the graph of f is
decreasing here; thus, the graph of f ′
must be negative. Only choice (B)
meets this requirement.

12. The correct answer is (D). By ex-
amining the second-derivative
wiggle graph below, we can see that
the second derivative is positive at,
before, and after 2. Therefore, there
is no point of inflection at x 5 2.

13. The correct answer is (C). Pretty
simple problem—we determine the
derivative, set it equal to zero, and
use a wiggle graph.

f ′(x) 5 3e sinx cosx 5 0

Since 3e sinx will never be 0, we set
cosx 5 0 and solve.

cosx 5 0 when x n= +π π2 for any
integer n. By examining the wiggle
graph below, we can see that the de-
rivative is negative over [ π π

2 ,  3
2 ].

14. The correct answer is (D). This
one seems tricky, but it actually
works out quite quickly. If h(x) 5

f(g′(x)), then by using the chain rule,
h′(x) 5 f ′( g′(x))g′′(x). The problem
tells us that f ′(x) will always be posi-
tive. Since h′(3) somehow becomes
negative, g′′(3) must be negative.
Therefore, g must be concave down
at x 5 3.

15. The correct answer is (D). Do we
understand the definitions of conti-
nuity and differentiability?

(A) Does the limit exist as x
approaches 3? Yes.

(B) Is f continuous at x 5 5? Yes.
(C) Does f ′(2) 5 0? Yes. (It has a

horizontal tangent line.)
(D) Does f ′(4) exist? No.
(E) Is f(2.5) . f ′(2.5)? Yes. (f(2.5) .

0, and since f is decreasing at x
5 2.5, f ′(2.5) , 0.)
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16. The correct answer is (E). We
should always sketch the region.

As we can see, y 5 x3 1 1 is above y
5 2x2 over the entire interval. So,

A x x dx

x x x

= + −

= + +

= + + =

( )⎛
⎝

⎞
⎠∫ 3 2

4 3

0

2

1

4 3

4 2 8
3

26
3

0

2
–

|

17. The correct answer is (C). Some
implicit differentiation: Remember,
everything here is differentiated
with respect to x. Don’t forget the
product rule for 3xy.

3 3 3 3

3 3 3 3

3 3
3 3

2 2

2 2

2

2

x y dy
dx

x dy
dx

y

y x dy
dx

y x

dy
dx

y x
y x

d

+ = +

−( ) = −

= −
−

yy
dx

y x
y x

= −
−

2

2

18. The correct answer is (D). This is
a very simple u-substitution inte-
gral. Let u 5 2x, so du 5 2dx.

It follows that sin 2
0

4
x dx 

π

∫ be-
comes

1
2

1
2

1
2 0 1 1

2

0

2

0

2

sin cos

.

|u du u 
π π

∫ = −

= − − =( )

19. The correct answer is (D). Again,
we will rely on the magic of the
wiggle graph to supply us with the
solution to this differentiation prob-
lem.

f ′(x) 5 3(x 2 4)2(3x 2 1)2[3(x 2 4) 1

(3x 2 1]

5 3(x 2 4)2(3x 2 1)2(6x 2 13)

By setting f ′(x) 5 0 and solving, we
quickly discover that the zeros of the

derivative are
1
3

,
13
6

, and 4. By exam-

ining the wiggle graph below, we can
see that the only value where the
derivative changes from negative to

positive is at x 5
13
6

.

1
3

13
6

4

+ +−−

20. The correct answer is (C). When-
ever the problem asks for the “aver-
age value of the function,” we should
immediately think of the mean value
theorem for integration. We are look-
ing for f(c) in this formula:

f c f x dxb a a

b( ) ( )= − ∫1  . Applying the

MVT for Integration here yields the
following equation:
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f c x dx

u du

u

( )

⋅

( )

= −

=

= −

∫

∫

1 4 2

1 1
2

6

3 4 4

3

12 2

2 3

2

π π π

π

π π

π

ππ

sin  

 sin

cos
22 3

6 1
2 0

3

π

π

π

|
= − − −

=

⎛
⎝⎜

⎞
⎠⎟

21. The correct answer is (B). Re-
member, limits at infinity are like
horizontal asymptotes. If the top
degree is greater than the bottom
degree, the limit does not exist. If
the bottom degree is greater than
the top degree, the limit is zero. If,
as in this case, the degrees are
equal, then the limit is the ratio of
the leading coefficient of the numera-
tor over that of the denominator.
Here, that ratio is − 5

11 .

22. The correct answer is (C). Sketch
the curve. We may simplify the ex-
pression first by using cancellation.
However, we must remember that by
canceling out a term involving x, we
are removing a discontinuity. So, the
graph of the original function will
have a point discontinuity.

f x x
x

x
x x

x

( ) ( )( )
= − +

= −
−

= −
− +

1
1

1
1 12

1
1

with a point discontinuity at x 5 1.

−1 1

By examining the graph above, we
can see that it is concave down to the
right of the asymptote. These are ac-
tually two intervals, because the
function is not continuous at x 5 1.
They are (21,1) and (1,`).

23. The correct answer is (C). The
two curves, y x= and y 5 x2 inter-
sect at x 5 0 and x 5 1. So, these will
be our limits of integration. For x
values between 0 and 1, x x> 2.
This being the case, when we deter-
mine the area of the region, we
should subtract x x− 2 . Therefore,
A 5 x x dx−( )∫ 2

0

1
.

24. The correct answer is (D). This is
just the derivative of f(x) 5 tan2x
evaluated at x = π

8
. f ′(x) 5 2sec22x,

so ′ ( ) = =f π π
8

2
4

42sec .

25. The correct answer is (E).

A little tricky u-substitution inte-
gral. Let u 5 ln x, then du dx

x
= .

It follows that

ln

|

2
2

0

2

1

3

0

2

2

3
8
3 0 8

3

x
x dx u du

u

e ⎛
⎝⎜

⎞
⎠⎟

=

= = − =

∫∫

26. The correct answer is (D). Since
the question asks for average veloc-
ity and we are given the position
equation, we should determine the
slope of the secant line:

Average velocity =
−
−

=
+ + + − +

= =

( ) ( )

( )

s s2 0
2 0

0 2 2 2 2 2
2

2
2

1

π
π

π

π π
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27. The correct answer is (C).

Since 

 

then 

lim

lim ,

ln

ln

ln

lim
ln

x

x

f x

f x e

x

→

→

( )

( )

→

−

+

( )

( )

=

= =
2

2

2 2

22
f x( ) exists and 

is equal to 2 as well.

28. The correct answer is (E). This is
a rather challenging related-rates

problem. We are looking for
dA
dt

when

h 5 24. First, we need a primary
equation. This will be the formula for
the area of a triangle:

A bh= 1
2

Since the base is a constant, 10, this
becomes

A h h= ( ) =1
2

10 5

Differentiating with respect to t
yields

dA
dt

dh
dt

= 5

How do we determine
dh
dt

? We must

find a relationship other than
A bh= 1

2
involving h. How about

using the tangent equation?

tanθ = h
10

or h 5 10tanu

Differentiating this with respect to t
yields

dh
dt

d
dt

= 10 2sec θ θ

Since we know d
dt

θ = 15
26 , this equa-

tion becomes

dh
dt

= 10 2 15
26

sec θ

The last unknown to identify is
10sec2u. We can use the Pythagorean
theorem to help here. Since h 5 24
and b 5 10, the hypotenuse must be
26. So,

10 2 10 26
10

2
sec θ = ⎛

⎝
⎞
⎠

Plugging this expression in for
dh
dt gives us

dA
dt

= ( )( )⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠ =

5 10 26
10

15
26

50 13
5

3
2

195

2
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Section I, Part B

29. A
30. E
31. D
32. E

33. C
34. B
35. D
36. A

37. C
38. E
39. E

40. C
41. B
42. C

43. D
44. E
45. D

29. The correct answer is (A). We
must use the quotient rule to evalu-
ate the following derivative:

′ = −

= −

( )

⎛

⎝⎜
⎞

⎠⎟

f x
e x xe x

x

e
x x x

x

x x

x

3 2

3 2

3 2 3 2

2 2

3
2 2

2 2

sin cos

sin

sin cos

sin

30. The correct answer is (E). To
write the equation for a line, we need
the slope of the line and a point on
the line. We already have its slope,
since f ′(x) 5 10; the slope of the tan-
gent line is 10 as well. To find the
point on the line, we must set the
derivative of f equal to 10 and solve
for x; then, substitute this x-value
into f to determine the corresponding
y-value.

f ′(x) 5 2e2x 5 10

e2x 5 5

2x 5 ln 5

x = ln5
2

Now, we substitute this value into f
and the result is

f eln ln5
2

5 5⎛
⎝

⎞
⎠ = =

Our problem has now been reduced
to determining the equation for a
line that passes through ln ,5

2 5( ) and
has slope 10. Point-slope form of this
equation is

y x− = −⎛
⎝⎜

⎞
⎠⎟

5 10
5

2
ln

Converting to slope-intercept form
and using the calculator to evaluate
the value of ln 5

2
, we get

y 5 10x 2 3.047

31. The correct answer is (D). This is
an area accumulation problem. The
function decreases from x 5 0 to x 5

1 by an amount equivalent to the
area between the graph of f ′ and the
x-axis, which is 22 units squared.
This was determined by finding the
area of the triangle. The function
then increases from x 5 1 to x 5 2 by
3
2

units squared. From x 5 2 to x 5 4,

it increases 3 1
3
2

or
9
2

units squared.

From x 5 4 to x 5 6, the function
decreases 2 units squared. Putting
all of this together, we can see that
the function’s value is greatest at x 5

4, followed by at x 5 6, then at x 5 0,
and least at x 5 2.

32. The correct answer is (E). This is
the limit of the difference quotient
that is the definition of the deriva-
tive. All this means is that f ′(5) 5 3.

For I., does the function’s value nec-
essarily equal the derivative’s value?
No, so I. is out. Since the derivative
exists at x 5 5, the function is differ-
entiable there. Remember that dif-
ferentiability implies continuity, so
the function must be continuous at x
5 5 as well.

33. The correct answer is (C). Use the
calculator to graph the derivative
given. Where the graph changes
from positive to negative will be the
local maximum. This occurs at x 5

0.511.
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34. The correct answer is (B). Related
rates—oh boy! First, let’s draw the
following diagram:

B

CA

We are looking for dC
dt . We know that

dA
dt

= −40 and dB
dt

= −30. Now, we
need an equation to relate A, B, and
C. Since this is a right triangle, we
can certainly use the Pythagorean
theorem:

A2 1 B2 5 C2

Differentiating with respect to t,
which we do in every related-rates
problem, yields

2 2 2 2( ) + = A dA
dt

B dB
dt

C dC
dt

Solving this equation for dC
dt gives

us

A dA
dt

B dB
dt

C
dC
dt

+
=

What are the values of A, B, and C?
To answer this, we use the facts that
the cars each started 100 miles from
Millville and have been traveling for

90 minutes or
3
2

hours. Car A has

traveled 60 miles, so A 5 40. Car B
has traveled 45 miles, so B 5 55. By
the Pythagorean theorem,
C = +40 552 2 . Substituting these
values into the equation yields
dC
dt

=
− + −

+
= −( ) ( )40 40 55 30

40 55
47 79

2 2
.

35. The correct answer is (D). This
problem is best answered using the
graphing calculator. If we examine
the graph, we can see that it is con-
tinuous at x 5 21. The graph has a

jump discontinuity at x 5 1; it is not
differentiable there. Since the graph
is increasing before and decreasing
after x 5 21, there is a local maxi-
mum at x 5 21.

36. The correct answer is (A). This is
an optimization problem. Let’s first
express the product x2y only as a
function of x:

p(x) 5 x2(3x 2 7) 5 3x3 2 7x2

Next, we differentiate and set the de-
rivative equal to zero and solve for x
to determine our critical values:

p′(x) 5 9x2 2 14x 5 0

x(9x 2 14) 5 0

x 5 0 or x 5
14
9

.

By examining the wiggle graph be-

low, we can see that the function’s

minimum occurs at x 5
14
9

.

The problem asks for the minimum

product. So, we must substitute
14
9

back into p(x), and we get 25.646.

37. The correct answer is (C). Use
your calculator to determine where
these two curves intersect. This in-
tersection point will give us a limit of
integration. Since the graph of y 5

sin x is above the graph of y 5
1
4

x 2

1, we integrate to find the area:

A x x dx= − −⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟∫ sin

. 1
4

1
0

3 314

Our calculator will then do all the
work and give us

A 5 3.926

38. The correct answer is (E). Be
careful here—make sure you have
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the right region, as shown in the dia-
gram below:

The best method to use, since we are
rotating about the y-axis, would be
shells. However, we will need to
break it up into two regions.

V
x x dx

x x dx

=
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟ +

( )( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

∫

∫
2

1
20

1 895

1 895

π
π

.

.
sin

Using our calculator,

V 5 17.117

39. The correct answer is (E). Set the
derivative of f equal to 21.024, and
solve. By the quotient rule, we have

f ′(x) 5
e x e x

e

x x

x
9 3

1 024
2 3

2
− = − . .

Graphing and determining the inter-
cept yields x 5 4.797.

40. The correct answer is (C). Since g
is an antiderivative of f, then f is the
derivative of g. The graph of the de-
rivative of g changes from negative
to positive at x 5 c, so g has a mini-
mum there.

41. The correct answer is (B). Use
your calculator for this one. First, de-
termine the second derivative of f.
Graph it, and find the x-intercept.

f ′(x) 5 5x4 2 2x 1 cosx

f ′′(x) 5 20x3 2 2 2 sin x

Our calculator shows us that the x-
intercept of this second derivative is
0.4985.

42. The correct answer is (C). We
have the graph of the derivative, but

we are looking for the graph of the
function. Since the derivative’s
graph is continuous, there are no dis-
continuities, cusps, or vertical tan-
gents on the function’s graph. This
eliminates choices (A), (D), and (E).
Since the derivative is positive and
increasing from x 5 0 to x 5 a, the
function must be increasing and con-
cave up over this same interval. Be-
tween the two choices remaining,
only (C) meets this requirement.

43. The correct answer is (D). This
problem requires a little drawing.
We should plot the seven points,
draw the rectangles, find the area of
each one, and add them up.

106688

8 1 6 1 10 5 24

44. The correct answer is (E). Let’s
examine each statement: Since there
is an obvious cusp at x 5 a, (A) is a
true statement. (B) says that the
left-hand derivative does not equal
the right-hand derivative at x 5 a,
which means that there must be a
cusp there—which there is. So, this
is true also. The hole at x 5 c would
indicate that f(c) is undefined, so (C)
is true. (D) is true because there is a
horizontal tangent at x 5 b. Since
the discontinuity at x 5 c is remov-

able, the lim
x c

f x
→

( )  exists,

lim lim
x c x c

f x f x
→ →− +

( )( ) ≠ ( )( )  is false.

45. The correct answer is (D). In this

problem, the question is for what

value of k will the area under

x dx
k

 ( )∫0
equal x dx2 ( )∫0

2
? Set-

ting these two integrals equal to

each other and solving for x yields
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x dx x

x x

k

k
k

k

k

 ( )∫ ∫=

=

=

=
= = =

0 0

2

3 2

0 0

2

3 2

2 3 3 3

2

32
3 3
2
3

8
3
4
4 16 2 2

3 2

| |

/

Section II, Part A

1. (a) At t 5 5, v(t) 5 1.1904 . 0, which
indicates that the velocity is
positive. Therefore, the particle
is moving to the right.

(b) Since the velocity function is
given, this is an application of
the mean value theorem for inte-

gration, which says that

Average value 5 1
b a

f x dx
a

b

− ( )∫  

Applying that formula to this
problem leads to

f c
x

x
dx( ) ⎛

⎝⎜
⎞
⎠⎟

= −
− −

=

∫1
10 0

1 4 2
7

1 262

0

10 sin
cos

.

(c) Remember that acceleration is
the derivative or slope of the ve-
locity curve. So, we want the av-
erage slope of the velocity from
t 5 0 to t 5 10. In other words,
we want the slope of the secant
line from t 5 0 to t 5 10.

m
v v

sec

.
.

( ) ( ) ( )=
−
−

= − − =

10 0

10 0
3 2217 6

10
0 922

(d) Here, we need to determine the
position equation, p(t). In order
to determine the position equa-
tion, we should find an an-
tiderivative of the velocity
equation, v(t).

p t
x

x
dx

x x x C

( ) =
− −⎛

⎝⎜
⎞
⎠⎟

= + − +

∫
1 4 2
7

2 2 7

sin
cos

cos sin

 

To determine the correct value of
C, the constant of integration, we
should use the condition given to
us, p(0) 5 5:

p(0) 5 5 5 0 1 2cos 0 27sin 0 1 C
5 5 2 1 C

3 5 C
Substituting this value back into
the position equation gives us
p(t) 5 x 1 2cos 2x 2 7sin x 1 3
Now, to answer the question:
p(2) 5 2 1 2cos 4 2 7sin 2 1 3

5 22.672

2. (a)

y = 2x 2 − x + 11

y = 2 − 4x + 10

(b) We use the definite integral to
determine the area of this re-
gion. We must first use the calcu-
lator to determine the points of
intersection of the graphs. The
x-coordinates will give us our
limits of intersection.

A x x
x

x
dx

x x d

= − + −
−

+
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟

= − + −( )

∫ 2
2

2679

3 7321

2

4 10
2
8 11

4 1

.

.

xx
.

.

.
2679

3 7321

6 928

∫
=
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(c) To determine the volume when the
region R is rotated about the y-axis,
we are going to use the shell
method:V d x h x

a

b
= ( ) ( )( )∫2π dx.

V x x x dxy = − + −( )( )
=

∫2 4 1

87 06236948

2

0 2679

3 7321
π

.

.

.

(d) Insert k for the upper limit of
integration, set the volume ex-
pression equal to half of the solu-
tion for part C, and solve for k.

2
4 1

43 531

2 4
4
3 2

2

0 2679

4 3 2

π

π

x
x
x

dx

x x x

k − +
−

=

− + −

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝⎜

∫ .
.

⎞⎞
⎠⎟

( )

=

− + − − − =

− + −

0 2679

4 3 2

4 3

43 531

4
4
3 2 0 0115 6 928

4
4
3

.| .

. .

k

k k k

k k kk

k

2

2 6 91667 0

2 350

− =

=

.

.

k was determined by graphing
the function and determining the
x-intercept.

3. (a) The equation
dy
dx

5 ky should in-

dicate that we are dealing with
this exponential growth or decay
model:

A(t) 5 Nekt

Since we are given that the ini-
tial amount of water was 100
gallons, we know that N 5 100.
We can determine k by substitut-
ing values for N, t, and A(t) and
solving for k, as such:

A(10) 5 70 5 100e10k

0.7 5 e10k

ln 0.7 5 10k

k = ln . 0 7
10

Now that we have determined
both constants, N and k, we can
write our expression A(t):

A t e t( ) = 100
0 7

10
ln .

(b) This problem is kind of tricky. To
determine the amount of water
that had leaked out after 5
hours, we should find how much
is still in the reservoir, which is
A(5), and subtract that from the
initial amount, 100 gallons.

A e

e

5 100

100

83 667

5 0 7
10

0 7
2

( ) =

=
=

ln .

ln .

.  gallons

This represents the amount still
in the reservoir. The amount of
leakage would be
100 2 83.667 5 16.333 gallons

(c) By applying the mean value
theorem for integration, we get

Average amount

 

 gallons

=

=

⎛
⎝⎜

⎞
⎠⎟∫1

20 100

71 494

0 7
10

0

20
e dt

tln .

.

(d) We know the amount, A(t), is
equal to 71.494. We set Equation
(2) equal to this and solve for t.

71 494 100

71 494
100

0 71494 0 7
10

0 7
10

0 7
10

.

.

ln . ln .

ln .

ln .

=

=

= ⎛

( )
e

e

t

t

⎝⎝
⎞
⎠

=

t

t 9 408.  hours
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Section II, Part B

4. (a) To draw a slope field, you plug
each of the indicated coordinates

into
dy
dx

for x and y. If the result-

ing slope is undefined, you can
indicate that with a small verti-
cal line (since the slope of a ver-
tical line is undefined). Your
answer should look something
like this

(b) The slope field’s shape suggests
a hyperbola centered at (21,0),
but the question requires us to
justify our answer mathemati-
cally. The easiest way to justify
the answer is by actually solving
the differential equation by sepa-
ration. (Remember, in the follow-
ing steps, C represents any
constant. Therefore, multiplying
a constant by any number or
adding any number to a constant
results in another constant. For
the sake of ease, we just continue
to use the same symbol for that
constant—C.) Begin by cross-
multiplying to separate x’s
and y’s

y dy 5 (x 1 1)dx

Now, integrate both sides of the
equation and multiply by 2 to
make it prettier.

y x x C

y x x C

2 2

2 2

2 2
2

= + +

= + +

To put this into standard form
for a conic, complete the square
for x.

y2 1 1 5 x2 1 2x 1 1 1 C
y2 1 1 5 (x 1 1)2 1 C

If you subtract y2, you get the
equation of a hyperbola. This is
all the justification you need to
get the question completely cor-
rect.

(x 1 1)2 2 y2 5 1 2 C

(c) If the hyperbola contains point
(2,4), substitute these values into
your answer for part (B), and you
get the corresponding value for
the constant C.

(2 1 1)2 2 42 5 1 2 C

9 2 16 5 1 2 C

C 5 8

Therefore, the exact solution to
that particular differential equa-
tion is

(x 1 1)2 2 y2 5 27

If you want to put it into stan-
dard form, you can:

y x2 2

7
1

7
1−

+( ) =

5. (a) Here, we must use implicit dif-
ferentiation, because x and y are
not separated for us. We will dif-
ferentiate both sides of the equa-
tion with respect to x, group the

terms with a
dy
dx

, and solve for
dy
dx

.
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4 2 2

4 2 2

4 2 2

2

3

3

3

y dy
dx

y dy
dx

x

y dy
dx

y dy
dx

x

y y dy
dx

x

dy
dx

= −

− = −

−( ) = −

= − xx
y y

x
y y
x

y y

4 2

2

2

3

3

3

−

= −
−

=
−

(b) In order to have a horizontal tan-
gent, the derivative must equal

zero. Let’s set
dy
dx

equal to zero

and solve for x. Remember, in or-
der for a rational expression like

our
dy
dx

to equal zero, the numera-

tor must equal zero. So, we’ll just
set the numerator of our expres-

sion for
dy
dx

equal to zero, as such:

2x 5 0, so x 5 0

Now, we will determine the cor-

responding y-value(s):

y4 5 y2 2 0

y4 2 y2 5 0

y2(y2 2 1) 5 0

y 5 0, y 5 2 1, or y 5 1.

Upon closer examination, y Þ 0
because the function does not ex-
ist when y 5 0; that is, the de-
nominator will equal zero there.
So, our two points when the tan-
gent line is horizontal are (0, 21)
and (0,1). This leads us to the
equations for the horizontal tan-
gents:

y 5 2 1 and y 5 1

(c) Remember that the slope of a
vertical line is undefined. That
means that we look for points
where the derivative is unde-
fined (i.e., where the denomina-

tor of the derivative is equal to
zero). This time we will set the y
2 2y3 equal to zero and solve
for y.

y y

y y

y y y

− =

− =

= = − =

( )
2 0

1 2 0

0
2

2
2

2

3

2

, ,  or 

The corresponding x-values are x

5 0, x 5 2
1
2

, and x 5
1
2

. Because

vertical lines have equations of
the form x 5 a, the x-values are
all we need to write the equa-
tions for the vertical tangent
lines:

x 5 0, x 5 2
1
2

, and x 5
1
2

(d) In order for the line and the
curve to be tangent, two things
must be true: They must inter-
sect and have equal slopes. For
the slopes to be equal, we should
set their derivatives equal. Let’s

determine
dy
dx

for the line:

4 3 4 1

4 3 4 0

3

x y

dy
dx
dy
dx

− =

− =

=

Next, we will solve the equation
of the line for x in terms of y:

4 3 4 1

1 4

4 3

x y

x
y

− =

= +
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When the derivatives are equal,
they are equal to =3. So, now
we will set the expression for the
derivative of the curve equal to
=3.

3
2 3

=
−

x

y y

We already have x
y= +1 4

4 3
.

3
1 4

4 3 2

12 2 1 4

24 8 1 0

3

3

3

= +
−

− = +

− + =

( )( )
( )

y

y y

y y y

y y

How do we solve this without our
calculator? Let’s try synthetic di-

vision with
1
2

. Why
1
2

? Remember

the rational root theorem? It told
us to try factors of the constant
term over factors of the leading

coefficient. Since
1
2

worked in our

synthetic division,
1
2

is a solution.

We will now find the x-coordinate
of the point of tangency by sub-
stituting this y-value:

x =
+

=

=

⋅1 4

4 3
3

4 3

3
4

1
2

We have both our x- and y-coor-
dinates now, so we can deter-
mine that our line and curve are

tangent at 3
4

1
2

,  
⎛
⎝⎜

⎞
⎠⎟
.

6. (a) To determine g(0), we have to
find the area under the curve
from x 5 3 to x 5 0. This is the
opposite of the area under the
curve from x 5 0 to x 5 3. Since
the area of a circle of radius 3 is
9p, then the area of this quarter
circle must be − 9

4
π . So, g(0) 5

− 9
4
π .

g(8) would be the area of the tri-
angle with base 5 and height 3.
So, g 8 15

2
( ) = .

(b) The only interval for which g is
increasing is [3,8]. So, the maxi-
mum value of g is at x 5 8. The

maximum value of g is 15
2

.

(c) We need a point and a slope.
Since f(11) 5 25, then g′(11) 5

25. Hence, the slope of the tan-
gent line is 25. To determine the
y-coordinate of the point on the
line, we must determine g(11).
By area accumulation, we can
see that g(11) 5 0. This leads us
to the following equation for the
tangent line:

y 5 25(x 2 11)

or

y 5 25x 1 55

(d) Points of inflection occur only
when the derivative of the de-
rivative is equal to zero. Since
the graph of f, the derivative of g,
does not have any horizontal
tangents, then f ′, or g′′, will
never be zero. Thus, g has no
points of inflection.
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ANSWER SHEET PRACTICE TEST 2

Section I, Part A
1. OA OB OC OD OE

2. OA OB OC OD OE

3. OA OB OC OD OE

4. OA OB OC OD OE

5. OA OB OC OD OE

6. OA OB OC OD OE

7. OA OB OC OD OE

8. OA OB OC OD OE

9. OA OB OC OD OE

10. OA OB OC OD OE

11. OA OB OC OD OE

12. OA OB OC OD OE

13. OA OB OC OD OE

14. OA OB OC OD OE

15. OA OB OC OD OE

16. OA OB OC OD OE

17. OA OB OC OD OE

18. OA OB OC OD OE

19. OA OB OC OD OE

20. OA OB OC OD OE

21. OA OB OC OD OE

22. OA OB OC OD OE

23. OA OB OC OD OE

24. OA OB OC OD OE

25. OA OB OC OD OE

26. OA OB OC OD OE

27. OA OB OC OD OE

28. OA OB OC OD OE

Section I, Part B
29. OA OB OC OD OE

30. OA OB OC OD OE

31. OA OB OC OD OE

32. OA OB OC OD OE

33. OA OB OC OD OE

34. OA OB OC OD OE

35. OA OB OC OD OE

36. OA OB OC OD OE

37. OA OB OC OD OE

38. OA OB OC OD OE

39. OA OB OC OD OE

40. OA OB OC OD OE

41. OA OB OC OD OE

42. OA OB OC OD OE

43. OA OB OC OD OE

44. OA OB OC OD OE

45. OA OB OC OD OE
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Practice Test 2: AP
Calculus AB

SECTION I, PART A

55 Minutes • 28 Questions

A CALCULATOR MAY NOT BE USED FOR THIS PART OF THE EXAMINATION.

Directions: Solve each of the following problems, using the available
space for scratchwork. After examining the form of the choices, decide
which is the best of the choices given and fill in the corresponding oval on
the answer sheet. No credit will be given for anything written in the test
book. Do not spend too much time on any one problem.

In this test: Unless otherwise specified, the domain of a function f is
assumed to be the set of all real numbers x for which f(x) is a real
number.

1. What is the instantaneous rate
of change for f(x) 5

x3 1 3x2 1 3x 1 1
x 1 1

at x 5 2?

(A) 227
(B) 26
(C) 6
(D) 9
(E) 27

2.

186 2412

time of day

ca
rs

 p
er

 m
in

ut
e

50

100

The rate at which cars cross a
bridge in cars per minute is
given by the preceding graph. A
good approximation for the total
number of cars that crossed the
bridge by 12:00 noon is

(A) 50.
(B) 825.
(C) 1,200.
(D) 45,000.
(E) 49,500.
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3. 3
31

5 x

x
dx

⎛
⎝⎜

⎞
⎠⎟

=∫
(A) 2

18
5

(B) 2
72
25

(C)
124
125

(D)
126
125

(E)
12
5

4.
x 0

3 4 9
2

f (x )
1

The function f is continuous on the
closed interval [0,2] and has values
as defined by the table above. Which
of the following statements must be
true?

(A) f must be increasing on [0,2].
(B) f must be concave up on (0,2).

(C) f ′S3
2D. f ′S1

2D.

(D) The average rate of increase of
f over [0,2] is 3.

(E) f has no points of inflection on
[0,2].

5. tan
cos

secxe
x

dx
x⎛

⎝⎜
⎞
⎠⎟

=∫0

3π

(A) e2

(B) e2 2 1

(C) =e

(D) =e2 e

(E) e2 2 e

6. What is the slope of the curve de-
fined by 3x2 1 2xy 1 6y2 2 3x 2 8y 5

0 at the point (1,1)?

(A) 2
5
6

(B) 2
1
2

(C) 0

(D)
1
2

(E) It is undefined.

7. x x x dx( ) + −( ) =∫ 2

0

1
3 8

(A) 2 4

(B) −404

105

(C) −8

5

(D) −28

105

(E) 1

8. The radius of a sphere is increasing
at a rate of 2 inches per minute. At
what rate (in cubic inches per
minute) is the volume increasing
when the surface area of the sphere
is 9p square inches?

(A) 2
(B) 2p

(C) 9p

(D) 18
(E) 18p
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9.

y = x3

y = x + 6

The area of the shaded region in the
preceding diagram is equivalent to

(A) x x dx+ −( )∫ 6 3

0

8
.

(B) x x dx3

0

8
6− −( )∫ .

(C) x x dx+ −( )∫ 6 3

0

2
.

(D) x x dx3

0

2
6− −( )∫ .

(E) x x dx+ +( )∫ 6 3

0

2
.

10. What is the average rate of change of
f(x) 5 x3 2 3x2 1 x 2 1 over [21,4]?

(A)
13
5

(B) 3
(C) 5
(D) 10
(E) 25

11. If the graph of the second derivative
of some function, f, is a line of slope
6, then f could be which type of func-
tion?

(A) constant
(B) linear
(C) quadratic
(D) cubic
(E) quartic

12. Let f be defined as

What is the average value of f over
[24,4]?

(A)
2
3

(B)
8
3

(C)
10
3

(D)
16
3

(E)
80
3

13.

f

1

f is a twice differentiable function
with a horizontal tangent line at x 5

1, as shown in the diagram above.
Which of these statements must be
true?

(A) ′( ) < ( ) < ′′( )f f f1 1 1

(B) f f f1 1 1( ) < ′′( ) < ′( )
(C) f f f1 1 1( ) < ′( ) < ′′( )
(D) ′′( ) < ( ) < ′( )f f f1 1 1

(E) ′′( ) < ′( ) < ( )f f f1 1 1
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14. Let f be a continuous function on [2
4, 12]. If f(2 4) 5 2 2 and f(12) 5 6,
then the mean value theorem guar-
antees that

(A) f(4) 5 2

(B) f ′(4) 5
1
2

(C) f ′(c) 5
1
2

for at least one c

between 2 4 and 12

(D) f(c) 5 0 for at least one c

between 2 4 and 12

(E) f(4) 5 0

15.
d

dx
e dttx⎛

⎝
⎞
⎠ ( ) =∫3

2 2

(A) e2x2

(B) 4xe2x2

(C) e2x2

2 e3

(D) 4xe2x2

2 e3

(E) ex

16. Let f(x) 5 ex. If the rate of change of f
at x 5 c is e3 times its rate of change
at x 5 2, then c 5

(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

17.
x 2

f
1

−2g x −1
−1 −1′

3
1

1
0
4

4
2

2
1

03

2

32

Let f, g, and their derivatives be de-
fined by the table above. If h(x) 5

f(g(x)), then for what value, c, is h(c)
5 h′(c)?

(A) 1
(B) 2
(C) 3
(D) 4
(E) None of the above

18. Let f be a differentiable function over
[0,10] such that f(0) 5 0 and f(10) 5

3. If there are exactly two solutions
to f(x) 5 4 over (0,10), then which of
these statements must be true?

(A) f ′(c) 5 0 for some c on (0,10).
(B) f has a local maximum at x 5

5.
(C) f ′′(c) 5 0 for some c on (0,10).
(D) 0 is the absolute minimum of f.
(E) f is strictly monotonic.

19. The normal line to the curve

y x= −8 2 at the point (2,2) has

slope

(A) 22

(B) 2
1
2

(C) 1
2

(D) 1

(E) 2
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20. What are all the values for k such

that x dx
k 3

2
0=

−∫ ?

(A) 0
(B) 2
(C) 22 and 2
(D) 22, 0, and 2
(E) 0 and 2

21. If the rate of change of y is directly
proportional to y, then it’s possible
that

(A) y te= 3 2 3

(B) y 5 5e1.5t

(C) y t= 3

2
2

(D) y t= ( )ln 3

2

(E) y t= 3 2

22. The graph of y 5 3x3 2 2x2 1 6x 2 2
is decreasing for which interval(s)?

(A) −∞⎛
⎝

⎞
⎠,

2

9

(B) 2

9
, ∞⎛

⎝
⎞
⎠

(C) 0
2

9
,⎡

⎣⎢
⎤
⎦⎥

(D) ( 2 `, `)

(E) None of the above

23. Determine the value for c on [2,5]
that satisfies the mean value theo-

rem for f(x) 5
x

x

2 3

1

−
−

.

(A) 21
(B) 2
(C) 3
(D) 4
(E) 5

24. Below is the slope field graph of

some differential equation
dy
dx

= f ′~x!.

(Note: Each dot on the axes marks
one unit.)

Which of the following equations is
the easiest possible differential
equation for the characteristics
shown in the graph?

(A) x2(y 1 1)

(B) xy + x 2 y 2 1

(C) xy 1 y

(D)
x 2 1
y 1 1

(E) xy 1 3xy 2 1
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25.

g

ff

a b

The area of the shaded region in the
preceding diagram is

(A) f x g x dx
a

b ( ) − ( )( )∫

(B) f x g x dx
b

a ( ) − ( )( )∫

(C) g x f x dx
a

b ( ) + ( )( )∫

(D) g x f x dx
b

a ( ) − ( )( )∫

(E) g x f x dx
b

a ( ) + ( )( )∫

26. The function f is continuous on the
closed interval [0,2]. It is given that
f(0)5 2 1 and f(2) 5 2. If f ′(x) . 0 for
all x on [0,2] and f ′′(x) , 0 for all x on
(0,2), then f(1) could be

(A) 0

(B)
1
2

(C) 1

(D) 2

(E)
5
2

27. The water level in a cylindrical bar-
rel is falling at a rate of one inch per
minute. If the radius of the barrel is
ten inches, what is the rate that wa-
ter is leaving the barrel (in cubic
inches per minute) when the volume
is 500p cubic inches?

(A) 1
(B) p

(C) 100p

(D) 200p

(E) 500p

28. If f(x) 5 arctan(x2), then ′( ) =f 3

(A)
1
5

(B)
1
4

(C) 3
4

(D) 3
5

(E) 2 3
5

STOP
END OF SECTION I, PART A. IF YOU HAVE ANY TIME LEFT, GO OVER
YOUR WORK IN THIS PART ONLY. DO NOT WORK IN ANY OTHER PART
OF THE TEST.
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SECTION I, PART B

50 Minutes • 17 Questions

A GRAPHING CALCULATOR IS REQUIRED FOR SOME QUESTIONS IN THIS PART OF
THE EXAMINATION.

Directions: Solve each of the following problems, using the available space
for scratchwork. After examining the form of the choices, decide which is the
best of the choices given and fill in the corresponding oval on the answer
sheet. No credit will be given for anything written in the test book. Do not
spend too much time on any one problem.

In this test: (1) The exact numerical value of the correct answer does not
always appear among the choices given. When this happens, select from
among the choices the number that best approximates the exact numerical
value. (2) Unless otherwise specified, the domain of a function f is assumed to
be the set of all real numbers x for which f(x) is a real number.

29. A particle starts at the origin and moves along the x-axis with decreasing positive
velocity. Which of these could be the graph of the distance, s(t), of the particle
from the origin at time t?

(A) (B)

t

s

t

s

(C) (D) (E)

t

s

t

s

t

s

p
ra

c
tic

e
te

st
Practice Test 2: AP Calculus AB 543

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

www.petersons.com



30. Let f be the function given by f(x) 5 3
ln 2x, and let g be the function given
by g(x) 5 x3 1 2x. At what value of x
do the graphs of f and g have parallel
tangent lines?

(A) 2 0.782
(B) 20.301
(C) 0.521
(D) 0.782
(E) 1.000

31. Let f be some function such that the
rate of increase of the derivative of f
is 2 for all x. If f ′(2) 5 4 and f(1) 5 2,
find f(3).

(A) 3
(B) 6
(C) 7
(D) 9
(E) 10

32. lim
x a

x a

x a→

−
−

=
3 3

(A)
1
2a

(B)
1

3 2a

(C)
1

4 2a

(D) 0

(E) It is nonexistent.

33.
x 3

3 2 4
9

5
12

f (x )
6

Let f be a continuous function with
values as represented in the table

above. Approximate f x dx( )∫3

12
us-

ing a right-hand Riemann sum with
three subintervals of equal length.

(A) 14
(B) 27
(C) 33
(D) 42
(E) 48

34.

f ′

a b

The graph of f ′, the derivative of f, is
shown above. Which of the following
describes all relative extrema of f on
(a,b)?

(A) One relative maximum and one
relative minimum

(B) Two relative maximums and
one relative minimum

(C) One relative maximum and no
relative minimum

(D) No relative maximum and two
relative minimums

(E) One relative maximum and two
relative minimums

35. Let f x e dttx( ) = ( )∫0

2
. What value

on [0,4] satisfies the mean value
theorem for f?

(A) 2.960
(B) 2.971
(C) 3.307
(D) 3.653
(E) 4.000
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36. The position for a particle moving on
the x-axis is given by

s t t t( ) = − + +3 22
1

2
. At what time, t,

on [0,3] is the particle’s instanta-
neous velocity equal to its average
velocity over [0,3]?

(A) 0.535
(B) 1.387
(C) 1.821
(D) 1.869
(E) 2.333

37. Let f be defined as

and g be defined as

g x f x dx
x( ) = ( )
−∫ 10

. Which of the

following statements about f and g is
false?

(A) g′(23) 5 0
(B) g has a local minimum at

x 5 23.
(C) g(210) 5 0
(D) f ′(1) does not exist.
(E) g has a local maximum at

x 5 1.

38. Let f(x) 5 x2 1 3. Using the trapezoi-

dal rule, with n 5 5, approximate

f x dx( )∫  
0

3
.

(A) 11.34
(B) 17.82
(C) 18.00
(D) 18.18
(E) 22.68

39. Population y grows according to the

equation dy
dt ky= , where k is a con-

stant and t is measured in years. If

the population triples every five

years, then k 5

(A) 0.110.
(B) 0.139.
(C) 0.220.
(D) 0.300.
(E) 1.099.

40. The circumference of a circle is in-
creasing at a rate of 2

5
π inches per

minute. When the circumference is
10p inches, how fast is the area of
the circle increasing in square inches
per minute?

(A) 1
5

(B) p

5
(C) 2

(D) 2p

(E) 25p
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41.

The base of a solid is the region in
the first quadrant bounded by the
x-axis and the parabola y 5 2x2 1

6x, as shown in the figure above. If
cross sections perpendicular to the
x-axis are equilateral triangles, what
is the volume of the solid?

(A) 15.588
(B) 62.354
(C) 112.237
(D) 129.600
(E) 259.200

42. Let f be the function given by f(x) 5

x2 1 4x 2 8. The tangent line to the
graph at x 5 2 is used to approxi-
mate values of f. For what value(s) of
x is the tangent line approximation
twice that of f?

I. − 2
II. 1

III. 2

(A) I only
(B) II only
(C) III only
(D) I and II
(E) I and III

43. The first derivative of a function, f, is

given by ′ ( ) = −
−

f x e
x

x
x

2 sin . How

many critical values does f have on
the open interval (0,10)?

(A) One
(B) Two
(C) Three
(D) Four
(E) Five

44. d
dx

f t dt
x

′ ( )( ) =∫2

3

(A) f ′(3)
(B) 2f( 2 2x)
(C) 22f(2x)
(D) 2f ′(2x)
(E) 22f ′(2x)

45. Let f be defined as

for a constant, k. For what value of k

will lim lim
x x

f x
→ →− +

( ) =
1 1

f(x)?

(A) 2 2
(B) 21
(C) 0
(D) 1
(E) None of the above

STOP
END OF SECTION I, PART B. IF YOU HAVE ANY TIME LEFT, GO OVER
YOUR WORK IN THIS PART ONLY. DO NOT WORK IN ANY OTHER PART
OF THE TEST.
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SECTION II, PART A

45 Minutes • 3 Questions

A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF
PROBLEMS IN THIS PART OF THE EXAMINATION.

SHOW ALL YOUR WORK. It is important to show your setups for these
problems because partial credit will be awarded. If you use decimal approxi-
mations, they should be accurate to three decimal places.

1. Examine the function, f, defined as

f x x x( ) = +
3

for 0 ≤ x ≤ 10.

(a) Use a Riemann sum with five
equal subintervals evaluated at
the midpoint to approximate the
area under f from x 5 0 to x 5

10.
(b) Again using five equal subinter-

vals, use the trapezoidal rule to
approximate the area under f
from x 5 0 to x 5 10.

(c) Using your result from part B,
approximate the average value
of the function, f, from x 5 0 to
x 5 10.

(d) Determine the actual average
value of the function, f, from x
5 0 to x 5 10.

2. A man is observing a horserace. He
is standing at some point, O, 100 feet
from the track. The line of sight from
the observer to some point P located
on the track forms a 30° angle with
the track, as shown in the diagram
below. Horse H is galloping at a con-
stant rate of 45 feet per second.

(a) At what rate is the distance
from the horse to the observer
changing 4 seconds after the
horse passes point P?

(b) At what rate is the area of the
triangle formed by P, H, and O
changing 4 seconds after the
horse passes point P?

(c) At the instant the horse gallops
past him, the observer begins
running at a constant rate of 10
feet per second on a line
perpendicular to and toward the
track. At what rate is the
distance between the observer
and the horse changing when
the observer is 50 feet from the
track?
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3. Let v(t) be the velocity, in feet per
second, of a race car at time t sec-
onds, t ≥ 0. At time t 5 0, while trav-
eling at 197.28 feet per second, the
driver applies the brakes such that
the car’s velocity satisfies the differ-
ential equation dv

dt t= − −11
25 7 .

(a) Find an expression for v in
terms of t where t is measured
in seconds.

(b) How far does the car travel
before coming to a stop?

(c) Write an equation for the
tangent line to the velocity
curve at t 5 9 seconds.

(d) Find the car’s average velocity
from t 5 0 until it stops.

STOP
END OF SECTION II, PART A. IF YOU HAVE ANY TIME LEFT, GO OVER
YOUR WORK IN THIS PART ONLY. DO NOT WORK IN ANY OTHER PART
OF THE TEST.
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SECTION II, PART B

45 Minutes • 3 Questions

A CALCULATOR IS NOT PERMITTED FOR THIS PART OF THE EXAMINATION.

4. Let R be defined as the region in the
first quadrant bounded by the curves
y 5 x2 and y 5 8 2 x2.

(a) Sketch and label the region on
the axes provided.

1 32 4

2

4

6

8

10

(b) Determine the area of R.
(c) Determine the volume of the

solid formed when R is rotated
about the x-axis.

(d) Determine the volume of the
solid whose base is R and whose
cross sections perpendicular to
the x-axis are semicircles.

5. The graph below represents the de-
rivative, f ′, of some function f.

f ′

2 3 4 55 6 7 8 99

10

11 121

(a) At what value of x does f
achieve a local maximum?
Explain your reasoning.

(b) Put these values in order from
least to greatest: f(4), f(5), and
f(7). Explain your reasoning.

(c) Does f have any points of
inflection? If so, what are they?
Explain your reasoning.

6. Examine the curve defined by 2exy 2

y 5 0.

(a) Verify dy
dx

ye

xe

xy

xy
=

−
2

1 2
.

(b) Find for the family of curves
bexy 2 y 5 0.

(c) Determine the y-intercept(s) of
bexy 2 y 5 0.

(d) Write the equation for the
tangent line at the y-intercept.

STOP
END OF SECTION II, PART B. IF YOU HAVE ANY TIME LEFT, GO OVER
YOUR WORK IN THIS PART ONLY. DO NOT WORK IN ANY OTHER PART
OF THE TEST.
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ANSWER KEY AND EXPLANATIONS

Section I, Part A

1. C
2. E
3. E
4. D
5. E
6. A

7. B
8. E
9. C

10. C
11. D
12. C

13. E
14. C
15. B
16. E
17. C
18. A

19. D
20. C
21. B
22. E
23. C

24. B
25. B
26. C
27. C
28. D

1. The correct answer is (C). Instan-
taneous rates of change always im-
ply differentiation. To quickly
determine this derivative, it is help-
ful to recognize x3 1 3x2 1 3x 1 1 as
(x 1 1)3. We then simplify the orginal
function to

f(x) 5
x

x

+( )
+
1

1

3

5 (x 1 1)2

Now, use the Power and Chain
Rules:

f ′(x) 5 2(x 1 1)

To find the instanteous rate of
change when x 5 2,

f ′(2) 5 2(2 1 1) 5 6

2. The correct answer is (E). To ap-
proximate the actual number of cars
crossing the bridge, approximate the
area under this graph. One way to do
this is to divide the interval from t 5

0 to t 5 12 into 2 equal subintervals.
Both of these regions resemble trap-
ezoids. The area of the left one is

A h b b= +( )

= ( ) +( )
=

1
2
1
2

6 100 25

375

1 2

The area of the right trapezoid
would be

A = ( ) +( )
=

1
2

6 100 50

450

So, the area under the curve would
be approximately 825. But we must
be careful here. The rate is in cars
per minute. Since the x-axis is in
hours, we must convert the rate to
cars per hour. To do this, we multiply
our 825 by 60 (minutes per hour) and
get 49,500 cars.

3. The correct answer is (E). Find
the definite integral:

3 3

3 3
5

3

12
5

31

5

21

5

1

5

x

x
dx

x
dx

x

=

= − = − +

=

∫ ∫
|

4. The correct answer is (D). There
is not enough information to deter-
mine whether or not choices (A),
(B), (C), or (E) are true. Look at
choice (D):

Average rate of change =
( ) ( )

= = =

−
−

−

f f2 0
2 0

9 3
2

6
2 3

5. The correct answer is (E). We

must recognize that
1

cos x
5 sec x.

This lets us rewrite the integral as

sec tan secx xe dxx( )∫0

3π
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Next, we can evaluate this integral
using u-substitution. If we let u 5

sec x and du 5 sec x tan x dx, we get

e du e e eu u= = −∫ 1

2 2

1

2

|
6. The correct answer is (A). We

need the derivative of the curve.
Since x and y are not separated for
us, we must use implicit differentia-
tion. Differentiate everything with
respect to x.

3 2 6 3 8 02 2

6 2 2 12 3 8 0

x xy y x y

dy
dx

dy
dx

dy
dx

x x y y

+ + − − =

+ + + − − =

Now, group all terms with
dy
dx

, and

solve for
dy
dx

.

dy
dx

x y x y2 12 8 3 6 2+ − = − −( )

dy
dx

x y
x y= − −

+ −
3 6 2
2 12 8

Finally, we just substitute our point

(1,1) into our expression for
dy
dx

and

get

dy
dx

1 1
3 6 2
2 12 8

5
6

,( ) = − −
+ −

= −

7. The correct answer is (B). Before
we try to integrate anything here,
distribute that =x and change the
notation to that of rational expo-
nents. After these two steps, we get

x x x dx5 2 3 2 1 2

0

1
3 8+ −( )∫

Integrating leads to

2
7

6
5

16
3

2
7

6
5

16
3

0 404
105

7 2 5 2 3 2

0

1
x x x+ −⎛

⎝
⎞
⎠ =

+ −⎛
⎝

⎞
⎠ − = −

|

8. The correct answer is (E). This is
a related-rates problem. We are

given
dr
dt

, the rate at which the ra-

dius is increasing, and need to find
dV
dt

, the rate at which the volume is

increasing when A, the surface area,
is 9p. Our primary equation is the
volume equation for a sphere:

V r= 4
3

3π

As in all such problems, we differen-
tiate with respect to t.

dV
dt

r dr
dt

= 4 2π

Knowledge of basic formulas is use-
ful here. 4pr2 is merely the surface
area formula for a sphere. We were
given that the surface area is equal

to 9p and that
dr
dt

5 2. Substituting

these values yields

dV
dt

5 9p(2) 5 18p

9. The correct answer is (C). To find
the area of a region bounded by two
curves, we should apply the follow-
ing formula:

f x g x dx
a

b ( ) − ( )( )∫
where a and b are the endpoints of
the interval. f(x) represents the top
curve, while g(x) represents the bot-
tom curve. Finding a and b is simple
enough. Since the region begins at
the y-axis, a 5 0. To find b, we will
determine what value satisfies the
following equation:

x3 5 x 1 6

By inspection, we can see that x 5 2.
Now, the area of the region would be
given by

x x dx+ −( )∫ 6 3

0

2

10. The correct answer is (C). When-
ever the average rate of change is
requested, we just need to compute
the slope of the secant line.
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m
f b f a

b a
f f

=
−
−

=
− −

− −

=
− −

=

( ) ( )

( ) ( )
( )

( )

4 1

4 1

19 6

5
5

11. The correct answer is (D). Since
we know that the second derivative
is a line of slope 6, we can say that

f ′′(x) 5 6x 1 C1

That implies that f ′(x) 5 3x2 1

C1x 1 C2

which in turn implies that f(x) 5

x3 1 C3x2 1 C2x 1 C4.

That is a cubic function.

12. The correct answer is (C). The
MVT for integrals says that the aver-
age value of a function over a given
interval is the area under the curve
divided by the length of the interval.
So, the average value, f(c), of f over
[24,4] could be found like this:

f c x dx x dx( ) ⎛
⎝⎜

⎞
⎠⎟ ( )⎛

⎝⎜
⎞
⎠⎟

= − +
−∫ ∫1

8 4

0
2

0

4

which is equivalent to

f c x dx x dx

x x

( ) ( )⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= +

= +

=

∫ ∫1
8

1
8

2
3 3

1
8

16

0

4 2

0

4

3 2

0

4 3

0

4| |

33
64
3

10
3+ =⎛

⎝⎜
⎞
⎠⎟

13. The correct answer is (E). Since f
has a horizontal tangent at x 5 1, we
know that f ′(1) 5 0. By reading the
graph, we can see that f(1) . 0. Since
the graph is concave down at x 5 1,
f ′′(1) , 0. Hence, f ′′(1) , f ′(1) , f(1).

14. The correct answer is (C). The

MVT states that at some point c on

the interval [a,b],

′ =
−
−( ) ( ) ( )

f c
f b f a

b a
. Since

f f12 4
12 4

1
2

( ) ( )
( )

− −
− −

= , then at some

point c on [a,b], ′ =( )f c 1
2

15. The correct answer is (B). This is
an application of the Fundamental
Theorem of Calculus, Part Two,
which states

d
dx

f t dt f x
a

x ( )( ) = ( )∫
We must remember that when the
upper limit of integration is some
function of x, such as 2x2, we must
multiply f(x) by the derivative of that
function with respect to x. Hence,

d
dx

e dt e x

xe

tx x

x

3

2 2

2

2
2

2

4

4

∫⎛
⎝⎜

⎞
⎠⎟

⋅=

=

16. The correct answer is (E). Since
we know that rate of change implies
derivative, from the information in
the problem, we can write

f ′(c) 5 e3f ′(2)

We are also told that f(x) 5 ex, so f ′(x)
5 ex. So, the above equation becomes

ec 5 e3
z e2 5 e5

So, c 5 5

17. The correct answer is (C). This
problem is testing if we can apply the
chain rule to functions defined by a
table. If h(x) 5 f(g(x)), then h′(x) 5 f
′(g(x))g′(x). This is why, when x 5 3,

h(3) 5 f(g(x)) 5 f(4) 5 2

h′(3) 5 f ′(g(3))g′(3) 5 f ′(4)g′(3) 5

2 z 1 5 2

So, h(3) 5 h′(3)

18. The correct answer is (A). Since
there are exactly two points on (0,10)
where f has a value of 4, the graph of
f must cross the line x 5 4 twice:
Once on the way up and once on the
way down. The fact that f is differen-
tiable over the interval insures no
cusps or discontinuities. Since the
curve turns around somewhere on
(0,10), there must be at least one
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horizontal tangent on (0,10). Hori-
zontal tangents are places where the
derivative is equal to zero.

19. The correct answer is (D). Normal
lines are perpendicular to tangent
lines. The slopes of two perpendicu-
lar lines are opposite reciprocals of
each other. So, this problem needs us
to determine the slope of the curve at
x 5 2, and then determine the oppo-
site reciprocal of that slope. Since
slope of the curve is determined by
the value of its derivative,

tangent slope = ′

= − −

= −
−

( ) ( )−

y

x x

x
x

1
2 8 2

8

2 1 2

2

′ = −
−

= − = −y ( )2 2
8 4

2
2 1

The slope of the normal line is the
opposite reciprocal

− =1
1

1

20. The correct answer is (C). Evalu-
ate the definite integral and apply
the Fundamental Theorem, Part
One:

x

k

k
k

k4

2

4 4

4

4 0

4
2
4 0

16 0
2

−
=

− =

− =
= ±

|

21. The correct answer is (B). The
rate of change of y being directly pro-
portional to y is the same statement
as

y′ 5 ky,

which we know leads to

y 5 Nekt

22. The correct answer is (E). The
question to answer here is when, if
ever, is the derivative of y 5 3x3 2

2x2 1 6x 2 2 negative? We should try
to determine the derivative, find any
critical values, and examine a wiggle
graph.

y′ 5 9x2 2 4x 1 6 5 0

This is an unfactorable trinomial.
Since we are not permitted to use
our calculators, we’d better use the
quadratic formula. So,

x = ± −4 16 216
18

Aha! The radicand, 16 2 216, is less
than zero, which would indicate that
the equation has no real solutions,
which would imply that the deriva-
tive of y 5 3x3 2 2x2 1 6x 2 2 is
never zero. Since it is a polynomial
function, then it must be continuous;
hence, y 5 3x3 2 2x2 1 6x 2 2 is
strictly monotonic. Now, we should
determine the value of the derivative
at one x value to determine if the
derivative is always positive or al-
ways negative. Using the equation,
let’s determine the value of the de-
rivative when x 5 0:

y′(0) 5 0 2 0 1 6 5 6 . 0

Since the derivative is always posi-
tive, the function y 5 3x3 2 2x2 1 6x
2 2 is never decreasing.

23. The correct answer is (C). Re-
member, the MVT guarantees that
for some c on [2,5],

′ =
−
−

= − =

( ) ( ) ( )
( )f c

f f5 2
5 2

1
3

3
2

11
2

Now, we should determine the de-
rivative of f x x

x( ) = −
−

2 3
1

, set it equal

to
3
2

, and solve for x.

′ =
−

− −
−

=( ) ( )
−( ) ( )

f x
x x x

xx

2 1 3
1

3
21

2

2

2

x x
x

2

2
2 3

1
3
2

− +
−

=
( )
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2(x2 2 2x 1 3) 5 3(x 2 1)2

2x2 2 4x 1 6 5 3x2 2 6x 1 3

x2 2 2x 2 3 5 0

(x 2 3)(x 1 1) 5 0

x 5 3 or x 5 21

Since 21 is not on [2,5], we throw
that value out and the value on [2,5]
that satisfies the MVT is 3.

24. The correct answer is (B). The
slope field shows us that f(x) will
have a derivative of zero when y 5

21 and when x 5 1 (since the slopes
are horizontal there). The easiest
possible differential equation with
such characteristics is f ′(x) = (x 2

1)(y + 1), since plugging in 21 for y
or 1 for x makes the slope 0. If you
factor choice (B) by grouping, that is
exactly what you get

xy + x 2 y 2 1

x(y + 1) 2 1(y + 1)

(x 2 1)(y + 1)

25. The correct answer is (B). This
problem is not as clear as it may
appear initially. After examining the
diagram, we should look for

g x f x dx
a

b ( ) − ( )( )∫
However, this is not an answer
choice. One of the choices must be
equivalent to ours. Remember that
when you switch the limits of inte-
gration, you get the opposite value.
Switching our limits gives us

− ( ) − ( )( )∫ g x f x dx
b

a

This is still not a choice. What if we
treat that negative sign as if it were
the constant 2 1 and distribute it
through the integral? We get

f x g x dx
b

a ( ) − ( )( )∫
Eureka!

26. The correct answer is (C). The de-
rivative being positive over [0,2] im-

plies that the function is increasing
over this interval. The second deriva-
tive being negative means that the
function is concave down. The curve
must look something like the curve
drawn below:

Notice that every y-coordinate over
the interval (0,2) is less than 2, so
f(1) , 2. Notice that the entire curve
is above the secant line from (0, 21)
to (2,2). (This is true due to the con-
cavity of the curve.) Since the secant

line segment passes through 1
1
2

,⎛
⎝⎜

⎞
⎠⎟

,

f(1) .
1
2

. Therefore, f(1) could be 1.

27. The correct answer is (C). This is
another related-rates problem. We

know that
dh
dt

5 21, where h repre-

sents the water level in the barrel.

We are looking for
dV
dt

, with V repre-

senting the volume of the barrel. Our
primary equation is the formula for
volume of a cylinder:

V 5 pr2h

Since it is given that the radius, r, is
a constant of 10, we can substitute
this into the equation and get

V 5 100ph

Now, as in any related-rates prob-
lem, we should differentiate with re-
spect to t:

dV
dt

5 100p
dh
dt

Substituting
dh
dt

5 21 into the equa-

tion yields

dV
dt

5 2100p
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Therefore, the water is leaving the
barrel at 100p in 3/min.

Notice that the information that the
volume was 500p cubic inches was
unnecessary.

28. The correct answer is (D). All we
need here is the derivative of f(x) 5

arctan u.
′ = ′

+
( )f x

u

u1 2

Since our function is u 5 x2, the
equation becomes

′ =
+

( )f x
x

x

2

1 4

Now, we substitute x 5 =3 and get

′ =
+

= =( )f 3
2 3
9 1

2 3
10

3
5

Section I, Part B

29. D
30. D
31. E
32. B

33. C
34. A
35. A
36. D

37. E
38. D
39. C

40. D
41. C
42. E

43. D
44. E
45. B

29. The correct answer is (D). The
particle’s positive velocity indicates
that the position function’s graph is
increasing. The decreasing velocity
indicates that the position function’s
graph should be concave down.

30. The correct answer is (D). In or-
der for these two functions to have
parallel tangent lines, their deriva-
tives must be equal. So, we should
find the derivatives of both func-
tions, set them equal to each other,
and solve for x. Since f(x) 5 3 ln (2x),

′ =( )f x x
3 . The derivative of g(x) 5

x3 1 2x is g′(x) 5 3x2 1 2. Now, we
will set these two expressions equal
and use our calculator to solve for x:

3 3 22

x
x= +

3 3 2 02

x x− − =

x 5 0.782

31. The correct answer is (E). The
rate of increase of the derivative is
the second derivative. So,

f ′′(x) 5 2

To find an expression for the first
derivative, we can find an an-
tiderivative:

f ′(x) 5 2x 1 C1

In order to determine C1, we can use
the information given to us that f ′(2)
5 4. We will substitute this and solve
for C1:

f ′(2) 5 4 5 4 1 C1

C1 5 0

Substituting this value into the sec-
ond equation yields

f ′(x) 5 2x

Now, we will determine f(x) and find
an antiderivative of the last equa-
tion:

f(x) 5 x2 1 C2

To solve for C2, we can use the fact
that f(1) 5 2, so

f(1) 5 2 5 1 1 C2

C2 5 1

Then, f(x) 5 x2 1 1

Finally, we can determine f(3):

f(3) 5 9 1 1 5 10

32. The correct answer is (B). We
must remember how to factor the dif-
ference of perfect cubes:

a3 2 b3 5 (a 2 b)(a2 1 ab 1 b2)

Using this formula, we can simplify
the limit:
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lim lim
x a x a

x a

x a x ax a→ →

−
−

=
+ +3 3 2 2

1

which we can evaluate by substitu-
tion:

=
+ +

=1 1

32 2 2 2a a a a

33. The correct answer is (C). The
best way to attack this problem
would be to plot the 4 points given
and sketch the 3 rectangles, as
shown in the diagram below:

15
12

6

3 96 12

1

2

3

4

5

Notice that the heights of the rect-
angles are determined by the y-value
corresponding to the right endpoint
of the subintervals. Next, we deter-
mine the area of each rectangle and
then add them up:

f x dx( )∫ ≈ + + =
3

12
6 12 15 33 

34. The correct answer is (A). Since
the graph of the derivative of f
crosses the x-axis twice, there will be
two relative extrema. There will be
one maximum because the derivative
changes from positive to negative
once. There will also be one mini-
mum since the derivative changes
from negative to positive once as
well.

35. The correct answer is (A). This is
a rather complicated application of
the MVT. We will also have to use
the Fundamental Theorem of Calcu-
lus, Part Two. First, let’s determine
the value of f 8(c):

′ =

=

=

( ) −
−

− =
−( ) −

−

f c f b f a
b a

f f e e

e

( ) ( )

( ) ( )4 0
4

0
4

1
4

8 0

8

Note: f(4) = e dt e e et t= = −∫ 0
8 8 0

0

8

Now, we will determine the deriva-

tive of f(x) 5 e dttx

0

2

∫ :

f ′(x) 5 2e2x

Next, we will set our value for f ′(c)
equal to our expression for f ′(x) and
use our calculator to solve for x:

2 1
4

2
8

2 960

e ex

x

= −

= .

36. The correct answer is (D). This
problem asks where is the slope of
the tangent line, which is the instan-
taneous velocity, equal to the slope of
the secant line, which is the average
velocity, over [0,3].

m s s
sec

( ) ( )= −

=
− + +( ) −

= −

3 0
3

27 18 1
2

1
2

3
3

To find the slope of the tangent line,
find the derivative of the curve:

mtan 5 2 3t2 1 4t

To determine where the two slopes
are the same, we will set msec equal
to mtan and solve for x using our cal-
culator:

23t2 1 4t 5 23

23t2 1 4t 1 3 5 0

t 5 1.869

37. The correct answer is (E). For g to
have a local maximum at x 5 1, the
derivative of g, which is f, must
change from positive to negative at x
5 1. It does not.

PART III: Four Practice Tests556
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

www.petersons.com



38. The correct answer is (D). This is
a tedious example of the trapezoidal
rule. Since we have 5 subintervals
and the interval is 3 units long, we
will be dealing with some messy
numbers. Anyway, we still have to
remember the trapezoidal rule:

f x dx b a
n f x

f x f b

f a f x

n

( ) ⎛
⎝⎜

⎞
⎠⎟

( ) + ( ) +

( )
( ) ( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

≈ − +

+−

2 2

2

2 1

1

2 …
⎟⎟
⎟
⎟

∫a

b

Applying it to this function, we get

x dx2 3 3
10

3 2 3 36

2 4 44

2 6 24

2 8 76 12

+ ≈

+ +
+
+
+

( )
( )

( )
( )
( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
.

.

.

.

⎟⎟
⎟
⎟
⎟

∫0

3

5 0.3 z (3 1 6.72 1 8.88 1 12.48 1

17.52 1 12)

5 .3 z 60.6 5 18.18

39. The correct answer is (C). Since
dy
dx

5 ky, we can immediately say

that we are dealing with an exponen-
tial function of the following form:

y 5 Nekt

We know that after five years, the
population will be three times what
it was initially. If we substitute 3N
for y and 5 for t and solve for k, we
get

3N 5 Ne5k

3 5 e5k

ln 3 5 5k

k = ≈ln .3
5 0 220

40. The correct answer is (D). In this
related-rates problem, we are going

to need
dr
dt

. To quickly find
dr
dt

, let’s

use the formula for the circumfer-
ence, differentiate with respect to t,

and solve for
dr
dt

:

C 5 2pr

dC
dt

dr
dt

= 2π

dr
dt

dC
dt= 2π

We are given that dC
dt

= 2
5
π . We can

now substitute this value into the

equation to get a value for
dr
dt

:

dr
dt

= =
2
5

2
1
5

π

π
The question is asking us about the
rate at which the area is increasing,
dA
dt

, when the circumference is 10p

inches. We will take the formula for
the area of a circle and differentiate
with respect to t:

A 5 pr2

dA
dt

r dr
dt

= 2π

Notice that we have the expression
2pr. This is just the circumference
that we know to be 10p. We can sub-

stitute this value and the value
1
5

for

dr
dt

to determine
dA
dt

:

dA
dt

= ⋅ =10
1
5

2π π

41. The correct answer is (C). Re-
member that the formula for the vol-
ume of a solid with known cross
sections is

V A x dx
a

b
= ( )∫  

where A(x) represents the area of the
cross sections. In this problem, we
are dealing with cross sections that
are equilateral triangles. The for-
mula for the area of an equilateral
triangle is

A s= 3
4

2

where s is the length of one side. As
we can see from the diagram, the
interval is from x 5 0 to x 5 6.
Therefore, the volume of this solid is
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V x x dx= ⋅ − +( )∫3
4

62 2

0

6

Our calculator will now do the rest
and get

V 5 112.237

42. The correct answer is (E). First,
we must determine an equation for
the tangent line to this curve at x 5

2. We need a point on the line and
the slope of the line. First the point:
Since f(2) 5 4, (2,4) is on the line.
Now the slope:

f 8(x) 5 2x 1 4

f 8(2) 5 4 1 4 5 8

The equation for the tangent line is

y 2 4 5 8(x 2 2)

or

y 5 8x 2 12

Now, let’s examine our choices.

I. The value of the function at

x = − 2 is − −4 2 6 , and the
tangent line approximation is
− −8 2 12 , which is twice the
value of the function. So, I
checks out.

II. The function value at x 5 1 is 2

3, while the tangent line ap-
proximation is 2 4.

III. The function value at x = 2 is

4 2 6− , and the tangent line
approximation is 8 2 12− . So,
III applies too.

43. The correct answer is (D). In or-
der to determine the number of criti-
cal values of the function, we can
count the zeros of the derivative.
This would require us to graph the
derivative on the calculator and
count how many times it crosses the
x-axis. It crosses four times.

44. The correct answer is (E). This is
a tricky Fundamental Theorem of
Calculus, Part Two problem. First,
we should rewrite it as such:

d
dx

d
dx

f t dt

f t dt

x

x

′

′

( )⎛
⎝⎜

⎞
⎠⎟

( )⎛
⎝⎜

⎞
⎠⎟

∫ =

− ∫
2

3

3

2

Once we’ve rewritten the problem
like this, it’s not so difficult:

− ′ ( ) ⋅ ( )
= − ′ ( ) ⋅

= − ′ ( )

f x d
dx

x

f x

f x

2 2

2 2

2 2

45. The correct answer is (B). In or-
der for the left-hand and right-hand
limits to be equal, the function must
be continuous. So, we need to find
the value of k for which this equation
is true:

1 13 + =k ln

This is relatively simple to solve:

1 1 k 5 0

k 5 21

Section II, Part A

1. (a) The five subintervals would each
be of length 2 and would be [0,2],
[2,4], [4,6], [6,8], and [8,10]. The
midpoints of these subintervals
would be 1, 3, 5, 7, and 9, respec-
tively. The Riemann sum that we
are looking for is just the sum of
five rectangles, each of width 2
and height f(mi), where mi is the
midpoint of the ith subinterval.
So,
A 5 2(f(1) 1 f(3) 1 f(5) 1 f(7) 1

f(9))
5 2(0.667 1 1.577 1 2.412 1

3.215 1 4)
5 2(11.871)

5 23.743
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(b) Recall the trapezoidal rule:

f x dx

b a
n

f a f x

f x

f x f b

a

b

n

( )
( ) ( )

( )
( ) ( )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟

≈

−
+ +

+

+ +

∫

−

2

2

2

2

1

2

1

… ⎟⎟
⎟
⎟

A

f f

f f

f f

≈
+ +

+ +
+

( ) ( )
( ) ( )
( ) ( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

10
10

0 2 2

2 4 2 6

2 8 10

5 (0 1 2(1.138) 1 2(2) 1

2(2.817) + 2(3.610) 1 4.387)

5 23.516

(c) The average value, f(c), of the
function is the area under the
curve divided by the length of
the interval. So, we can approxi-
mate f(c) like this:

f c( ) ≈ =23 516
10

2 352
.

.

(d) Here, we should determine the
exact area under the curve and
divide it by the length of the in-
terval:

f c dxx x( ) +⎛
⎝⎜

⎞
⎠⎟

= ⋅ ( ) =

= ∫1
10 3

1
10

23 694 2 369

0

10

. .

2. (a) We’ll start by labeling a fourth
point, Q, as the point on the
track directly in front of observer
O. We will also define some vari-
ables: x will be the distance from
the horse H to the point Q, y will
be the distance from the observer
O to the point Q, and z will be
the distance between the horse H

and the observer O. All of this is
shown in the diagram below.

How long is the distance from P
to Q? We can use the 30-60-90
triangle theorem to determine
that it is 100 3 or 173.2051 feet.
Since the horse is running at 45
feet per second, he has run 180
feet after 4 seconds. So, x 5 180 2

173.2051 5 6.79492.
Now we can use the Pythagorean
theorem to write our primary
equation:

x2 1 1002 5 z2

Substituting x 5 6.79492 into the
equation and solving for z gives
us

6.794922 1 1002 5 z2

10,046.171 5 z2

z 5 100.23059
The question asked us for the
rate that the distance from the
horse to the observer is increas-
ing after four seconds. In other

words, what is
dz
dt

when t 5 4? To

answer this, let’s differentiate

with respect to t and solve for
dz
dt

.

x z

x dx
dt

z dz
dt

dz
dt

x
z

dx
dt

2 2 2100

2 2

6 79492 45
100 23059

3 0

+ =

=

⋅

=

=

=

.
.

. 551

So, when t 5 4, the distance from
the horse to the observer is in-
creasing at 3.051 feet per second.
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(b) This is not a difficult problem.
The area of a triangle is

A =
1
2

z base z height

The height of this triangle is a
constant, 100 feet, so

A 5 50 z base

To determine the rate at which
the area of the triangle is chang-
ing, let’s differentiate with re-
spect to t:

dA
dt

d
dt

= ( )50 base

What is
d
dt

(base)? That’s the rate

at which the base is changing,
which is merely the speed of the
horse, 45 feet per second. Now
we have

dA
dt

= ⋅ =50 45 2 250,

So, the area of the triangle
formed by P, H,and O is increas-
ing at a constant rate of 2,250
feet2 per second.

(c) We will use x, y, and z to repre-
sent the same distances as in
part A. It can be determined eas-
ily that the horse has galloped
225 feet in the same amount of
time that the man ran 50 feet.
So, y 5 50, x 5 225, and z can be
determined as such:

x2 1 y2 5 z2

502 1 2252 5 z2

z 5 230.489

To determine
dz
dt

, we should dif-

ferentiate with respect to t:

2 2 2x dx
dt

y dy
dt

z dz
dt

+ =

Solving for
dz
dt

gives us

dz
dt

x y

z

dx
dt

dy
dt=

+

Now, we will substitute the fol-
lowing values into the equation:

x 5 225, y 5 50, z 5 230.489,
dx
dt

5 45, and
dy
dt

5 2 10.
dy
dt

is nega-

tive because y is getting shorter.

dz
dt

= ⋅ − + ⋅

=

50 10 225 45
230 489

41 759
.

.
The distance from the horse to
the observer is increasing at
41.759 feet per second.

3. This problem involves solving the
separable differential equation
dv
dt t= − −11

25 7 . First, we should
separate the v’s and t’s:

dv t dt= − −⎛
⎝

⎞
⎠

11
25

7

Integrate both sides:

v t t C= − − +11
50

72

To determine the value of C, we use
the initial condition given to us in
the problem. Since v(0) 5 197.28,
then

v C0 197 28
11
50

0 7 02( ) = = − ⋅ − ⋅ +.

and C 5 197.28. Now, we have our
expression for v in terms of t:

v t t t( ) = − − +11
50

7 197 282 .
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(b) This is a two-part question.
First, we should determine how
much time it takes the car to
stop, and then we should inte-
grate the velocity curve using
that value. In order for the car to
stop, v(t) 5 0.

− − + =11
50 7 197 28 02t t .

t 5 18

It takes the car 18 seconds to
come to a stop. Now, to deter-
mine how far the car travels in
those 18 seconds, we should find
the area under the velocity curve
from t 5 0 to t 5 18:

− −

+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=∫
11
50

7 197 28
1989 36

2

0

18 t

t
dt

.
.

The car travels 1,989.36 feet
while slowing down.

(c) To write the equation for a line,
we need a point on the line and
the slope of the line. To deter-
mine the y coordinate of the
point, we will evaluate v at t 5 9:

v 9 11
50 9 7 9 197 282( ) = − ⋅ − ⋅ + .

5 116.46

This tells us that (9116.46) is on
our tangent line. Now, determine
the slope by evaluating the de-
rivative (which we already know

from the problem itself
dV
dt

=

2
11
25

t 2 ~7! at t 5 9:

′ = − ⋅ − = −( )f 9
11
25

9 7 10 96.

The tangent line passes through
(9116.46) and has a slope of
210.96. We can now write its
equation using point-slope form:

v 2 116.46 5 2 10.96(t 2 9)

or in slope Þ intercept form:

v 5 2 10.96t 1 215.1

(d) This problem calls for the aver-
age value formula applied to the
velocity equation you found in
part (A).

1
18 0 0

18

− ( )∫ v t dt

You already know the value of
the integral from your work in
part (B).

1
18

~1989.36!

5 110.52 ft/sec.

Section II, Part B

4. (a)

(b) The two curves intersect at (2,4).
The area of the region R can be
determined using the following
definite integral:

A x x dx

x dx

x
x

= − −

= −

= −

= − =

( )
( )

⎛

⎝⎜
⎞

⎠⎟

∫
∫

8

8 2

8
2

3

16
16
3

32
3

2 2

0

2

2

0

2

3

0
2|
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(c) The volume is easiest to deter-
mine using the washer method.
The outer radius, R(x), is 8 2 x2,
and the inner radius, r(x), is x2:

V x x dx

x x x dx

x

= − −

= − + −

= −

( ) ( )⎡
⎣⎢

⎤
⎦⎥

( )
∫

∫

π

π

π

8

64 16

64 16
3

2 2 2

0

2

4 4

0

2

2

2

xx3
0

2

128 128
3

256
3

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟= −

=

|

π

π

(d) The volume of a solid with
known cross sections can be de-
termined like this:

V A x dx
a

b
= ( )∫

The cross sections are semi-
circles whose area formula is A 5

1
2
pr2.

Now, we need an expression in
terms of x for the radius of one of
these semicircles. Because the
height of R is the diameter of a
semicircle, the radius would be

r x x x( ) ( )= − = −1
2

8 2 42 2

This leads to the area of a semi-
circle:

A(x) 5
1
2
p(4 2 x2)2

5
1
2
p(16 2 8x2 1 x4)

which gives us the volume of the
solid:

V x x dx

x
x x

= − +

= − +

= − + =

( )
⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝⎜

⎞
⎠⎟

∫1
2

16 8

1
2

16
8

3 5

2
32

64
3

32
5

128
15

2 4

0

2

3 5

0
2

π

π

π π

|

.

5. (a) The local maximum occurs at x 5

5 because the derivative changes
from positive to negative there.
This means that the function
changes from increasing to de-
creasing there as well.

(b) f(7) , f(4) , f(5)

Since the function increases over
[4,5] and decreases over [5,7],
f(5) is the greatest of the three.
To determine which is greater,
f(4) or f(7), we examine the accu-
mulated area over [4,7]. Since
this area is negative, the func-
tion has a net decrease over [4,7].
Thus, f(4) . f(7).

(c) f has two points of inflection: one
at x 5 4 and one at x 5 7. Points
of inflection are places where the
graph changes concavity. The
graph changes concavity when-
ever the derivative changes from
increasing to decreasing or from
decreasing to increasing. The de-
rivative changes from increasing
to decreasing at x 5 4 and from
decreasing to increasing at x 5 7.
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6. (a) Since the x and y are not sepa-
rated, we should differentiate
implicitly.

2exy 2 y 5 0

2 0e x dy
dx

y dy
dx

xy +⎛
⎝⎜

⎞
⎠⎟ − =

2 2 0xe dy
dx

ye dy
dx

xy xy+ − =

dy
dx

xe yexy xy2 1 2− = −( )
dy
dx

ye
xe

ye
xe

xy

xy

xy

xy= −
−

=
−

2
2 1

2
1 2

(b) Differentiating implicitly again
yields

dy
dx

bye
bxe

xy

xy=
−1

(c) To determine the y-intercept, we
let x 5 0 and solve for y:

bexy 2 y 5 0

be0 5 y

y 5 b

So, the y-intercept is (0,b).

(d) We just need the slope when x 5

0 and y 5 b. We will substitute
these values into our expression

for
dy
dx

:

dy
dx

b be
b= ⋅

−
=

0

1 0
2

Now, we write the equation for a
line with y-intercept b and slope
b2:

y 5 b2x 1 b

a
n

sw
e

rs
p

ra
c

tic
e

te
st2
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ANSWER SHEET PRACTICE TEST 3

Section I, Part A
1. OA OB OC OD OE

2. OA OB OC OD OE

3. OA OB OC OD OE

4. OA OB OC OD OE

5. OA OB OC OD OE

6. OA OB OC OD OE

7. OA OB OC OD OE

8. OA OB OC OD OE

9. OA OB OC OD OE

10. OA OB OC OD OE

11. OA OB OC OD OE

12. OA OB OC OD OE

13. OA OB OC OD OE

14. OA OB OC OD OE

15. OA OB OC OD OE

16. OA OB OC OD OE

17. OA OB OC OD OE

18. OA OB OC OD OE

19. OA OB OC OD OE

20. OA OB OC OD OE

21. OA OB OC OD OE

22. OA OB OC OD OE

23. OA OB OC OD OE

24. OA OB OC OD OE

25. OA OB OC OD OE

26. OA OB OC OD OE

27. OA OB OC OD OE

28. OA OB OC OD OE

Section I, Part B
29. OA OB OC OD OE

30. OA OB OC OD OE

31. OA OB OC OD OE

32. OA OB OC OD OE

33. OA OB OC OD OE

34. OA OB OC OD OE

35. OA OB OC OD OE

36. OA OB OC OD OE

37. OA OB OC OD OE

38. OA OB OC OD OE

39. OA OB OC OD OE

40. OA OB OC OD OE

41. OA OB OC OD OE

42. OA OB OC OD OE

43. OA OB OC OD OE

44. OA OB OC OD OE

45. OA OB OC OD OE
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Practice Test 3: AP
Calculus BC

SECTION I, PART A

55 Minutes • 28 Questions

A CALCULATOR MAY NOT BE USED FOR THIS PART OF THE EXAMINATION.

Directions: Solve each of the following problems, using the available
space for scratchwork. After examining the form of the choices, decide
which is the best of the choices given and fill in the corresponding oval on
the answer sheet. No credit will be given for anything written in the test
book. Do not spend too much time on any one problem.

In this test: Unless otherwise specified, the domain of a function f is
assumed to be the set of all real numbers x for which f(x) is a real
number.

1. The function f is given by f (x) 5

3x4 2 2x3 1 7x 2 2. On which of
the following intervals is f ′ de-
creasing?

(A) (2`,`)

(B) (2`,0)

(C) 1
3

,∞⎛
⎝

⎞
⎠

(D) 0 1
3

,⎛
⎝

⎞
⎠

(E) −⎛
⎝

⎞
⎠

1
3

0,

2. What is the area under the
curve described by the paramet-
ric equations x 5 sint and y 5

cos2t for 0 2≤ ≤t π ?

(A) 1
3

(B) 1
2

(C) 2
3

(D) 1

(E) 4
3

p
ra

c
tic

e
te

st
3
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3. The function f is given by f(x) 5 8x3

1 36x2 1 54x 1 27. All of these state-
ments are true EXCEPT

(A) 2
3
2

is a zero of f.

(B) 2
3
2

is a point of inflection of f.

(C) 2
3
2

is a local extremum of f.

(D) 2
3
2

is a zero of the derivative

of f.
(E) f is strictly monotonic.

4. x x dxln  ∫ =

(A) x x x
C

2 2

2 4

ln + +

(B) x
x C

2

4
2 1ln −( ) +

(C) x
x x C

2
2ln − +( )

(D) x x
x

Cln − +
2

4

(E) ln x

x

x
C

( ) − +
2

4

5. Let h x g x( ) = ( )ln . If g is decreasing
for all x in its domain, then

(A) h is strictly increasing.
(B) h is strictly decreasing.
(C) h has no relative extrema.
(D) both (B) and (C).
(E) none of the above.

QUESTIONS 6, 7, AND 8 REFER TO THE
DIAGRAM AND INFORMATION BELOW.

The function f is defined on [0,7]. The
graph of its derivative, f ′, is shown above.

6. The point (2,5) is on the graph of y 5

f (x). An equation of the line tangent
to the graph of f at (2,5) is

(A) y 5 2
(B) y 5 5
(C) y 5 0
(D) y 5 2x 1 5
(E) y 5 2x 2 5

7. How many points of inflection does
the graph y 5 f (x) have over [0,7]?

(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

8. At what value of x does the absolute
maximum value of f occur?

(A) 1
(B) 2
(C) 4
(D) 6
(E) 7
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9. x

x
dx

e 2

1

4+⎛
⎝⎜

⎞
⎠⎟

=∫
(A) e2 9

2
+

(B) e2 9
2
−

(C) e2 7
2
+

(D) e2 8
2
+

(E) e2 4
2
−

10. The function f given by f(x) 5 3x5 2

4x3 2 3x is increasing and concave
up over which of these intervals?

(A) −∞ −
⎛
⎝⎜

⎞
⎠⎟

,
2

5

(B) −
⎛
⎝⎜

⎞
⎠⎟

2

5
0,

(C) ( 2 1, 1)

(D) 2

5
,∞

⎛
⎝⎜

⎞
⎠⎟

(E) (1, `)

11. If y 5 2xy 2 x2 1 3, then when x 5 1,
dy
dx

5

(A) 26
(B) 22
(C)

2
2
3

(D) 2
(E) 6

12. The length of the curve described by
the parametric equations x 5 2t3 and
y 5 t3 where 0 ≤ t ≤ 1 is

(A)
5
7

(B) 5
2

(C)
3
2

(D) 5

(E) 3

13. What is the average value of f(x) 5

3sin2x 2 cos2x over 0 2, π[ ] ?

(A) 0

(B) 1

(C) 2

(D) 3

(E) π
2

p
ra

c
tic

e
te

st
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14. Let f be defined as

for some constant k. For what value
of k will f be differentiable over its
whole domain?

(A) 22
(B) 21

(C)
2
3

(D) 1
(E) None of the above

15. What is the approximation of the
value of e3 obtained by using a
fourth-degree Taylor polynomial
about x 5 0 for ex?

(A) 1 3
9

2

9

2

27

8
+ + + +

(B) 1 3 9
27

8
+ + +

(C) 1 3
27

8
+ +

(D) 3
9

2

9

2

27

4
− + −

(E) 3 9
27

8
+ +

16. 6 3 3x e dxx =∫
(A) e3x(9x3 2 9x2 1 6x 2 2) 1 C

(B) e x x x Cx3 3 22 2
4

3

4

9
− − +⎛

⎝
⎞
⎠ +

(C) 2

9
2 2

4

3

4

9
3 3 2e x x x Cx − + −⎛

⎝
⎞
⎠ +

(D) 2

9
9 9 6 23 3 2e x x x Cx − − −( ) +

(E) 2

9
9 9 6 23 3 2e x x x Cx − + −( ) +

17. If f(x) 5 secx, then f ′(x) has how
many zeros over the closed interval
[0,2p]?

(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

18. Consider the region in the first quad-
rant bounded by y 5 x2 over [0,3].
Let L3 represent the Riemann ap-
proximation of the area of this region
using left endpoints and three rect-
angles, R3 represent the Riemann
approximation using right endpoints
and three rectangles, M3 represent
the Riemann approximation using
midpoints and three rectangles, and
T3 represent the trapezoidal approxi-
mation with three trapezoids. Which
of the following statements is true?

(A) R T x dx M L3 3
2

3 3
0

3
< < < <∫

(B) L M T R x dx3 3 3 3
2

0

3
< < < < ∫

(C) M L x dx T R3 3
2

0

3

3 3< < < <∫
(D) L M x dx R T3 3

2

0

3

3 3< < < <∫
(E) L M x dx T R3 3

2

0

3

3 3< < < <∫
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19. Which of the following series con-
verge?

I.
2

1
1

n

n
n +

⎛
⎝⎜

⎞
⎠⎟=

∞

∑

II.
3

1
n

n=

∞

∑

III.
cos 2

2
1

n

n
n

π⎛
⎝

⎞
⎠

=

∞

∑

(A) I only
(B) II only
(C) III only
(D) I and II
(E) I and III

20. The area of the region inside the po-
lar curve r 5 4sinu but outside the
polar curve r = 2 2 is given by

(A) 2 4 12

4

3 4
sin θ θ

π

π
−( )∫ d

(B) 1
2

4 2 2
2

4

3 4
sin θ θ

π

π
−( )∫ d

(C) 1
2

4 2 2
4

3 4
sin θ θ

π

π
−( )∫ d

(D) 1
2

16 82

4

3 4
sin θ θ

π

π
−( )∫ d

(E) 1
2

4 12

4

3 4
sin θ θ

π

π
−( )∫ d

21. When x 5 16, the rate at which x3/4 is
increasing is k times the rate at

which =x is increasing. What is the
value of k?

(A) 1
8

(B) 3
8

(C) 2

(D) 3

(E) 8

22. The length of the path described by
the parametric equations x 5 2cos2t
and y 5 sin2t for 0 ≤ t ≤ p is given by

(A) 4 22 4

0
cos sint t dt+∫  

π

(B) 2 4 2
0

sin cos sint t t dt−∫  
π

(C) 4 16 22 2 2

0
sin cos sint t t dt−∫  

π

(D) 4 2 42 2 2

0
sin sin cost t t dt+∫  

π

(E) 16 2 42 2 2

0
sin sin cost t t dt+∫  

π

23. Determine the interval of conver-

gence for the series
3 2

2

5 2
0

x
n

n

n

−( )⎛

⎝
⎜

⎞

⎠
⎟

+

=

∞

∑ .

(A) − ≤ ≤1
3

1
3

x

(B) − < <1
3

1x

(C) − ≤ ≤1
3

1x

(D) 1
3

1≤ ≤x

(E) − ≤ ≤ −1
3

1x

p
ra

c
tic

e
te

st
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24. f x x x
x x

( ) = ( )( )
( )( )

+ −
− +

3 4 2 1
2 3 2 1

has a horizontal

asymptote at x 5

(A)
3
2

(B)
3
2

and 2
1
2

(C) 0

(D) 2
3
4

and
1
2

(E) None of the above

25.

2−2

−2

2

Shown above is the slope field for
which of the following differential
equations?

(A) dy

dx
x= +1

(B) dy

dx
x y= −

(C) dy

dx

x y= +
2

(D) dy

dx
y x= −

(E) dy

dx
y= + 1

26. x
e x dx

2

2
=

∞

∫
(A) 5

e

(B) 10e2

(C) 10
2e

(D) 2

(E) 5e

27. The population P(t) of a species sat-

isfies the logistic differential equa-

tion dP
dt

PP= −( )2
3 1005 . What is

lim
t

P t
→∞

( )?

(A) 100
(B) 200
(C) 300
(D) 400
(E) 500

28. If a x cn

n

n

−( )
=

∞

∑
0

is a Taylor series

that converges to f(x) for every real x,
then f ′′(c) 5

(A) 0
(B) n(n 2 1)an

(C) na x cn

n

n

−( ) −

=

∞

∑ 1

0

(D) an
n=

∞

∑
0

(E) n n a x c
n

n

n−( ) −( )
=

∞
−∑ 1

0

2

STOP
END OF SECTION I, PART A. IF YOU HAVE ANY TIME LEFT, GO OVER
YOUR WORK IN THIS PART ONLY. DO NOT WORK IN ANY OTHER PART
OF THE TEST.
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SECTION I, PART B

50 Minutes • 17 Questions

A GRAPHING CALCULATOR IS REQUIRED FOR SOME QUESTIONS IN THIS PART OF
THE EXAMINATION.

Directions: Solve each of the following problems, using the available space
for scratchwork. After examining the form of the choices, decide which is the
best of the choices given and fill in the corresponding oval on the answer
sheet. No credit will be given for anything written in the test book. Do not
spend too much time on any one problem.

In this test: (1) The exact numerical value of the correct answer does not
always appear among the choices given. When this happens, select from
among the choices the number that best approximates the exact numerical
value. (2) Unless otherwise specified, the domain of a function f is assumed to
be the set of all real numbers x for which f(x) is a real number.

29. The graph of the function repre-
sented by the Taylor series, centered
at x 5 1, 1 2 (x 2 1) 1 (x 2 1)2 2 (x
2 1)3 1 . . . 5 ( 2 1)n(x 2 1)n inter-
sects the graph of y 5 ex at x 5

(A) 29.425
(B) 0.567
(C) 0.703
(D) 0.773
(E) 1.763

30. If f is a vector-valued function de-
fined by f(t) 5 ,cos2t, ln t., then
f ′′(t) 5

(A) −2
1

cos sin ,t t
t

(B) 2
1

cos ,t
t

(C) 2
1

cos sin ,t t
t

 

(D) − + −2 2
12 2
2cos sin ,t t

t

(E) − −2
1
2,

t

31. The diagonal of a square is increas-
ing at a constant rate of =2 centi-
meters per second. In terms of the
perimeter, P, what is the rate of
change of the area of the square in
square centimeters per second?

(A) 2

4
P

(B) 4

2
P

(C) 2P

(D) P

(E) P

2

p
ra

c
tic

e
te

st
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32. If f is continuous over the set of real
numbers and f is defined as

f x x x
x

( ) = − +
−

2
3 2

2
for all x Þ 2, then

f(2) 5

(A) 22
(B) 21
(C) 0
(D) 1
(E) 2

33. If 0 ≤ k ≤ 2 and the area between the
curves y 5 x2 1 4 and y 5 x3 from
x 5 0 to x 5 k is 5, then k 5

(A) 1.239
(B) 1.142
(C) 1.029
(D) 0.941
(E) 0.876

34. Determine
dy
dx

for the curve defined

by xsiny 5 1.

(A) − tan y
x

(B) tan y
x

(C) sec tany y
x
−

(D) sec y
x

(E) − sec y
x

35. If f(x) 5 h(x) 1 g(x) for 0 ≤ x ≤ 10,

then f x h x dx( ) − ( ) +( ) =∫ 2 3
0

10

(A) 2 3
0

10
g x h x dx( ) − ( ) +( )∫

(B) g(10) 2 h(10) 1 30

(C) g(10) 2 h(10) 1 30 2 g(0) 2

h(0)

(D) g x h x dx( ) − ( )( ) +∫ 30
0

10

(E) g x h x dx( ) − ( )( ) +∫ 2 30
0

10

36. Use a fifth-degree Taylor polynomial
centered at x 5 0 to estimate e2.

(A) 7.000
(B) 7.267
(C) 7.356
(D) 7.389
(E) 7.667

37. What are all the values of x for which

the series x

n n

n

n
n

+( )
( )

⎛

⎝
⎜

⎞

⎠
⎟

=

∞

∑ 2

31

converges?

(A) 23 , x , 3
(B) 23 ≤ x ≤ 3
(C) 25 , x , 1
(D) 25 ≤ x ≤ 1
(E) 25 ≤ x , 1

38. Let f x x( ) = −2 4 . Let R be the re-

gion bounded by f, the x-axis, and the
vertical lines x 5 2 3 and x 5 3. Let
T6 represent the approximation of
the area of R using the trapezoidal
rule with n 5 6. The quotient

T

f x dx
6

3

3 ( )−∫
=

(A) 0.334
(B) 0.978
(C) 1.022
(D) 1.304
(E) 4.666
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39. Let R be the region bounded by y 5 3
2 x2, y 5 x3 1 1, and x 5 0. If R is
rotated about the x-axis, the volume
of the solid formed could be deter-
mined by

(A) π x x dx3 2 2 2

0

1
1 3+( ) − −( )( )∫

(B) − +( ) − −( )( )∫π x x dx3 2 2 2

1

0
1 3

(C) 2 23 2

0

1
π x x x dx− − +( )( )∫

(D) π x x dx3 2 2 2

1

0
1 3+( ) − −( )( )∫

(E) 2 23 2

0

1
π x x x dx+ −( )( )∫

40. Let f be defined as

and g be defined as

g x f t dt
x

( ) = ( )
−∫ 4

for 2 4 ≤ t ≤ 4.

Which of these is an equation for

the tangent line to g at x 5 2?

(A) 4 3 4 2 72x y+ = +

(B) 3 2 3 64 2 2x y− = − −

(C) 3 2 3 64 2 2x y− = −

(D) 3 2 3 64 2 2x y− = +

(E) 4 3 4 2 56x y+ = −

41.

a b

Let g x f t dt
a

x( ) = ( )∫ t, where a ≤ x

≤ b. The figure above shows the

graph of g on [a,b]. Which of the

following could be the graph of f on

[a,b]?

(A)

a b

(B)

a b

(C)

a b

(D)

a b

(E)

a b
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42. The sum of the infinite geometric se-
ries 4

5
8
35

16
245

32
1715+ + + + . . . is

(A) 0.622
(B) 0.893
(C) 1.120
(D) 1.429
(E) 2.800

43. Let f be a strictly monotonic differen-
tiable function on the closed interval
[5,10] such that f(5) 5 6 and f(10) 5

26. Which of the following must be
true for the function f on the interval
[5,10]?

I. The average rate of change of f
is 4.

II. The absolute maximum value of
f is 26.

III. f ′(8) . 0.

(A) I only
(B) II only
(C) III only
(D) I and II
(E) I, II, and III

44. Let F(x) be an antiderivative of f(x) 5

e2x. If F(0) 5 2.5, then F(5) 5

(A) 150.413
(B) 11013.233
(C) 11015.233
(D) 22026.466
(E) 22028.466

45. The base of a solid is the region in
the first quadrant bounded by y 5

2x2 1 3. The cross sections perpen-
dicular to the x-axis are squares.
Find the volume of the solid.

(A) 3.464
(B) 8.314
(C) 8.321
(D) 16.628
(E) 21.600

STOP
END OF SECTION I, PART B. IF YOU HAVE ANY TIME LEFT, GO OVER
YOUR WORK IN THIS PART ONLY. DO NOT WORK IN ANY OTHER PART
OF THE TEST.
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SECTION II, PART A

45 Minutes • 3 Questions

A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF
PROBLEMS IN THIS PART OF THE EXAMINATION.

SHOW ALL YOUR WORK. It is important to show your setups for these
problems because partial credit will be awarded. If you use decimal approxi-
mations, they should be accurate to three decimal places.

1. Let f be a function that has deriva-
tives of all orders for all real num-
bers. Assume f(1) 5 3, f ′(1) 5 21,
f ′′(1) 5 4, and f ′′′(1) 5 22.

(a) Write the third-degree Taylor
polynomial for f about x 5 1,
and use it to approximate
f(1.1).

(b) Write the second-degree Taylor
polynomial for f ′ about x 5 1,
and use it to approximate
f ′(1.1).

(c) Write the fourth-degree Taylor
polynomial for

g x f t dt
x( ) = ( )∫1 .

(d) Can f(2) be determined from
the information given? Justify
your answer.

2. Consider the differential equation
dy
dx

x x
ey= +3 22

.

(a) Find a solution y 5 f(x) to the
differential equation that
satisfies f(0) 5 2.

(b) What is the domain of f?
(c) For what value(s) of x does f

have a point of inflection?

3. Let R be the region enclosed by the
graphs of y 5 2x2 1 3 and y 5

tan21x.

(a) Determine the area of R.
(b) Write an expression involving

one or more integrals that gives
the length of the boundary of R.
Do not evaluate.

(c) The base of a solid is the region
R. The cross sections perpen-
dicular to the x-axis are semi-
circles. Write an expression
involving one or more integrals
that gives the volume of the
solid. Do not evaluate.

STOP
END OF SECTION II, PART A. IF YOU HAVE ANY TIME LEFT, GO OVER
YOUR WORK IN THIS PART ONLY. DO NOT WORK IN ANY OTHER PART
OF THE TEST.
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SECTION II, PART B

45 Minutes • 3 Questions

A CALCULATOR IS NOT PERMITTED FOR THIS PART OF THE EXAMINATION.

4.

1 32 4 5 76 8−1−2−3

The figure above shows the graph of
f ′, the derivative of some function f,
for 2 3 ≤ x ≤ 8. The graph of f ′ has
horizontal tangent lines at x 5 2 1
and x 5 2, a vertical tangent line at
x 5 3, and a cusp at x 5 5.

(a) Find all values of x for which f
attains a relative minimum on
(23,8). Explain.

(b) Find all values of x for which f
attains a relative maximum on
(23,8). Explain.

(c) For what value of x, 2 3 ≤ x
≤ 8, does f attain its absolute
minimum? Explain.

(d) For what value(s) of x, for
23 , x , 8, does f ′′(x) not
exist?

5. Consider the differential equation
dy
dx

5 x(y 2 2).

(a) On the axes provided below,
sketch a slope field for the
given differential equation at
the nine points indicated.

1−1

1

2

3

(b) Let y 5 f(x) be a particular
solution to the given differen-
tial equation with the initial
condition f(0) 5 3. Use Euler’s
method starting at x 5 0 with a
step size of 0.2 to approximate
f(0.4). Show the work that
leads to your answer.

(c) Find the particular solution
y 5 f(x) to the differential
equation with the initial
condition f(0) 5 3.

6. A moving particle has position (x(t),
y(t)) at time t. The position of the
particle at time t 5 1 is (7,0), and the
velocity vector at any time t . 0 is

given by 3 43 2
2 2− +

t t
, .

(a) Find the position of the particle
at t 5 3.

(b) Will the line tangent to the
path of the particle at (x(t), y(t))
ever have a slope of zero? If so,
when? If not, why not?

STOP END OF SECTION II, PART B. IF YOU HAVE ANY TIME LEFT, GO OVER YOUR
WORK IN THIS PART ONLY. DO NOT WORK IN ANY OTHER PART OF THE TEST.
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ANSWER KEY AND EXPLANATIONS

Section I, Part A

1. D
2. C
3. C
4. B
5. C
6. B

7. C
8. B
9. C

10. E
11. E
12. D

13. B
14. E
15. A
16. E
17. D
18. E

19. C
20. D
21. D
22. E
23. D

24. A
25. C
26. C
27. E
28. A

1. The correct answer is (D). To de-
termine where the derivative of a
function is increasing, we should find
the zeros of the second derivative
and examine a wiggle graph.

f(x) 5 3x4 2 2x3 1 7x 2 2

f ′(x) 5 12x3 2 6x2 1 7

f ′′(x) 5 36x2 2 12x 5 0

The second derivative is equal to

zero when x 5 0 and when x 5
1
3

. By

examining the wiggle graph below,
we can determine the interval on
which the derivative is decreasing.

++ −
0 1

3

f ″

The second derivative is negative
over 0 1

3,( ) .

2. The correct answer is (C). We can
convert these parametric equations
into the following Cartesian equa-
tion: y 5 1 2 x2. So, the area under
the curve would be given by

A x dx= −( )
=

∫ 1

2

3

2

0

1

.

3. The correct answer is (C). Al-

though 2
3
2

is a zero of the derivative,

the derivative does not change signs
there.

4. The correct answer is (B). Use in-
tegration by parts. Letting u 5 ln x
and dv 5 x dx yields

x x dx
x

x
x

x
dx

x
x

x
C

x
x C

ln ln

ln

ln .

 ∫ ∫= −
( )

= − +

= −( ) +

2 2

2 2

2

2 2

2 4

4
2 1

5. The correct answer is (C). Let’s
begin by examining h′(x):

′( ) = ′( )
( )

h x
g x

g x
.

In order for h to have any relative
extrema, its derivative, h′, would
have to equal zero at some point.
Since g is always decreasing, g′ is
never zero and since g′ is the nu-
merator of h′, h′ is never zero. There-
fore, h has no relative extrema.

6. The correct answer is (B). By
reading the graph, we learn that f ′(2)
5 0. Using point-slope form, we get
an equation of the tangent at (2,5) to
be

y 2 5 5 0(x 2 2)

which becomes

y 5 5

7. The correct answer is (C). Points
of inflection correspond with hori-
zontal tangents of the derivative.
Since there are two such tangents,
there are two points of inflection.
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8. The correct answer is (B). The
maximum accumulated area under
the graph of f ′ occurs at x 5 2.

9. The correct answer is (C). Since
the degree of the numerator is
greater than the degree of the de-
nominator, we should first divide
and integrate the quotient.

x dx

x
x

x
dx

e e

e e2

1 1

2 2

4 4

2
4

1

2

7

2

+ = +⎛
⎝

⎞
⎠

= + − = +

∫ ∫ 

10. The correct answer is (E). This
question is asking for an interval
where both the first and second de-
rivatives are positive.

f(x) 5 3x5 2 4x3 2 3x

f ′(x) 5 15x4 2 12x2 2 3 5 0

(15x2 1 3)(x2 2 1) 5 0

x 5 6 1

++ −
−1 1

f ′

f ′′(x) 5 60x3 2 24x 5

12x(5x2 2 2) 5 0

x = ± 2

5
0,

By examining both of the preceding
wiggle graphs, we can see that the
curve increases and is concave up
from 1 to infinity.

11. The correct answer is (E). First,
let’s determine the value of y when
x 5 1.

y 5 2xy 2 x2 1 3

let x 5 1

y 5 2y 2 1 1 3

y 5 2 2

Now, we differentiate the equation
with respect to x:

dy

dx
x

dy

dx
y x

dy

dx

y x

x
x y

dy

dx

= + −

= −
−

= = −

=

2 2 2

2 2

1 2
1 2

6

let  and 

.

12. The correct answer is (D). The
length of a curve defined parametri-
cally is given by

l
dx

dt

dy

dt
dt

a

b
= ⎛

⎝
⎞
⎠ + ⎛

⎝
⎞
⎠∫

2 2

Applying the formula above gives us

l t t dt

t dt

= +

=

=

∫
∫

36 9

3 5

5

4 4

0

1

2

0

1

.

13. The correct answer is (B). Since
we are asked for the average value,
we use the MVT for integrals.

f c x x dx( ) = −( )∫2
3 2 2

0

2

π
π

sin cos

We need to use power reducing for-
mulas.

3

3 1 2
2

1 2
2

3 3 2 1 2
2

2 4

2 2sin cos

cos cos

cos cos

x x

x x

x x

−

−⎛
⎝

⎞
⎠ − +⎛

⎝
⎞
⎠

− − −

− ccos

cos

2
2

1 2 2

x

x−

Now, integrate to get the answer.

2
1 2 2

2

2
1

0

2

π

π
π

π
−( )

=

∫
•

cos x dx

14. The correct answer is (E). For
what value of k will the left- and
right-hand derivatives be equal? If

k 5
2
3

, then the derivatives will be

the same; however, the function is
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then discontinuous because the left-
and right-hand limits are different.

15. The correct answer is (A). This is
a Taylor or Maclaurin series that you
should commit to memory.

e x x x xx = + + + +1
2 3 4

2 3 4

! ! !
Substituting 3 for x yields

ex = + + + +

= + + + +

1 3 9
2

27
6

81
24

1 3 9
2

9
2

27
8

16. The correct answer is (E). This is
a very involved integration-by-parts
problem. Use a chart.

= − + − +

= − + −( ) +

2 2 4
3

4
9

2
9

9 9 6 2

3 3 2 3
3

3

3 3 2

x e x e xe e C

e x x x C

x x
x

x

x

17. The correct answer is (D). Since
f(x) 5 secx, f ′(x) 5 secxtanx. secx is
never zero, and tanx 5 0 when x 5 0,
x 5 p, or when x 5 2p. So, the an-
swer is 3.

18. The correct answer is (E). To de-
termine R3, L3, and M3, we need to
be able to sum the areas of the rect-
angles. R3 5 14, L3 5 5, and M3

5
35
4

. To determine T3, we need to

find the area of a triangle and two

trapezoids. T3 5
19
2

. Using the fun-

damental theorem, x dx2

0

3
9=∫ .

19. The correct answer is (C). Apply-
ing the ratio test to the first series,

lim

lim

,

n

n

n

n

n
n

n
n

→∞

+

→∞

+
+

=
+( )
+( ) =

= >

•
2

2
1

2

2
1
2

2

2 1

1

 so I. is diverrgent
Applying the comparison test to the
second series and comparing it to the
harmonic series helps us conclude
that II. is divergent as well.

The third series is really just 1

1
2n

n=

∞

∑ ,

which is a p-series with p . 1, so it is
convergent.

20. The correct answer is (D). The
two curves intersect at θ π=

4
and

θ π= 3
4

. So, the area would be given
by

A d= −( )∫1
2

16 82

4

3 4
sin θ θ

π

π
 

21. The correct answer is (D). We
must set the two derivatives equal to
each other and solve for k.

3

4 2

3

1 4x
k

x

k

− = ( )
= .

22. The correct answer is (E). We ap-
ply the following formula:

l
dx

dt

dy

dt
dt

a

b
= ⎛

⎝
⎞
⎠ + ⎛

⎝
⎞
⎠∫

2 2

x′ 5 2 4sin2t and y′ 5 2sintcost. So,

l t t tdt= +∫ 16 2 42 2 2

0
sin sin cos

π

23. The correct answer is (D). First,
we’ll take the limit of the ratio test:

lim
n

n

n

x

n

n

x

x

→∞

+

+

−( )( )
+( )( ) ⋅

( )
−( )( )

= −

3 2

1 3 2

3 2

3

25
2

5
2

3 2 1

1
3

1

x

x

− <

< <

In order to test the end points, we
substitute each end point into the
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original series and test for conver-

gence. By letting x 5
1
3

, we get

−( ) +

=

∞

∑ 1 2

5 2

0

n

n
n

, which converges.

If we let x 5 1, we get

1
5 2

0
n

n=

∞

∑ which converges as well.

So, the interval of convergence is
1
3 1≤ ≤x .

24. The correct answer is (A). Hori-
zontal asymptotes are determined by
finding the limit at infinity. If we
multiply the binomials we can see
that the ratio of the leading coeffi-

cients is
3
2

.

25. The correct answer is (C). Notice

that all of the slopes on the line y 5

2x are zero (horizontal). Any point

on this line would make
x y+

2
be

zero, since x and y are opposites.

26. The correct answer is (C). This is
an improper integral and a tricky
integration-by-parts problem. First,
we’ll deal with the improper integral
by taking the limit of a definite inte-
gral:

x

e
dx

x

e
dxx p x

p2

2

2

2

∞

→∞∫ ∫= lim .

We now have to use integration by
parts on x

ex dx
2∫ . We’ll choose u 5 x2

and dv 5 e2x dx and get

x

e
dx

x

e
xe dxx x

x
2 2

2∫ ∫= − + − .

Now, we’ll let u 5 2x and dv 5 e2x dx
and get

= − − +

= − − −

−∫x
e

x
e

e dx

x
e

x
e e

x x
x

x x x

2

2

2 2

2 2

Now, we have to evaluate the inte-
gral using the limits of integration
and take the limit as p goes to infin-
ity, so

lim lim

lim

|p x

p

p x x x

p

p p

x
e

dx x
e

x
e e

p
e

→∞ →∞

→∞

∫ = − − −⎛
⎝⎜

⎞
⎠⎟

= − −

2

2

2

2

2

2 2

22 2

4 4 2

4 4 2

10

2 2 2

2 2 2

2

p
e e

e e e

e e e

e

p p−⎛
⎝⎜

⎞
⎠⎟

− − − −⎛
⎝

⎞
⎠

= + +

=

27. The correct answer is (E). If we
factor out a 1

100 from this expres-
sion, we get

dP
dt

P P= −( )2
300

500

This indicates that the maximum
population, P, would be 500; any-
thing greater and the growth rate
would be negative.

28. The correct answer is (A). f ′′(x) 5

(n 2 1)nan(x 2 c)n 2 2. So, f ′′(c) 5 (n
2 1)nan(c 2 c)n 2 2 5 0.
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Section I, Part B

29. B
30. D
31. E
32. D

33. A
34. A
35. D
36. B

37. D
38. B
39. D

40. D
41. A
42. C

43. E
44. C
45. B

29. The correct answer is (B). This is

the Taylor series for y 5
1
x
. We can

use our calculator to determine that
these two graphs intersect at x 5

0.567.

30. The correct answer is (D). This is
a second derivative problem.

′ ( ) = −

′′ ( ) = − + −

f t t t
t

f t t t
t

2 1

2 2 12 2
2

cos sin ,

cos sin ,

31. The correct answer is (E). The for-
mula for the area of a square is A 5
x 2

2 , where x is the length of the di-
agonal. If we differentiate this for-
mula with respect to t, we get

dA
dt

x dx
dt

=

Since we know that dx
dt = 2 ,

1 2( ) =dA

dt
x

Now, we have to express x, the diago-
nal, in terms of P, the perimeter.

x s= 2 where s is the length of

a side.

So,

P
x= 4
2

and

x
P= 2

4
Substituting gives us

dA
dt

P=
2

32. The correct answer is (D). We
need

lim .
x

x x
x→

− +
−( )

⎛
⎝⎜

⎞
⎠⎟2

2 3 2
2

If we factor and cancel, we get

lim
x

x
→

−( ) =
2

1 1

33. The correct answer is (A). For this
problem, we have to solve an equa-
tion for a limit of integration. This is
the equation we must solve:

x x dx
k

2 3

0
4 5+ −( ) =∫ .

If we integrate and apply the funda-
mental theorem, we get

k
k

k3 4

3
4

4
5 0+ − − =

We can use our calculator to deter-
mine that k 5 1.239.

34. The correct answer is (A). We
must differentiate implicitly with re-
spect to x.

x y

x y dy
dx

y

dy
dx

y
x y

y
x

sin

cos sin

sin
cos
tan

=

+ =

= −

= −

1

0
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35. The correct answer is (D). This
problem involves simple substitution
and the properties of the definite in-
tegral.

f x h x dx

h x g x h x dx

g x h x

( ) − ( ) +( )
= ( ) + ( ) − ( ) +( )
= ( ) − ( )( )

∫
∫

2 3

2 3

0

10

0

10

00

10

0

10

0

10

0

1

3

3

30

∫ ∫
∫

+

= ( ) − ( )( ) + ( )
= ( ) − ( )( ) +

dx dx

g x h x dx x

g x h x dx

|
00

∫
36. The correct answer is (B). The

fifth-degree Taylor polynomial for ex

centered at x 5 0 is

f x x
x x x x( ) = + + + + +1
2 6 24 120

2 3 4 5

So,

f 2 1 2 2
4

3

2

3

4

15
7 267

( ) = + + + + +

= . .

37. The correct answer is (D). We
first want to take the limit of the
ratio test.

lim

lim

n

n

n

n

x

n n

x

n n
n

x
n→∞

+

+

→∞

+( )( )
+( ) +( ) ⋅

( )
( )( )

=
+( )

2

1 1 3

2

1

1

3

 +2

nn n

n n
x

+( ) + ⋅
= +

1 1 3
2

3 

x + <2

3
1

So,

2 5 , x , 1.

If we test the end points, we’ll find
that the series converges at both of
them, so the radius of convergence is

2 5 ≤ x ≤ 1

38. The correct answer is (B). First,
figure the trapezoidal approximation
using n 5 6:

T6
1
2

5 2 0 2 3 2 4

2 3 2 0 5

15

=
+ ( ) + ( ) + ( ) +

( ) + ( ) +

⎛

⎝
⎜

⎞

⎠
⎟

=

Now, we can use our calculator to

divide
15

42
3

3 x dx−∫−
. This comes out

to 0.978.

39. The correct answer is (D). If we
examine the figure, we’ll see that y 5

3 2 x2 is the top curve.

Since the two curves intersect at
(1,2), the limits of integration are 0
and 1. Using the washer method, the
volume would be

V x x dx= −( ) − +( )⎛
⎝

⎞
⎠∫π 3 12 2 3 2

0

1
.

Since this is not a choice, we should
switch the limits of integration and
factor out a negative to get

V x x dx= − +( ) − −( )⎛
⎝

⎞
⎠∫π 3 2 2 2

1

0
1 3 .

40. The correct answer is (D). In or-
der to determine the tangent line, we
need two things: a point and the
slope. To find the slope, let’s find
g′(2). This is a simple application of
the second fundamental theorem:

′( ) =g 2 2

To find a point on the tangent line,
we need to evaluate g(2):

g x dx xdx2

4 2 64
3

2

0

2

4

0( ) = −( ) +

= −

∫∫−

So, we write the equation for the line

through 2 4 2 64
3, −( ) with a slope of

2 .

y x− − = −( )4 2 64
3

2 2

This can be transformed into

3 2 3 64 2 2x y− = +
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41. The correct answer is (A). We are
looking for the graph of the deriva-
tive of the given graph. Since g has
only one horizontal tangent, we can
expect its derivative to have only one
zero.

42. The correct answer is (C). The for-
mula for the sum of an infinite geo-
metric series is

S
a

r
=

−1

Substituting a = 4
5 and r = 2

7
gives us

S =
−

= =
4
5

2
71

28

25
1 120.

43. The correct answer is (E). The av-
erage rate of change is just the slope
of the secant, which is

m =
26 2 6
10 2 5

= 4

Since it is strictly monotonic and
f(10) . f(5), then f is increasing over
the interval [5,10] and the absolute
maximum must occur at x 5 10. The
absolute maximum is 26. Since 8 is
on the interval [5,10] and f is in-
creasing over this interval, f ′(8) . 0.

44. The correct answer is (C). We are
going to find the antiderivative of
f(x) 5 e2x.

F x e dx

F x e C

x

x

( ) =

( ) = +

∫ 2

21

2
Since we are given the initial condi-
tion that F(0) 5 2.5,

2 5
1

2
2

0.

.

= +

=

e C

C
Substituting this gives us

F x e x( ) = +1

2
22

Now, using our calculator, we can de-
termine F(5) to be 11015.233.

45. The correct answer is (B). To find
the volume of a solid with known
cross sections, we integrate the area
of these cross sections. So, the vol-
ume would be given by

V x dx= − +( )
=

∫ 2 2

0

3
3

8 314.

Section II, Part A

1. (a) The formula for a Taylor series
expansion is

f a
n

x a

f a f a x a

f a
x a

n

n

n
( )

=

∞ ( ) −( ) =

( ) + ′ ( ) −( ) +

′′ ( )⎛
⎝⎜

⎞
⎠⎟

−( ) +

∑
0

2

2!
… ++

( )⎛
⎝⎜

⎞
⎠⎟

−( ) +
f a

n
x a

n
n

!
…

We are given the values of the
function and the first three de-
rivatives when x 5 1. We can just
plug these into the formula and
get

f x x

x x

x x
x

( ) ≈ + −( ) −( ) +

−( ) +
−( ) −( )

= − −( ) + −( ) −
−(

3 1 1

4 1
2

2 1
6

3 1 2 1
1

2 3

2 ))3

3
Now, we use this polynomial to
find f (1.1) ' 2.920.

(b) This is the derivative of the poly-
nomial in part A.

f ′(x) ' 21 1 4(x 2 1) 2

(x 2 1)2

f ′(1.1) ' 20.61
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(c)

f t dt

t
t

t

t

xx ( ) =

−
−( ) +

−( ) −

−( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

∫  
1

2

3

4

3
1

2

2 1
3

1
12

11

3
1

2
2 1

3

1
12

3

2 3

4

= −
−( ) +

−( ) −

−( ) −

x
x x

x

(d) Can f(2) be determined from the
information given? Justify your
answer.

No, we only have information
about f(1). We can only approxi-
mate values other than that.

2. (a)
dy
dx

x x
e

e dy x x dx

e x x C

y

y

y

= +

= +( )
= + +

∫∫

3 2

3 2

2

2

3 2

Since f(0) 5 2, we substitute 0 for
x and 2 for y:

e2 5 C

Substituting back, we get

ey 5 x3 1 x2 1 e2

Now, we solve for y by taking the
natural log of both sides:

y 5 ln (x3 1 x2 1 e2)

(b) Remember, the domain of a
natural log function is the set of
all numbers for which the argu-
ment is positive. So, using the
calculator, we can determine
that x3 1 x2 1 e2 is positive for
all x . 22.344.

(c) Where does the second deriva-
tive change signs?

y x x e

y
x x

x x e

= + +( )

′ =
+( )

+ +( )

ln 3 2 2

2

3 2 2

3 2

′′ =

+ +( ) +( )
+( ) +( )

+ +( )
=

y

x x e x

x x x x

x x e

x x

3 2 2

2 2

3 2 2 2

4 3

6 2

3 2 3 2

3 4

–

– – – 22 6 22 2 2

3 2 2 2
x e x e

x x e

+ +
+ +( )

We are really concerned about
where the numerator is zero, so
we’ll set it equal to zero and use
our calculator to solve for x.

23x4 2 4x3 2 2x2 1 6e2x 1 2e2

5 0

The graph of y 5 23x4 2 4x3

2 2x2 1 6e2x 1 2e2 crosses the
x-axis in two places: x 5 20.331
and x 5 2.128. So, this function
has two points of inflection:
x 5 20.331 and x 5 2.128.

3. (a) We first use our calculators to
determine the points of intersec-
tion, which are x 5 22.028 and
x 5 1.428. Also, we can tell from
the calculator that y 5 2x2 1 3 is
the top function. So, the area of
R could be determined like this:

A x x dx= − + − ( )( )
=

−

−∫
2 1

2 028

1 428
3

7 243

tan

.
.

.

(b) We are going to use the formula
for arc length twice, once for
each curve:

L x dx

x
dx

= + −( ) +

+
+( )

⎛

⎝
⎜

⎞

⎠
⎟

−

−

∫

∫

1 2

1 1
1

2 2

2 028

1 428

2

2

2 028

1 428

.

.

.

.
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(c) We need to integrate the area of
a semicircle. Remember, the for-
mula for the area of a semicircle

is A 5
1
2
pr2. First, we should de-

termine r. This should be
1
2

the

distance between the curves. So,

r 5
1
2

(2x2 1 3 2 tan21x). So, the

volume of the solid is given by
the following

V
x

x
dx

x

x

=
− + −⎛

⎝⎜
⎞

⎠⎟

=
− + −⎛

⎝⎜

− −

−

∫1
2

1
4

3

8
3

2 028

1 428
2

1

2

2

1

π

π

.

.

tan

tan

⎞⎞

⎠⎟−∫
2

2 028

1 428
dx

.

.

Section II, Part B

4. (a) A relative minimum exists wher-
ever the value of the derivative
changes from negative to posi-
tive. This happens twice: at x 5

22 and at x 5 6.

(b) A relative maximum exists wher-
ever the derivative changes from
positive to negative. This occurs
at x 5 4.

(c) There are four possible absolute
minimums: x 5 23, x 5 22, x 5

6, and x 5 8. These are the rela-
tive minimums and the end
points. We should examine the
accumulated area under the de-
rivative’s graph for each one.
Upon doing so, we see that the
area between the derivative’s
graph and the x-axis is least at
x 5 22. So, the absolute mini-
mum occurs when x 5 22.

(d) Since there is a vertical tangent
line at x 5 3, the derivative of
the derivative does not exist
there. Also, since there is a cusp
at x 5 5, f ′′(5) does not exist
either.

5. (a)

1−1

1

2

3

(b) Point (0,3):
dy
dx

= x(y 2 2) = 0; Dy =

(.2)(0) = 0. The new point will be
(0 + .2, 3 + 0) = (.2,3).

Point (.2,3):
dy
dx

= x(y 2 2) = (.2)(1)

= .2; Dy = (.2)(.2) = .04. The new
point will be (.2 + .2, 3 + .04) =
(.4,3.04).

Therefore, f(0.4) ' 3.04.

(c) dy
dx

x y

dy
y

x dx

dy
y

x dx

= −( )

− =

− =∫ ∫

2

2

2

 

 

ln y x C− = +2
2

2

Now, we will substitute in our
initial condition of x 5 0 and
y 5 3:

ln

.

 1
0

2
0

= +

=

C

C

By substitution,

ln  y x

y ex

− =

= +

2
2

2

2

22

a
n

sw
e

rs
p

ra
c

tic
e

te
st3

Practice Test 3: AP Calculus BC 589
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

www.petersons.com



6. (a) This involves finding the an-
tiderivatives of both components
of the velocity vector:

′ ( ) = −

′ ( ) = +

( ) = + +

( ) = − +

x t
t

y t
t

x t t
t

C

y t t
t

C

x

3 3

4 2

3 3

4 2

1

2

2

1

2

and 

and 

(( ) = = + +

( ) = = − +

=
= −

( ) = + +

7 3 3

1 0 4 2

1

2

3 3 1

1

2

1

2

C

y C

C

C

x t t
t

and 

and 

and yy t t
t

x

y

( ) = − −

( ) = + + =

( ) = − − =

4 2 2

3 9 1 1 11

3 12 2
3

2 28
3

and 

So, the position of the particle

when t 5 3 is 11
28

3
,

⎛
⎝⎜

⎞
⎠⎟ .

(b) The slope of the tangent line is
equal to

dy
dx

t

t
=

+

−

4

3

2
2

3
2

In order for the slope to be zero,
we would need the numerator of
dy
dx

to be zero:

4 2 02+ =
t

However, there are no values for
t that would make this equation
true. Therefore, the line tangent
to the path of the particle will
never have a slope of zero.
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ANSWER SHEET PRACTICE TEST 4

Section I, Part A
1. OA OB OC OD OE

2. OA OB OC OD OE

3. OA OB OC OD OE

4. OA OB OC OD OE

5. OA OB OC OD OE

6. OA OB OC OD OE

7. OA OB OC OD OE

8. OA OB OC OD OE

9. OA OB OC OD OE

10. OA OB OC OD OE

11. OA OB OC OD OE

12. OA OB OC OD OE

13. OA OB OC OD OE

14. OA OB OC OD OE

15. OA OB OC OD OE

16. OA OB OC OD OE

17. OA OB OC OD OE

18. OA OB OC OD OE

19. OA OB OC OD OE

20. OA OB OC OD OE

21. OA OB OC OD OE

22. OA OB OC OD OE

23. OA OB OC OD OE

24. OA OB OC OD OE

25. OA OB OC OD OE

26. OA OB OC OD OE

27. OA OB OC OD OE

28. OA OB OC OD OE

Section I, Part B
29. OA OB OC OD OE

30. OA OB OC OD OE

31. OA OB OC OD OE

32. OA OB OC OD OE

33. OA OB OC OD OE

34. OA OB OC OD OE

35. OA OB OC OD OE

36. OA OB OC OD OE

37. OA OB OC OD OE

38. OA OB OC OD OE

39. OA OB OC OD OE

40. OA OB OC OD OE

41. OA OB OC OD OE

42. OA OB OC OD OE

43. OA OB OC OD OE

44. OA OB OC OD OE

45. OA OB OC OD OE
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Practice Test 4: AP
Calculus BC

SECTION I, PART A

55 Minutes • 28 Questions

A CALCULATOR MAY NOT BE USED FOR THIS PART OF THE EXAMINATION.

Directions: Solve each of the following problems, using the available
space for scratchwork. After examining the form of the choices, decide
which is the best of the choices given and fill in the corresponding oval on
the answer sheet. No credit will be given for anything written in the test
book. Do not spend too much time on any one problem.

In this test: Unless otherwise specified, the domain of a function f is
assumed to be the set of all real numbers x for which f(x) is a real
number.

1. sin cosx x dx =∫0

4
π

(A) − 1
4

(B) − 1
8

(C) 1
8

(D) 1
4

(E) 3
8

2. If x 5 ln t and y 5 e2t then
dy
dx

5

(A) 2e2t

(B) 2 2e
t

t

(C) te2t

(D) 2te2t

(E) te t2

2

3. The function y
x

x x
=

−( )
− +

2
8 7

2

2

has a local minimum at x 5

(A) − 1
2

(B) 1
(C) 2
(D) 7
(E) None of the above

p
ra

c
tic

e
te

st
4
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4. d
dx

e ex xln cos( )( ) =

(A) 2e2xtan ex

(B) e
e

e e
x

x
x x

cos
ln cos+ ( )

(C) e2xtan ex

(D) 2e2xtan ex 1 ex ln (cos ex)

(E) ex(extan ex 1 ln (cos ex))

5. If f x x
x

( ) = sin
2 , then f ′(p) 5

(A) 1
2π

(B) p2

(C) − 1
2π

(D) 21

(E) 0

6.

The graph of y 5 h(x) is shown above. Which of the following could be the graph
of h′′(x)?

(A) (B) (C)

(D) (E)
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QUESTIONS 7 THROUGH 9 REFER TO THE
FOLLOWING GRAPH AND
INFORMATION.

1 32 4 5 6−1

−2

1

2

The function f is defined on the closed
interval [0,6]. The graph of the derivative
f ′ is shown above.

7. The point (3,2) is on the graph of y 5

f(x). An equation for the line tangent
to the graph of f at (3,2) is

(A) y 5 22x 1 4.
(B) y 5 2x 2 4.
(C) y 1 2 5 22(x 1 3).
(D) y 2 2 5 22(x 2 3).
(E) y 5 2.

8. At what value of x does the absolute
minimum value of f occur?

(A) 0
(B) 2
(C) 3
(D) 4
(E) 6

9. How many points of inflection does
the graph of f have?

(A) Two
(B) Three
(C) Four
(D) Five
(E) Six

10. If 6x2 1 3y 2 2xy2 5 3, then when

x 5 0,
dy
dx

5

(A)
1
3

(B)
2
3

(C) 1

(D)
4
3

(E)
5
3

11.
ln x

x
dx23

=
∞

∫

(A)
1
3

(B)
ln3+1

3

(C)
ln3
3

(D) 1 1 ln 3

(E) It is divergent.

12. x x dxsec2  =∫
(A) xtanx 2

1
2

sec2x 1 C

(B) xtanx 1 ln Usec xU 1 C
(C) xtanx 2 ln Ucos xU 1 C
(D) xtanx 1 ln Ucos xU 1 C
(E) xtanx 2 ln Usec x + tan xU 1 C

13.
x

x

x x→

( )
− +

⎛

⎝⎜
⎞

⎠⎟
=

1

2

3 3 2
lim

ln

(A)
1
3

(B) 0

(C) 2

(D) 6

(E) It is nonexistent.

p
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14. What is the approximation of the value
of cos 2 obtained by using the sixth-
degree Taylor polynomial about x 5 0
for cosx?

(A) 1 2 2 +
2
3

2
4

45

(B) 1 + 2 +
16
24

+
64

720

(C) 1 2
1
2

+
1

24
2

1
720

(D) 2 2
4
3

+
4

15
2

8
315

(E) 2 +
8
6

+
32

120
+

128
5040

15. Which of the following sequence(s)
converges?

I. 3
7 1

2

3
n

n −
⎧
⎨
⎩

⎫
⎬
⎭

II. 7
n{ }

III. 3
7

4

2
n
n

⎧
⎨
⎩

⎫
⎬
⎭

(A) I only
(B) II only
(C) III only
(D) I and II
(E) I, II, and III

16. A particle moves on a plane curve so
that at any time t . 0 its position is
defined by the parametric equations

x(t) 5 3t2 2 7 and y t t
t( ) = +4 1

3

2
. The

acceleration vector of the particle at
t 5 2 is

(A) 6
1

12
,

(B) 17
17

6
,

(C) 12
47

12
,

(D) 12
33

12
,

(E) 6
17

6
,

17.

Shown above is the slope field for
which of the following differential
equations?

(A)
dy
dx

5 1 1 x

(B)
dy
dx

5 x 2 y

(C)
dy
dx

=
x + y

2

(D)
dy
dx

5 y 2 x

(E)
dy
dx

5 y 1 1
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18.
x

x
t dt

x→

−∫
−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟2

3

2
2 4lim  is

(A) 0.
(B) 2.
(C) 4.
(D) 8.
(E) nonexistent.

19. x
x

dx
2 3+ =∫

(A)
1
2

x2 1 3x 1 C

(B)
1
3

x3 1 3x 1 C

(C)
3
2

x2 1 C

(D)
x2

2
+ 3lnUxU + C

(E) x 1
3
x

1 C

20. If f(x) 5 sec2x, then ′⎛⎝
⎞
⎠ =f

π
3

(A) 3
2

(B) 3 3
2

(C) 8 3

(D) 4 3

(E) 2 3
3

21. What is the instantaneous rate of
change of the derivative of the func-
tion f(x) 5 ln x2 when x 5 3?

(A) − 2
3

(B) − 2
9

(C) 2
9

(D) 2
3

(E) ln 9

22.
x

x x x

x x→∞

+ −( )
−( ) +( ) =lim

2 7 9

2 2 3

(A) 27

(B) 0

(C) 1
2

(D) 2

(E) It is nonexistent.

23. d
dx

(sec x2 ln ecosx2

) 5

(A) – sec sin2 2 2x x x

(B) 2 2 2 2x x x xsec tan cos

(C) 21

(D) 0

(E) 1

24. What is the approximation of the
area under y 5 x2 2 2x 1 1 for 0 ≤
x ≤ 4 using the trapezoidal rule with
4 subintervals?

(A)
4
3

(B) 8

(C)
28
3

(D) 10

(E) 16
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25. Let f be the function given by the
first four nonzero terms of the Ma-
claurin polynomial used to approxi-
mate the value of ex. Determine the
area bounded by the graph and the
x-axis for 0 ≤ x ≤ 2.

(A) 4

(B)
64
15

(C) 5

(D) 6

(E)
20
3

26.

1 2 3

The graph of a twice-differentiable
function f is shown in the above fig-
ure. Which of the following is true?

(A) f ′(2) , f(2) , f ′′(2)
(B) f(2) , f ′(2) , f ′′(2)
(C) f ′′(2) , f ′(2) , f(2)
(D) f ′′(2) , f(2) , f ′(2)
(E) f(2) , f ′′(2) , f ′(2)

27. e

x
dx

x

=∫1
9

(A) e e3

2
−

(B) e3 2 e

(C) 2e(e2 2 1)

(D) 2e3

(E) e3

3

28. The length of the path described by
the parametric equations x t= 4

3
2

and y t= 1
2

3 , where 0 ≤ t ≤ 2, is

(A) 64
9

12

0

2
t dt+∫  

(B) 9
4

14

0

2
t dt+∫  

(C) 64
9

9
4

2 4

0

2
t t dt+∫  

(D) 1
2

64
9

9
4

2 4

0

2
t t dt−∫  

(E) 1
4

16
9

1
4

4 6

0

2
t t dt+∫  

STOP
END OF SECTION I, PART A. IF YOU HAVE ANY TIME LEFT, GO OVER
YOUR WORK IN THIS PART ONLY. DO NOT WORK IN ANY OTHER PART
OF THE TEST.
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SECTION I, PART B

50 Minutes • 17 Questions

A GRAPHING CALCULATOR IS REQUIRED FOR SOME QUESTIONS IN THIS PART OF
THE EXAMINATION.

Directions: Solve each of the following problems, using the available space
for scratchwork. After examining the form of the choices, decide which is the
best of the choices given and fill in the corresponding oval on the answer
sheet. No credit will be given for anything written in the test book. Do not
spend too much time on any one problem.

In this test: (1) The exact numerical value of the correct answer does not
always appear among the choices given. When this happens, select from
among the choices the number that best approximates the exact numerical
value. (2) Unless otherwise specified, the domain of a function f is assumed to
be the set of all real numbers x for which f(x) is a real number.

29. For what integer k . 1 will both
−( ) ⎛

⎝
⎞
⎠

=

∞

=

∞

∑∑ 1
32

11

kn n

nn n
k and converge?

(A) 2
(B) 3
(C) 4
(D) 5
(E) 6

30. The volume of the solid formed when
the region bounded by y x= −4 2 ,

x 5 0, and y 5 0 is rotated about the
line y 5 22 is given by which of
these definite integrals?

(A) 2 4 2

0

2
π x x dx−∫

(B) π 4 2

0

2
−( )∫ x dx

(C) π 4 2
2

0

2
−⎛

⎝
⎞
⎠∫ x dx

(D) π 4 2 42
2

0

2
− +⎛

⎝
⎞
⎠ −⎡

⎣
⎢

⎤
⎦
⎥∫ x dx

(E) 2 4 2
2

0

2
π x x dx−⎛

⎝
⎞
⎠∫

31. If f is a vector-valued function
defined by f t e tt( ) = 2 2, – cos , then
f ′′(t) 5

(A) 2 2 22e tt , sin

(B) 4 4 22e tt , cos

(C) 4 2 22e tt , sin

(D) 4 4 22e tt , – cos

(E) e tt2 2, cos

32. e x dxx sin  =∫
(A) 1

2
ex~sin x 2 cos x! + C

(B) 1
2

ex~sin x 1 2 cos x! + C

(C) 2ex cos x + C

(D) ex(sin x 2 cos x) + C

(E) ex sin x + ex cos x + C
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33. The graph of the function repre-

sented by the Maclaurin series

1 2
4

3
2 4 1 2

2

2 2

− + + =
−( ) ( ) ( )

( )x x
n n nx

n! !
… inter-

sects the graph of y 5 3x3 2 2x2 1 7

at x 5

(A) 21.248
(B) 21.180
(C) 21.109
(D) 21.063
(E) 21.056

34. The acceleration of a particle is de-
scribed by the parametric equations

′′( ) = +x t tt 2

4 and ′′( ) =y t t
1
3 . If the

velocity vector of the particle when
t 5 2 is 4,1n 2 , what is the velocity
vector of the particle when t 5 1?

(A) 5
4

1
3

,

(B) 23
12

4
3

, ln

(C) 23
12

2
3

, ln

(D) 5
4

2
3

2, ln

(E) 23
12

1
3

2, ln

35. What is the average rate of change of

f x
x

x
( ) = −

−

2 3
1

over [2,5]?

(A) 9
8

(B) 3
2

(C) 3

(D) 9
2

(E) 11
2

36. Let f be defined as the function f(x) 5

x2 1 4x 2 8. The tangent line to the
graph of f at x 5 2 is used to approxi-
mate values of f. Using this tangent
line, which of the following best ap-
proximates a zero of f?

(A) 2 5.464
(B) 21.500
(C) 0
(D) 1.464
(E) 1.500

37. 4 3 3
2 3

2

2
x x

x x
dx− +

+ −
=∫

(A) 4x 2 12 ln Ux + 3U 1 ln Ux 2 1U
1 C

(B) 4x 2 12 ln Ux + 3U 2 ln Ux 2 1U
1 C

(C) 4x 1 12 ln U (x + 3)(x 2 1)U 1 C

(D) ln Ux2 + 2x 2 3U 1 C

(E) 8 9 18
2 6 18

3 2

3 2
x x x
x x x

C− +
+ −

+

38. The revenue from the sale of the wid-
gets is 108x 1 1,000 dollars, and the
total production cost is 3x2 1 16x 2

500 dollars, where x is the number of
widgets produced. How many wid-
gets should be made in order to
maximize profits?

(A) 0
(B) 10
(C) 15
(D) 20
(E) 24

39. What are all the values of x for which

the series
2 3

1

x

n

n

n

+( )
=

∞

∑ converges?

(A) 22 , x , 21
(B) 22 ≤ x ≤ 21
(C) 22 , x ≤ 21
(D) 22 ≤ x , 21
(E) 22 ≤ x , 1

PART III: Four Practice Tests602
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

www.petersons.com



40. If f (x ) =
ex, x < ln 2
2, x ≥ ln 2

then lim
lnx

f x
→

( ) =
2

(A) 1
2

(B) ln 2
(C) 2
(D) e2

(E) It is nonexistent.

41.
x

x

x→ −
=

1

2

2 1
lim

ln

(A) 21
(B) 0
(C) 1
(D) e
(E) It is nonexistent.

42. At which point is the graph of f(x) 5

x4 2 2x3 2 2x2 2 7 decreasing and
concave down?

(A) (1,210)
(B) (2,215)
(C) (3,2)
(D) (21,26)
(E) (22,17)

43. A population, P(t) where t is in years,
increases at a rate proportional to its
size. If P(0) 5 40 and P(1) 5 48.856,
how many years will it take the
population to be double its original
size?

(A) 0.347 years
(B) 3.466 years
(C) 3.792 years
(D) 34.657 years
(E) 37.923 years

44. Let f be a continuous and differen-
tiable function on the closed interval
[1,5]. If f(1) 5 f(5), then Rolle’s theo-
rem guarantees which of the follow-
ing?

(A) f(c) 5 0 for some c on (1,5)
(B) f ′(c) 5 0 for some c on (1,5)
(C) f is strictly monotonic
(D) If c is on [1,5], then f(c) 5 f(1)
(E) f ′(3) 5 0
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45. A particle starts from rest at the origin and moves along the x-axis with an
increasing positive velocity. Which of the following could be the graph of the
distance s(t) that the particle travels as a function of time t?

(A) (B) (C)

(D) (E)

STOP
END OF SECTION I, PART B. IF YOU HAVE ANY TIME LEFT, GO OVER
YOUR WORK IN THIS PART ONLY. DO NOT WORK IN ANY OTHER PART
OF THE TEST.
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SECTION II, PART A

45 Minutes • 3 Questions

A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF
PROBLEMS IN THIS PART OF THE EXAMINATION.

SHOW ALL YOUR WORK. It is important to show your setups for these
problems because partial credit will be awarded. If you use decimal approxi-
mations, they should be accurate to three decimal places.

1. Let R be the region in the first quad-
rant enclosed by the graphs of
y 5 e2x 1 4 and y 5 3x .

(a) Sketch the region R on the axes
provided.

1 32 4 5 6 7

1

2

3

4

5

6

(b) Determine the area of the
region R.

(c) Find the volume of the solid
generated when R is rotated
about the x-axis.

(d) The region R is the base of a
solid. Each cross section perpen-
dicular to the x-axis is an equi-
lateral triangle. Find the
volume of this solid.

2. The rate at which air is leaking out
of a tire is proportional to the
amount of air in the tire. The tire

originally was filled to capacity with
1,500 cubic inches of air. After one
hour, there were 1,400 cubic inches
of air left in it.

(a) Express the amount of air in
the tire in cubic inches as a
function of time t in hours.

(b) A tire is said to be flat if it is

holding
2
3

of its capacity or less.

After how many hours would
this tire be flat?

3. Consider the curve defined by 9x2 1

4y2 2 54x 1 16y 1 61 5 0.

(a) Verify that
dy

dx

x

y
= −

+
27 9
4 8

.

(b) Write the equation for each
vertical tangent line of the
curve.

(c) The points (3,1) and (1,22) are
on the curve. Write the equa-
tion for the secant line through
these two points.

(d) Write the equation for a line
tangent to the curve and
parallel to the secant line from
part C.

STOP
END OF SECTION II, PART A. IF YOU HAVE ANY TIME LEFT, GO OVER
YOUR WORK IN THIS PART ONLY. DO NOT WORK IN ANY OTHER PART
OF THE TEST.

p
ra

c
tic

e
te

st
Practice Test 4: AP Calculus BC 605

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................................................

www.petersons.com



SECTION II, PART B

45 Minutes • 3 Questions

A CALCULATOR IS NOT PERMITTED FOR THIS PART OF THE EXAMINATION.

4.

1 32 5 6

Above is the graph of the velocity of a
bug crawling along the x-axis over a
six-second interval.

(a) At what time(s) t, 0 , t , 6,
does the bug change directions?
Explain your reasoning.

(b) At what time t, 0 , t ≤ 6, is the
bug farthest from its starting
point? Explain your reasoning.

(c) Over what interval(s) is the
bug slowing down?

5. The path of a particle from t 5 0 to
t 5 10 seconds is described by the
parametric equations x t t( ) = ( )4 2cos π

and y t t( ) = ( )3 2sin π .

(a) Write a Cartesian equation for
the curve defined by these
parametric equations.

(b) Find
dy
dx

for the equation in

part A.
(c) Determine the velocity vector

for the particle at any time t.
(d) Demonstrate that your answers

for part A and part B are
equivalent.

(e) Write, but do not evaluate, an
integral expression that would
give the distance the particle
traveled from t 5 2 to t 5 6.

6. Let P x x( ) = + −( ) −ln 2 1
x x x−( ) −( ) −( )+ −1

2
1

3
1

4

2 3 4

be the fourth-

degree Taylor polynomial for the
function f about x 5 1. Assume that f
has derivatives of all orders for all
real numbers.

(a) Find f(1) and f (4)(1).
(b) Write the third-degree Taylor

polynomial for f ′ about x 5 1,
and use it to approximate
f ′(1.2).

(c) Write the fifth-degree Taylor
polynomial for
g x f t dt

x( ) = ( )∫1
about x 5 1.

STOP
END OF SECTION II, PART B. IF YOU HAVE ANY TIME LEFT, GO OVER
YOUR WORK IN THIS PART ONLY. DO NOT WORK IN ANY OTHER PART
OF THE TEST.
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ANSWER KEY AND EXPLANATIONS

Section I, Part A

1. D
2. D
3. A
4. D
5. C
6. A

7. D
8. D
9. B

10. B
11. B
12. D

13. A
14. A
15. D
16. A
17. B
18. B

19. D
20. C
21. B
22. E
23. D

24. D
25. D
26. B
27. C
28. C

1. The correct answer is (D). This is
a straight-forward u-substitution in-
tegration problem. If we let u 5 sinx,
then du 5 cosx dx and

sin cosx x dx u du  
00

4 2 2π

∫ ∫=

5
1
4

2. The correct answer is (D). Re-

member that
dy
dx

=

dy
dt
dx
dt

. First, we’ll

find
dx
dt

:

x 5 ln t

dx
dt

=
1
t

Now, we’ll find
dy
dt

:

y 5 e2t

dy
dt

5 2e2t

So,

dy
dx

=
2e2t

1
t

52te2t

3. The correct answer is (A). To find
the local minimum, we need to deter-
mine when the derivative changes

from negative to positive. First, we
determine the derivative:

y
x

x x
=

−( )
− +

2
8 7

2

2

′ =

− +( ) −( ) −
−( ) −( )

− +( )
y

x x x

x x

x x

2

2

2 2

8 7 2 2

2 2 8

8 7

=
−( ) − −( )

− +( )
2 2 2 1

8 72 2

x x

x x

If we set y′ 5 0 and solve for x, we
see that x 5 − 1

2
and x 5 2 are zeros

of the derivative. By examining the
wiggle graph below, we can see that

the local minimum occurs at x 5 2
1
2

.

4. The correct answer is (D). This
problem calls for the product rule.
We must differentiate each term
with respect to x.

d
dx

e e

e e e
e

e e

e e e

x x

x
x x

x
x x

x x x

ln cos

sin
cos

ln cos

tan

( )( )
= ⋅ − +

= − +2 1n ccos ex

a
n

sw
e

rs
p
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5. The correct answer is (C). Here,
we use the quotient rule to deter-
mine the derivative; then, evaluate it
at x 5 p.

f x x
x

( ) = sin
2

′ ( ) = −f x x x x x
x

2

4
2cos sin

′ ( ) = −f π π π π π
π

2

4
2cos sin

= − 1
2π

6. The correct answer is (A). The
graph of h(x) is concave down for all
x , 0 and concave up for all x . 0.
This implies that the second deriva-
tive is negative for all x , 0 and
positive for all x . 0. Choice (A) is
the only graph that meets this re-
quirement.

7. The correct answer is (D). To
write the equation of a tangent line,
we need a point and the slope. The
point is given to us: (3,2). The slope
is merely the y-coordinate that corre-
sponds to x 5 3 on the graph of f ′.
Since f ′(3) 5 22, then the slope of
the tangent line is 22. In point-slope
form, the equation of the tangent
line is

y 2 2 5 22(x 2 3)

8. The correct answer is (D). This is
an area accumulation problem. We
can see that the accumulated area is
least when x 5 4.

9. The correct answer is (B). Points
of inflection on the graph of a func-
tion correspond to horizontal tan-
gents on the graph of the derivative.
Since there are three, the function
has three points of inflection.

10. The correct answer is (B). This is
an implicit differentiation problem.
Remember, we need to use the prod-
uct rule to differentiate 2xy2.

6x2 1 3y 2 2xy2 5 3

12x 1 3
dy
dx

2 4xy
dy
dx

2 2y2 5 0

dy
dx

y x
xy

= −
−

2 12
3 4

2

Now, we determine the correspond-
ing y value by substituting x 5 0 into
the original equation.

0 1 3y 2 0 5 3

y 5 1

Finally, we substitute x 5 0 and y 5

1 into
dy
dx

.

dy
dx

5
2
3

11. The correct answer is (B). For an
improper integral, we first change it
to a limit of a definite integral.

ln
lim

lnx

x
dx

x

x
dx

p

p

2 2
33

=
→∞

∞

∫∫
Now, we have to address that tricky
integrand. We do integration by
parts and let u 5 ln x and dv 5

x22dx. So,

p

p

p

p

x
x

dx

x
x

x dx
p

→∞

→∞

−

=

− +⎡
⎣⎢

⎤
⎦⎥

∫

∫

lim
ln

lim
ln

23

2

33
 

= − −⎛
⎝

⎞
⎠→∞p

px

x x
lim

ln 1
3

 

= − − − − −⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟→∞p

p

p p
lim

ln ln1 3

3

1

3

= +ln 3 1

3
Note: lim ln

p

p
p→∞

= 0 by L’Hôpital’s

rule.

12. The correct answer is (D). This is
an example of a straightforward in-
tegration-by-parts problem. We let
u 5 x and dv 5 sec2x dx.
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x x dx x x x dxsec tan tan2   ∫ ∫= −

5 xtanx 1 ln Ucos xU 1 C

13. The correct answer is (A). If we
try to evaluate this limit using direct
substitution, we will get an indeter-

minate form:
0
0

. So, we can use

L’Hôpital’s rule and take the deriva-
tive of the numerator and denomina-
tor; then, evaluate the limit.

x x

x
xx

x x x→ →

( )
− +

=
1

2

3
1

2

23 2 3 3lim
ln

lim
–

ln

If we evaluate the limit now, we still

get
0
0

. So, we try L’Hôpital’s rule

again.

=
→

−

x

x
x

x1

2 2
2

6lim
ln

5
1
3

14. The correct answer is (A). cosx
centered at x 5 0 is one Taylor poly-
nomial that we should be able to gen-
erate from memory. It goes like this:

cos
! !

x x x x= − + − +1
2 4 6

2 4 6

…

To find the value for cos2, we substi-
tute 2 for x:

1 2 2
3

4
45

− + −

15. The correct answer is (D). Both I.
and II. converge to 0, while III. is
divergent.

16. The correct answer is (A). Since
acceleration is associated with the
second derivative of position, we
must determine the second deriva-
tive for each of these parametric
equations and evaluate them at
x 5 2.

x(t) 5 3t2 2 7

x′(t) 5 6t

x′′(t) 5 6

x′′(2) 5 6

Rewrite y(t) as y t t t( ) = +4

3

1

3
1– .

′( ) =y t t
4

3

1

3
2– –

′′( ) =y t t
2

3
3–

′′( ) =y 2
1

12
The acceleration vector of the par-

ticle at x 5 2 is 6
1

12
, .

17. The correct answer is (B). Notice
that all of the slopes on the line y 5 x
are zero.

18. The correct answer is (B). This
is a well-disguised application of
L’Hôpital’s rule. We should take the
derivative of the numerator and the
derivative of the denominator and
then evaluate the limit.

x

x

x

t dt

x

x

x→

−

→

∫
−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

= =
2

3

2
2

2

3

4 2
2lim lim

Notice we use the Fundamental
Theorem, Part Two to determine the
derivative of the numerator.

19. The correct answer is (D). When
integrating a rational expression
with a numerator of greater degree
than the denominator, we first divide
and then integrate.

x
x

dx x
x

dx
2 3 3+⎛

⎝⎜
⎞
⎠⎟

= +⎛
⎝

⎞
⎠∫∫

= + +x x C
2

2
3 ln
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20. The correct answer is (C). We will
determine the derivative of this func-
tion by using both the power and
chain rules. Then, we will evaluate it

at x 5
p

3
.

′( ) = •f x x x x2sec sec tan

′⎛⎝
⎞
⎠ =f

π π π
3

2
3 3

2sec tan

= 8 3

21. The correct answer is (B). This is
asking for the derivative of the de-
rivative when x 5 3. So, we need the
second derivative of the function.

′( ) = =f x
x

x x

2 2
2

′′( ) = −f x
x

2
2

′′( ) = −f 3
2

9

22. The correct answer is (E). Since
the degree of the numerator is
greater than the degree of the de-
nominator, the limit as x approaches
infinity does not exist because it is
infinite.

23. The correct answer is (D). The
trick to this problem is to recognize
that

ln coscose xx2 2=
So now all we need to find is the
derivative of secx2cosx2, which is
equal to 1. The derivative of 1 is 0.

24. The correct answer is (D). Re-
member the trapezoidal rule:

A b a
n

f a f x

f x f b
T

n

≈ − ( ) + ( ) +

( ) + ( )
⎛

⎝
⎜

⎞

⎠
⎟

−
2

2

2
1

1

…

Applying this to the function y 5 x2

2 2x 1 1 over [0,4] with n 5 4 yields

AT = + ( ) + ( ) + ( ) +( ) =4

8
1 2 0 2 1 2 4 9 10

25. The correct answer is (D). This

function is f x x x x( ) = + + +1
2 3

2 6
.

We integrate this from x 5 0 to x 5 2.

1
2 6

2 6 24

2 3

0

2

2 3 4

0

2

+ + +⎛
⎝⎜

⎞
⎠⎟

=

+ + +⎛
⎝⎜

⎞
⎠⎟

∫ x x x dx

x x x x  

= + + +2 2 4
3

2
3

5 6

26. The correct answer is (B). By
reading the graph, we can tell that
f(2) , 0. Since there is a horizontal
tangent line at x 5 2, f ′(2) 5 0.
f ′′(2) . 0 because the curve is
concave up at x 5 2. Therefore,
f(2) , f ′(2) , f ′′(2).

27. The correct answer is (C). This is
a rather complicated u-substitution
integration problem. If we let u =

=x, then du 5
dx

2=x
.

e
x

dx e du
x

u

1

9

1

3
2∫ ∫=

5 2e3 2 2e 5 2e(e2 2 1)

28. The correct answer is (C). We

need to determine
dx
dt

and
dy
dt

first.

dx
dt

t= 8
3

dy
dt

t= 3
2

2

Now, we integrate from x 5 0 to x 5

2 the square root of the sum of the

squares of
dx
dt

and
dy
dt

.

l t t dt= +∫ 64
9

9
4

2 4

0

2
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Section I, Part B

29. A
30. D
31. B
32. A

33. B
34. B
35. B
36. E

37. A
38. C
39. D

40. C
41. C
42. A

43. B
44. B
45. B

29. The correct answer is (A). If we
let k 5 2, the first series becomes

1
2

1 nn=

∞

∑ and converges since it is a

p-series with p . 1. If k 5 2, the

second series becomes
2
31

⎛
⎝

⎞
⎠

=

∞

∑
n

n

and

converges since it is a geometric
series with R , 1.

30. The correct answer is (D). Begin
by drawing a diagram.

You could use the shell method, but
we’ll use the washer method. Use
vertical rectangles, since they are
perpendicular to the horizontal axis
of rotation. R(x) is the outer radius,
and R(x) is the inner radius.

R x x x

r x

( ) ( )
( ) ( )

= − − − = − +
= − − =

4 2 4 2
0 2 2

2 2

Now, apply the washer method:

π

π

R rx x dx

x dx

( )( ) ( )( )⎡
⎣

⎤
⎦

+( )⎡
⎣⎢

⎤
⎦⎥

∫

∫

2 2

0

2

2
2

0

2
4 2 4

–

– –

Use your graphing calculator to
evaluate the integral. The volume
will be 56.234.

31. The correct answer is (B). We
must determine the second deriva-
tive for each component:

f t e tt( ) = 2 2, – cos

′( ) =f t e tt2 2 22 , sin

′′( ) =f t e tt4 4 22 , cos

32. The correct answer is (A). This is
an integration by parts with a twist
toward the end. Let’s let u 5 sinx
and dv 5 ex dx, so

e x dx e x e x dxx x xsin sin cos∫ ∫= −  

We need to integrate by parts again.
We’ll let u 5 cosx and dv 5 ex dx,
continuing:

e x dx e x e x

e x dx C

x x x

x

sin sin cos

sin

= − −

+

∫
∫

Here’s the twist. We are going to add
*(exsinx) dx to both sides of the equa-
tion:

2 e x dx e x e x Cx x xsin sin cos∫ = − + 

To solve for *(exsinx) dx, we will di-
vide both sides by 2:

e x dx e x e x Cx x xsin sin cos∫ = −( ) + 
1

2
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33. The correct answer is (B). In or-
der to succeed with this problem, we
must readily recognize slight varia-
tions of series that we have memo-
rized previously. Remember the
Maclaurin series for cosx:

cos
! !

x x x= − +1
2 3

2 3

The series in this problem is the Ma-
claurin series for cos2x. So, we are
being asked to determine at what
x value the graphs of y 5 cos2x and
y 5 3x3 2 2x2 1 7 intersect. Our
calculators will tell us that happens
when x 5 21.180.

34. The correct answer is (B). We are
going to determine the antideriva-
tive of each component of the accel-
eration vector, solve for the constants
of integration, and plug and chug to
determine the velocity vector when
t 5 1. First, we deal with the x com-
ponent:

′′( ) = +x t
t

t
2

4

′( ) = + +x t
t t

C
3 2

112 2

′( ) = = + +x C2 4
2

3
2 1

C1
4

3
=

′( ) = + +x t
t t3 2

12 2

4

3

′( ) = + + =x 1
1

12

1

2

4

3

23

12

Now, we do it all again for y:

′′( ) =y t
t

1

3

′( ) = +y t t C
1

3 2ln   

′( ) = = +y C2 2
1

3
2 2ln ln

2

3
2 2ln = C

′( ) = +y t t
1

3

2

3
2ln ln 

′( ) = +y 1
1

3

2

3
2ln ln 1

= 2

3
2ln

= ln 4

3
Note that 2

3
2 1

3
2 2 1

3
4ln ln ln= ( ) =

(by log properties).

Finally, the velocity vector of the
particle when t 5 1 is 23

12
4

3, ln .

35. The correct answer is (B). To find
the average rate of change of a func-
tion over an interval, we need the
slope of the secant line over that in-
terval.

m
f b f a

b a
= ( ) − ( )

−

=
11
2 1

3

–

= 3

2

36. The correct answer is (E). We
need to find the equation for the tan-
gent line of the graph at x 5 2 and
use our calculator to determine
where that line crosses the x-axis.
Remember, to write an equation for a
tangent line, we need a point on the
line and the slope of the line. Since
f(2) 5 4, (2,4) is on the line. The slope
is

f ′(x) 5 2x 1 4

f ′(2) 5 8

Using point-slope form,

y 2 4 5 8(x 2 2)

y 5 8x 2 12
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Using the calculator (or maybe your
head), x 5 1.5 is a zero of y 5 8x
2 12.

37. The correct answer is (A). We
have to use the method of partial
fractions in order to get the inte-
grand into a form that is integrable.
To start, since the degrees of the nu-
merator and denominator are equal,
we use polynomial long division. So,

4 3 3
2 3

4

11 15
3 1

2

2
x x

x x
dx x

x
x x

dx

− +
+ −

⎛
⎝⎜

⎞
⎠⎟

= +

− +
+( )( )

∫

∫ –

To integrate
− +
+( )( )∫ 11 15

3 1

x

x x
dx

–
, use

partial fractions:

− +
+( )( )

=
+

+11 15

3 1 3 1

x

x x

A

x

B

x– –

Multiply through by (x13)(x21) to
get

− + = −( ) + +( )
= − + +
= +( ) + +( )

11 15 1 3

3

3

x A x B x

Ax A Bx B

x A B A B–

This gives you the system of equa-
tions A 1 B 5 211 and 2A 1 3B
5 15. Solving simultaneously, we get:

A 5 212 and B 5 1

The integral can now take the easier
form

–
–

–

11 15
3 1

12
3

1
1

x
x x

dx

x
x

dx
x

dx

+
+( )( ) =

−
+ +

∫

∫ ∫

Continuing with the integration
from above:

4 12
3

1
1

4 12 3 1

x
x x

dx

x x x C

+ −
+ + − =

− + + − +

∫
ln ln

38. The correct answer is (C). For
this problem, we need to realize that
profits 5 revenue 2 cost. So, to find
profits,

P(x) 5 108x 1 1,000 2 3x2 2

16x 1 500

5 23x2 1 92x 1 1,500

The derivative is P′(x) 5 26x 1 92.
Set this equal to zero, and we find
that P(x) is maximized at
x = =92

6 15 333. .

39. The correct answer is (D). To de-
termine the interval of convergence,
we take the limit of the ratio test.

n

n

n

x

n

n

x→∞

+

•
+( )

+ +( )
lim

2 3

1 2 3

1

5 U 2x 1 3 U
U2x 1 3U converges if it is less than 1.

U 2x 1 3 U , 1

2 1 , 2x 1 3 , 1

2 2 , x , 2 1

By testing the endpoints, we find
that the series converges when x 5

22 and diverges when x 5 21. So
the interval of convergence is 22 ≤
x , 21.

40. The correct answer is (C). In or-
der for the limit to exist, the left- and
right-hand limits have to exist and
be equal to each other. Since both of
these are equal to 2, lim

lnx
f x

→
( ) =

2
2 .

41. The correct answer is (C). Be-

cause we get
0
0

when we try to evalu-

ate by direct substitution, we need to
use L’Hôpital’s rule on this limit.

x x

x
xx

x x→ →−
=

1

2

2
1

2

1 2

2

lim
ln

lim

=
→x x1

2
1

lim

5 1
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42. The correct answer is (A). The
quickest and easiest way to attack
this problem is by graphing it. Which
x-value makes both the first and sec-
ond derivatives negative?

43. The correct answer is (B). When-
ever the rate of a function increasing
or decreasing is proportional to it-
self, it must be an exponential func-
tion of the form P(t) 5 Nekt. N is the
initial value, so in this case, N 5 40.
We use P(1) 5 48.856 to determine
the value of k.

48.856 5 40ek

k = ln .48 856
40

5 0.200

To determine how long it will take
the population to double,

80 5 40e0.200t

2 5 e0.200t

t = ln
.

2
0 200

5 3.466 years

44. The correct answer is (B). Rolle’s
theorem deals with the idea that if
the function passes through the
same y-coordinate twice, it must
have a zero derivative somewhere
between these two points.

45. The correct answer is (B). Since
the velocity is positive, the position
function must be increasing. Since
the velocity is increasing, the posi-
tion function must be concave up.
The only choice to meet both of these
requirements is choice (B).

Section II, Part A

1. (a)

1 32

R

4 5 6 7

1

2

3

4

5

6

(b) A e x dxx= + −( )
=

−∫ 4 3

8 106
0

5 346.

.

(c) We use the washer method to de-
termine the volume:

= +( ) −⎡
⎣⎢

⎤
⎦⎥

=

−∫π e x dxx 4 3

160 624

2

0

5 346.

.

(d) It would be good to know that
the area of an equilateral tri-
angle with side s is given by

A s= 3
4

2. So, the volume of this
solid would be given by

V e x dxx= + −( )
=

−∫3
4

4 3

8 511

2

0

5 346.

.

2. (a) Since the rate of decrease is pro-
portional to the function itself,
we have an exponential function
of the following form:

A(t) 5 Nekt

Since the tire initially had 1,500
cubic inches of air, C 5 1500. We
are given that A(1) 5 1,400:

1,400 5 1500ek

Solving for k,

14
15
14
15

=

=

e

k

k

ln
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Substituting this expression for
k yields

A(t) 51 500 14 15, lnt ( )

(b) Since
2
3

of 1,500 is 1,000, we can

substitute 1,000 into the formula
for A(t) and solve for t:

1,000 5 1,500et ln(14/15)

2

3
14 15= ( )et ln

ln ln
2

3

14

15
= t

t =
ln

ln

2
3

14
15

5 5.877 hours

3. (a) We have to use implicit differen-
tiation and differentiate with re-
spect to x:
9x2 1 4y2 2 54x 1 16y 1 61 5

0

18 8 54 16 0x y dy
dx

dy
dx

+ − + =

dy
dx

x
y

= −
+

54 18
8 16

= −
+

27 9
4 8

x
y

(b) Vertical tangent lines exist wher-
ever the denominator of the de-
rivative equals zero, and the
numerator does not. So, we de-
termine where the denominator
is equal to zero.

4y 1 8 5 0

y 5 22

Since we are writing the equa-
tion for one or more vertical
lines, we really need to know the
corresponding x-coordinate(s). To
this end, we will substitute y 5

22 into the original equation
and solve for x.

9x2 1 4(22)2 2 54x 1 16(22) 1

61 5 0

9x2 2 54x 1 45 5 0

x2 2 6x 1 5 5 0

x 5 1 and x 5 5

So, the equations for the vertical
tangent lines are x 5 1 and
x 5 5.

(c) We will first find the slope, write
the equation in point-slope form,
and then convert to slope-
intercept form.

m 5
22 2 1
1 2 3

5
3
2

y x− = −( )1 3
2

3

y x= −3
2

7
2

(d) Since the lines are parallel, they
have equal slopes. So, the slope

of the tangent line is
3
2

. Now, we

need the point(s) on the curve
where the derivative is equal to
3
2

. To determine this, we set the

derivative equal to
3
2

, solve for y,

substitute back into the original
equation, and solve for x.

dy
dx

x
y

= −
+ =27 9

4 8
3
2

54 2 18x 5 12y 1 24

y x= −5
2

3
2
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Substituting this expression for y
into the original equation and
solving for x gives us

9 4 5
2

3
2

54

16 5
2

3
2

61 0

2
2

x x x

x

+ −⎛
⎝

⎞
⎠ − +

−⎛
⎝

⎞
⎠ + =

With help from our calculators,
x 5 1.586 and x 5 4.414. By sub-
stituting these x-values into

y x= −5
2

3
2

, we get the corre-

sponding y-values to be y 5 0.121
and y 5 24.121, respectively. So,
there are two tangent lines par-
allel to the line from part C; they
have the following equations:

y x+ = −( )4 121
3

2
4 414. .

y x− = −( )0 121
3

2
1 586. .

Section II, Part B

4. (a) The bug changes directions at
t 5 3 and t 5 5. This is true
because the velocity changes
from positive to negative and
negative to positive, respectively.

(b) The bug is farthest from its
starting point at time t 5 3. The
bug is moving in the positive
direction (away from the start-
ing point) from t 5 0 to t 5 3.
Then, the bug turns around and
moves toward the starting point
for two seconds before changing
directions again. By examining
the area under the curve, we
can see that the bug is closer to
the starting point at t 5 6 then
it was at t 5 3.

(c) “Slowing down” means decreas-
ing speed, not velocity. So, we
need to include not only where
the velocity is positive and de-
creasing, but also where the ve-
locity is negative and increasing.

The velocity is positive and de-
creasing over the interval (1.5,3),
and it is negative and increasing
over the interval (4,5). So, the
bug is slowing down over these
two intervals.

5. (a) We want to try to isolate

cos2

2
π t⎛

⎝
⎞
⎠ and sin2

2
π t⎛

⎝
⎞
⎠ in order

to use the identity sin2x 1 cos2x
5 1. Looking at the x component
of the curve, we first square both
sides:

x t

x t

x
t

= ⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠

4
2

16
2

16 2

2 2

2
2

cos

cos

cos

π

π

π

And now for the y component:

y t

y t

y
t

= ⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠

3
2

9
2

9 2

2 2

2
2

sin

sin

sin

π

π

π

By combining these equations,
we get:

x y2 2

16 9
1+ =

(b) Using implicit differentiation,

x y dy

dx8

2

9
0+ ⎛

⎝
⎞
⎠ = 

dy

dx

x

y
= − 9

16

(c)

′( ) = ⎛
⎝

⎞
⎠y t t

3

2 2

π π
cos

′ ( ) = − ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠V t t t2

2
3
2 2

π π π πsin , cos
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(d) From part C:

dy

dx

t

t

dy
dt
dx
dt

= =
−

  3
2 2

22

π π

ππ
cos

sin

= − ⎛
⎝

⎞
⎠

3

4 2
tan

π
t

From part B:

− = −
( )( )
( )( )

= − ⎛
⎝

⎞
⎠

9
16

9 4

16 3

3
4 2

2

2

x
y

t

t

t

cos

sin

tan

π

π

π

(e) We will use the formula for arc
length:

L dx
dt

dy
dt

dt
a

b
= ⎛

⎝
⎞
⎠ + ⎛

⎝⎜
⎞
⎠⎟∫

2 2

 

=
− ⎛

⎝
⎞
⎠ +

⎛
⎝

⎞
⎠

∫
2

2

3
2 2

2

22

6
π π

π π

sin

cos

t

t

dt 

6. (a) Recall the formula for a Taylor
polynomial centered at x 5 1:

f x f f x

f x f x

f x

( ) = ( ) + ′ ( ) −( ) +

′′ ( ) −( ) +
′′′ ( ) −( ) +

( ) −

1 1 1

1 1
2

1 1
6

1

2

4( ) 11
24

( )

This implies that f(1) 5 ln 2 and
f4(1) 5 26.

(b) f ′ (x) 5 1 2 (x 2 1) 1

(x 2 1)2 2 (x 2 1)3

f ′(1.2) 5 1 2 0.2 1

0.04 2 0.008
5 0.832

(c) g x f t dt

x
x

x x x

x( ) =

= −( ) +
−( ) +

−( ) +
−( ) −

−( )

∫ ( )

ln
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College-by-College
Guide to AP Credit
and Placement

For the past two decades, national and international participation in the AP
Program has grown steadily. Colleges and universities routinely award credit
for AP exam scores of 3, 4, or 5, depending on the exam taken. The following
chart indicates the score required for AP credit, how many credits are granted,
what courses are waived based on those credits, and other policy stipulations
at more than 400 selective colleges and universities.

Use this chart to discover just how valuable a good score on the AP Calculus
Test can be!
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School Name Test
Required

Score C
re

d
it

s
G

ra
n

te
d

Course
Waived Stipulations

Agnes Scott College (GA) AB 3 0 See
Department

for
Placement

If student takes MAT 119 & earns a C
or above she will get 4 hours & MAT
118 exemption.

AB 4–5 4 MAT 118

BC 1–2w/AB3 0 See
Department

for
Placement

If student takes MAT 119 & earns a
C- or above she gets 4 hours & MAT
118 exemption.

BC 1–2w/AB4 4 MAT 118 If student takes MAT 119 & earns a
C- or above she will get 4 hours &
MAT 118 exemption.

BC 3 4 MAT 118

BC 4–5 8 MAT 118 &
119

Albany College of Pharmacy of
Union University (NY)

AB/BC 4–5

Albertson College of Idaho (ID) AB/BC 3–5

Albion College (MI) AB 4 MATH 141

BC 4–5 MATH
141(4),
MATH
143(5)

Albright College (PA) AB/BC 4–5

Allegheny College (PA) AB/BC 4–5

Alma College (MI) AB 4 MATH 121

BC 3–4 MATH
121(3),
MATH

121,122(4)

American University (DC) AB/BC 3–5

Asbury College (KY) AB 3 3 MAT 132

AB 4 4 MAT 181

BC 2 3 MAT 132

BC 3 4 MAT 181

Auburn University (AL) AB 3 7 MATH 1120
& 1610

AB 4 7 MATH 1120
& 1610

AB 5 7 MATH 1120
& 1610

BC 3–5 8 MATH 1610
&1620

Augustana College (IL) AB 3 3 MATH 219

BC 3 6 MATH 219
& 220

Augustana College (SD) AB/BC 4–5
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School Name Test
Required

Score C
re

d
it

s
G

ra
n

te
d

Course
Waived Stipulations

Austin College (TX) AB/BC 4–5 MATH 151

Azusa Pacific University (CA) AB 3–4 5 MATH 251

AB 5 9 MATH 251
& 252

BC 3 5 MATH 251

BC 4–5 9 MATH 251
& 252

Babson College (MA) AB/BC 4–5

Baldwin-Wallace College (OH) AB 3–5 4 MTH 141

BC 3–5 8 MTH 141 &
142

Bard College (NY) AB/BC 5

Barnard College (NY) AB 4–5 3 Exemption
from

Calculus 1

BC 4 3 Exemption
from

Calculus 1

BC 5 4 6 pts on completing Calculus III or
Honors Math III with C or better.
Exemption from Calculus I, II. Also
eligible for Honors Math III.

Bates College (ME) AB 4 MATH 105

AB 5 MATH 105

BC 3w/AB 4 or
5

MATH 105

BC 4–5 MATH 105
& 106

Baylor University (TX) AB 4 MATH 1321

BC 3 MATH 1321
& 1322

Belmont University (TN) AB 4–5 MATH 1210

BC 3 MATH 1210

Beloit College (WI) AB/BC 4–5 4 Credit will be granted once a student
matriculates to Beloit College and
provides official score reports to the
Registrar’s Office.

Benedictine University (IL) AB 3 0 MATH 110

AB 4–5 4 MATH 210

BC 3–5 8 MATH 210
& MATH

211
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School Name Test
Required

Score C
re

d
it

s
G

ra
n

te
d

Course
Waived Stipulations

Bentley College (MA) AB/BC 4–5 High school graduates who have
taken the AP exams may be awarded
credit for scores of 4 or 5, on any
subject test.

Berea College (KY) AB/BC 3–5

Bernard M. Baruch College of
the City University of New
York (NY)

AB/BC 4–5

Birmingham-Southern
College (AL)

AB 4 MATH 231

BC 4 MATH 231
& 232

Boston College (MA) AB/BC 4

Boston University (MA) AB 3–5 MA 123

BC 3–5 MA 123 &
MA 124

Bowdoin College (ME) AB 3–5

Bradley University (IL) AB 4 4 MTH 121

AB 5 8 MTH 121 &
122

AB/BC 3 4 MTH 121

BC 4–5 8 MTH 121 &
122

Brandeis University (MA) AB 4 MATH 10a

AB 5 MATH 10a,b

BC 3 MATH 10a

BC 4–5 MATH 10a,b

Brigham Young University (UT) AB 3 6 MATH 110
& MATH

111

AB 4–5 7 MATH 110
& MATH

112

BC 3–5 8 MATH 112
& MATH

113

Bryan College (TN) AB/BC 3–5

Bryn Mawr College (PA) AB/BC 4

Bucknell University (PA) AB 3 Take MATH
205

AB 4–5 MATH 202

BC 3 MATH 202

BC 4–5 MATH 211

Butler University (IN) AB 4–5 5 MA 106

BC 4–5 9 MA 106 &
MA 107
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School Name Test
Required

Score C
re

d
it

s
G

ra
n

te
d

Course
Waived Stipulations

Calvin College (MI) AB/BC 3 4 MATH 161

Canisius College (NY) AB 3 4 Free elective

AB 4–5 4 MATH 111
or MATH

115

BC 1–2 w/AB
4–5

4 MATH 111
or MATH

115

BC 3 w/AB 3 8 2 Free
electives

BC 3 w/AB 4–5 8 MATH 111
or MATH
115 and 1

Free elective

BC 4–5 8 MATH 111
& MATH

112 or
MATH 115
& MATH

116

Carleton College (MN) AB 3–5 6 Calculus II 6 credits granted which count toward
a mathematics major (for Calculus I)
after successful completion of
Calculus II with grade of C- or better.

BC 3–5 12 Calculus III 12 credits granted which count
toward a mathematics major (for
Calculus I and II) after successful
completion of Calculus III with grade
of C- or better.

Carnegie Mellon University (PA) AB/BC 4–5

Carroll College (MT) AB/BC 3–5

Carson-Newman College (TN) AB/BC 4–5

Case Western Reserve
University (OH)

AB 4–5 4 MATH 121
& MATH

125

BC 3 4 MATH 121
& MATH

125

BC 4–5 8 MATH 121
& MATH

125 or
MATH 122
& MATH

126

Cedarville University (OH) AB 4 3 or 4 GMTH 1030
or GMTH

1040
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School Name Test
Required

Score C
re

d
it

s
G

ra
n

te
d

Course
Waived Stipulations

Cedarville
University—continued

AB 5 3,4, or
5

GMTH 1030
or GMTH

1040

May challenge MATH-1710 Calculus I
with no charge for credits earned if
passing score is achieved.

BC 4 3,4, or
5

GMTH 1030
or GMTH

1040

May challenge MATH-1710 Calculus I
with no charge for credits earned if
passing score is achieved.

BC 5 5 or 10 MATH 1710 May challenge MATH-1720 Calculus
II with no charge for credits earned if
passing score is achieved and MATH
1710 Calculus I.

Central College (IA) AB/BC 3–5

Centre College (KY) AB/BC 4–5

Chapman University (CA) AB 4 3 MATH 110

BC 3 3 MATH 110

BC 4 6 MATH 110
& MATH

111

Christendom College (VA) AB/BC 4–5

Christian Brothers
University (TN)

AB/BC 4–5

Claremont McKenna
College (CA)

AB 4–5 Placement in Math 31. Credit for
Math 30 if grade in 31 is “B1” or
better in the freshman year.

BC 4 Placement in Math 32. Credit for
Math 31 if grade in 32 is “B1” or
better in freshman year.

BC 5 MATH 30 Placement in Math 32. Credit for
Math 31 if grade in 32 is “B1” or
better in freshman year.

Clarkson University (NY) AB 4–5 MA 131

BC 4 MA 131

BC 5 MA 131 &
MA 132

Clark University (MA) AB/BC 4–5

Clemson University (SC) AB 3–5 4 MTHSC 106

BC 3–5 8 MTHSC 106
& MTHSC

108

Coe College (IA) AB/BC 4–5

Colby College (ME) AB/BC 4–5

Colgate University (NY) AB/BC 4–5

College of Charleston (SC) AB 3 4 MATH 120

BC 3 8 MATH 120
& MATH

220

AB subscore of 3 or 4 5 MATH 120

The College of New Jersey (NJ) AB 4–5 MAT 127 or
MAT 125
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School Name Test
Required

Score C
re

d
it

s
G

ra
n

te
d

Course
Waived Stipulations

The College of New Jersey—
continued

BC 3 MAT 127 or
MAT 125

BC 4–5 MAT 127 &
MAT 128

College of Saint Benedict (MN) AB 4–5 4 MATH 119

BC 3 4 MATH 119

BC 4–5 8 MATH 119
& MATH

120

The College of St.
Scholastica (MN)

AB 4–5 4 MATH 2221

BC 4–5 4 MATH 2222

College of the Atlantic (ME) AB/BC 4–5

College of the Holy Cross (MA) AB/BC 4–5

The College of William and
Mary (VA)

AB 4–5 A score of 4 or 5 on the Calculus AB
examination will be awarded 4 hours
credit for Mathematics 111.

BC 3–5 A score of 3 will be awarded 4 credits
for Mathematics 111 and a score of 4
or 5 will be awarded 8 credits for
Mathematics 111 and 112.

The College of Wooster (OH) AB/BC 4–5

Colorado Christian
University (CO)

AB/BC 3–5

The Colorado College (CO) AB 3–5 Placement into MA 128

BC 3 Placement into MA 128

BC 4–5 Placement into MA 203

Colorado School of Mines (CO) AB 4–5 4 Calculus I

BC 4 4 Calculus I

BC 5 8 Calculus I &
Calculus II

Colorado State University (CO) AB 3–5 9 M CC 117,
118, 124,
125, 126,

160

BC 3–5 13 M CC 117,
118, 124,
125, 126,
160, 161

Columbia College (NY) AB 4–5 3 Requires completion of MATH V1102
with a grade of C or better.

BC 4 3 Requires completion of MATH V1102
with a grade of C or better.

BC 5 6 Requires completion of MATH V1201
or V1207 with a grade of C or better.
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School Name Test
Required

Score C
re

d
it

s
G

ra
n

te
d

Course
Waived Stipulations

Columbia University, The Fu
Foundation School of
Engineering and Applied
Science (NY)

AB/BC 5 4 Requires beginning with, and
completion of, at least Calculus IIIA
(MATH V1201) with a grade of C or
better.

Concordia College (MN) AB 4 Math 121AK

BC 3 Math 121AK

BC 4 Math
121AK/
122AK

Connecticut College (CT) AB/BC 4–5

Converse College (SC) AB 3–4 3

AB 5 6

BC 3 3

BC 4–5 6

Cooper Union for the
Advancement of Science and
Art (NY)

BC 4–5 4 MA 111

Cornell College (IA) AB/BC 3–5

Cornell University (NY) AB 3–5 4 MATH 106,
111–112, &
MATH 121

Permission to take Math 112, 122,
190, 191, or 231. Engineering or BEE
students receive no credit.

BC 4–5 8 MATH 106,
111–112,
121–122,

190 & 191

Engineering or BEE students receive
only 4 credits. Permission to take
Math 213, 221, 223, or 231. Students
wishing to take engineering calculus
will place into Math 192.

Cornerstone University (MI) AB 4–5 4 MAT 131

BC 4–5 8 MAT 131 &
MAT 132

Covenant College (GA) AB 4 4 MAT 145

BC 4 8 MAT 145 &
MAT 146

Creighton University (NE) AB 3 4 MTH 245

BC 3 8 MTH 245 &
MTH 246

Dartmouth College (NH) AB 4–5 MTH 3

BC 4–5 MTH 3 &
MTH 8

Davidson College (NC) AB 3–5 w/BC 3 MAT 130

AB 4–5 MAT 130

BC 4–5 MAT 130 &
MAT 139

MAT 139, a credit used only for AP
and other transfer credits, is forfeited
if the student takes MAT 235 at
Davidson.

Denison University (OH) AB/BC 4–5 MATH 199 If student takes and successfully
passes (grade of C or better) Math
124 (Calculus II), then MATH 199
will be converted to MATH 123.
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School Name Test
Required

Score C
re

d
it

s
G

ra
n

te
d

Course
Waived Stipulations

DePauw University (IN) AB 3 If MATH 152 is completed with a ‘C-’
or better, 1.00 credit will be awarded
for MATH 151.

AB 4–5 MATH 151 Student may enroll in MATH 152.

BC 3 If MATH 251 is completed with a ‘C-’
or better, 1.00 credit will be awarded
for MATH 152.

BC 4–5 MATH 151
& MATH

152

Student may enroll in MATH 251.

Dickinson College (PA) AB 3 Credit for 161 given upon successful
completion of 162.

AB 4 MATH
General Cr.

Math General Credit changed to
credit for 161 upon successful
completion of 162.

AB 5 MATH 161

BC 3 MATH 161 Credit for 162 given upon successful
completion of 261.

BC 4 MATH 161
& MATH

General Cr.

MATH General Credit changed to
credit for 162 upon successful
completion of 261.

BC 5 MATH 161
& MATH

162

Dominican University (IL) AB 3–5 4 Placement into MATH 262 in
consultation with Math Faculty.

BC 3–5 8 Placement into MATH 270 in
consultation with Math Faculty.

Drake University (IA) AB 3 4 MATH 50

BC 3 8 MATH 50 &
MATH 70

Drew University (NJ) AB 4–5 4 MATH 7

BC 3 4 MATH 7

BC 4–5 8 MATH 7 &
MATH 8

Drexel University (PA) AB 4–5

BC 4–5

Drury University (MO) AB 4–5 4 MATH 231

BC 3 4 MATH 231

BC 4–5 8 MATH 231
& MATH

232

Duke University (NC) AB 5 MATH 31

BC 3 MATH 31
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School Name Test
Required

Score C
re

d
it

s
G

ra
n

te
d

Course
Waived Stipulations

Duke University—continued BC 4–5 MATH 31 &
MATH 32

Duquesne University (PA) AB 4–5 4 MATH 115

AB/BC 3 4 MATH 104

BC 4 4 MATH 115

BC 5 4 MATH 116

Earlham College (IN) AB 4–5 3

BC 4–5 6

BC AB sub 4–5 3 Please note that if a student earns
credits for the BC exam, the AB
sub-score credits are not awarded. A
maximum of six credits will be
awarded for all AP Calculus scores.

Elizabethtown College (PA) AB 3–5 4 MA 121

BC 3–5 8 MA 121 &
MA 122

If the Calculus BC score is less than a
3 but the subgrade for Calculus AB is
a 3 or above, credit will be granted for
MA121 only.

Elmira College (NY) AB 3 3 Registrar and Mathematics faculty
will determine placement.

AB 4–5 6 Registrar and Mathematics faculty
will determine placement.

BC 3 3 MAT 2010

BC 4–5 6 MAT 2010 &
MAT 2020

AB and BC with a score of 5 will get
9 credits and Registrar and
Mathematics faculty will determine
placement.

Elon University (NC) AB 3–5 4 MTH 121

BC 3–5 8 MTH 121 &
MTH 221

Embry-Riddle Aeronautical
University (AZ)

AB/BC 3–5

Emerson College (MA) AB/BC 3–5

Emory University (GA) AB 4–5 4

BC 4 Students who do not receive credit for
Calculus BC but who score a four or
five on the Calculus AB sub-grade of
the Calculus BC examination will
receive four hours of credit for
Calculus AB.

BC 4–5 8 Students receiving credit for the
Calculus BC examination may not
receive credit for the Calculus AB
examination as well.

Erskine College (SC) AB/BC 4–5

Eugene Lang College The New
School for Liberal Arts (NY)

AB/BC 4–5
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School Name Test
Required

Score C
re

d
it

s
G

ra
n

te
d

Course
Waived Stipulations

Fairfield University (CT) AB 4–5 6 MA 121 &
MA 122

BC 4–5 8 MA 171 &
MA 172

Florida Institute of
Technology (FL)

AB 4–5 4 Calculus I

BC 4–5 8 Calculus I &
Calculus II

Florida International
University (FL)

AB 3–5 4 MAC 2311

BC 3 4 MAC 2311

BC 4–5 8 MAC 2311
& MAC

2312

Florida State University (FL) AB 3–5 4 MAC 2311

BC 3 4 MAC 2311

BC 4–5 8 MAC 2311
& MAC

2312

Fordham University (NY) AB/BC 3–5 Currently, a grade of 3 will be
accepted as elective credit. However,
grades of 4 or 5 may be applied
towards the core curriculum.

Franciscan University of
Steubenville (OH)

AB/BC 4–5

Franklin and Marshall
College (PA)

AB/BC 4–5 MAT 109

Furman University (SC) AB 4–5 MATH 11

BC 3 MATH 11

BC 4–5 MATH 11 &
MATH 12

If a student earns less than a 3 on
the BC exam but makes a 4 or 5 on
the AB subscore of the BC exam,
credit earned is for Math 11.

George Fox University (OR) AB 3 4 MATH 201

AB 4–5 8 MATH 201
& MATH

202

BC 4–5 11 MATH 201,
202, & 301

Georgetown College (KY) AB/BC 3–5 3–6

Georgetown University (DC) AB 4–5 4 MATH 035 If a student takes the Calculus AB
and Calculus BC tests, the higher
score is used because credit is
awarded only once for both tests.
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School Name Test
Required

Score C
re

d
it

s
G

ra
n

te
d

Course
Waived Stipulations

Georgetown University—
continued

AB/BC 3 3 MATH 003 If a student takes the Calculus AB
and Calculus BC tests, the higher
score is used because credit is
awarded only once for both tests.

BC 4–5 8 MATH 035
& MATH

036

If a student takes the Calculus AB
and Calculus BC tests, the higher
score is used because credit is
awarded only once for both tests.

BC AB 3–5 For an AB subscore of 3, 4, or 5 in the
Calculus BC test, the student should
see the dean’s office for evaluation of
any credit award.

The George Washington
University (DC)

AB 4–5 3 MATH 31

Georgia Institute of
Technology (GA)

AB 4–5 4 MATH 1501

BC 3–5 4 MATH 1501

Georgia State University (GA) AB/BC 3–5

Gettysburg College (PA) AB/BC 4–5 4

Gonzaga University (WA) AB 4–5 4 MATH 157 Students intending to use AP calculus
credit as a prerequisite for advanced
mathematics course work must
consult Gonzaga’s Mathematics
Department faculty prior to doing so.

BC 4 4 MATH 157 Students intending to use AP calculus
credit as a prerequisite for advanced
mathematics course work must
consult Gonzaga’s Mathematics
Department faculty prior to doing so.

BC 5 8 MATH 157
& MATH

258

Students intending to use AP calculus
credit as a prerequisite for advanced
mathematics course work must
consult Gonzaga’s Mathematics
Department faculty prior to doing so.

Gordon College (MA) AB/BC 4–5

Goshen College (IN) AB 4–5 6 Half of Calc
II

AB/BC 3 4 Calc I

BC 4–5 8 Calc II

Goucher College (MD) AB/BC 4–5

Grinnell College (IA) AB 4–5 4

BC 3–5 4

Grove City College (PA) AB/BC 4–5

Gustavus Adolphus
College (MN)

AB/BC 4–5

Hamline University (MN) AB 4–5 MATH 1170

BC 4–5 MATH 1170
& MATH

1180
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School Name Test
Required

Score C
re

d
it

s
G

ra
n

te
d

Course
Waived Stipulations

Hampshire College (MA) AB/BC 3–5

Hanover College (IN) AB 3–5 If a student has earned a 3 in an
Advanced Placement course, the
decision as to acceptance for credit
will lie with the department
concerned, which may read and
evaluate the student’s Advanced
Placement course examination.

BC 3–5

Harding University (AR) AB 3 5 MATH 201

BC 3 10 MATH 201
& MATH

251

Harvard University (MA) AB 5 Math 1a,
Xa, Xb

Placement in Math 1b, 20

BC 5 Math 1a, 1b,
Xa, Xb

Placement in Math 19, 20, 21a, 23a,
25a, 55a (with permission of
instructor).

Harvey Mudd College (CA) BC 5 MATH 11

Haverford College (PA) AB/BC 4–5 The registrar will award one course
credit for an AP score of 5 and
one-half course credit for a score of 4.
No credit is awarded for scores under
4.

Hendrix College (AR) AB 4–5 MATH 130

BC 3 MATH 130

BC 4–5 MATH 130
& MATH

140

Hillsdale College (MI) AB 3 4 MTH 213

AB 4–5 8 MTH 213 &
MTH 214

BC 3–5 8 MTH 213 &
MTH 214

Hiram College (OH) AB/BC 4–5

Hobart and William Smith
Colleges (NY)

AB/BC 4–5

Hope College (MI) AB/BC 4–5

Houghton College (NY) AB 4–5 4 Calculus I

BC 4–5 8 Calculus I &
Calculus II

Illinois College (IL) AB/BC 4–5

Illinois Institute of
Technology (IL)

AB 3–5 5 MATH 151

BC 3 5 MATH 151
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Illinois Institute of Technology—
continued

BC 4–5 10 MATH 151
& MATH

152

Illinois Wesleyan University (IL) AB/BC 4–5 Credit will be granted and recorded
by IWU only after the successful
completion of four course units of
study in residence.

Iowa State University of Science
and Technology (IA)

AB/BC 3–5

Ithaca College (NY) AB 3–5 4 Calculus I
313–111

BC 3–5 8 Calculus I
313–111 &
Calculus II

313–112

James Madison University (VA) AB 4–5 4 MATH 235 Students who receive a score of 3 may
want to take a departmental
examination to earn credit in either
MATH 205 or MATH 235.

BC 4–5 8 MATH 235
& MATH

236

Students who receive a score of 3 may
want to take a departmental
examination to earn credit in either
MATH 205 or MATH 235.

John Brown University (AR) AB 3–5 MTH 1134 No credit for subscores.

BC 3 MTH 1134

BC 4–5 MTH 1134
& MTH

1144

John Carroll University (OH) AB 3 4 MT 135

AB 4–5 8 MT 135 &
MT 136

BC 3–5 8 MT 135 &
MT 136

The Johns Hopkins
University (MD)

AB 4–5 4 MATH 110,
106 or 108

BC 3 4 MATH 110,
106 or 108

BC 4–5 8 MATH 110,
106 & 107
or MATH

110, 108 &
109

Juniata College (PA) AB/BC 4–5

Kalamazoo College (MI) AB/BC 4–5

Kenyon College (OH) AB 3 Placement in Math 111

AB 4–5 MATH 111 Placement in Math 112

BC 3 MATH 111 Placement in Math 112
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Kenyon College—continued BC 4–5 MATH 111
& MATH

112

Placement in Math 213

Kettering University (MI) AB 3–5 4 MATH 101

BC 3 4 MATH 101

BC 4–5 8 MATH
101-MATH

102 &
MATH 122

Knox College (IL) AB 4–5 MATH 151

BC 3 MATH 151

BC 4–5 MATH 151
& MATH

152

Lafayette College (PA) AB 4–5 MATH 161

BC 3–5 MATH 161
& MATH

162

Lake Forest College (IL) AB/BC 4–5

Lawrence Technological
University (MI)

AB 3 4 MCS 1254 Enroll in MCS 1424. If the student
earns a “C” or better in the first
attempt, he/she should contact the
Registrar’s Office to request credit for
MCS 1414.

AB 4 3–4 MCS 1224
or MCS

2313

AB 5 4 MCS 1414

BC 3–5 8 Enroll in MCS 2424. If a student
earns a “C” or better in the first
attempt, he/she should contact the
Registrar’s Office to request credit for
MCS 1414 & MCS 1424.

Lawrence University (WI) AB/BC 4–5

Lebanon Valley College (PA) AB 4–5 3 MAS 161

BC 4–5 4 MAS 161 &
MAS 162 or

MAS 111

Lehigh University (PA) AB 4–5 4 MATH 21

BC 4–5 8 MATH 21 &
MATH 22

Credit for Math 21 and 22 or both
may also be earned by passing the
examination offered by the
Mathematics Department during
Freshman Orientation.

LeTourneau University (TX) AB 3–4 3–6 MATH 1903
or MATH
1603 &

MATH 1613
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LeTourneau University—
continued

AB 5 6 MATH 1903
& 2013 or

MATH 1603
& 1613

Lewis & Clark College (OR) AB 4 Placement in Math 132. AP Calculus
4 or 5: No more than 8 credits for
Calculus AB and BC will be awarded.

AB 5 Placement in Math 215 or 233. AP
Calculus 4 or 5: No more than 8
credits for Calculus AB and BC will
be awarded.

BC 3 Placement in Math 132. AP Calculus
4 or 5: No more than 8 credits for
Calculus AB and BC will be awarded.

BC 4–5 Placement in Math 215 or 233. AP
Calculus 4 or 5: No more than 8
credits for Calculus AB and BC will
be awarded.

Linfield College (OR) AB/BC 4–5

Lipscomb University (TN) AB 3–5 4 MA 1314

BC 3–4 8 MA 1314

BC 5 8 MA 1314 &
MA 2314

Louisiana State University and
Agricultural and Mechanical
College (LA)

AB 3 3 MATH 1431
or MATH

1441

AB 4–5 5 MATH 1550

BC 3 5 MATH 1550

BC 4–5 9 MATH 1550
& MATH

1552

Loyola College in
Maryland (MD)

AB/BC 4–5

Loyola Marymount
University (CA)

AB 4–5 4 MATH 131

BC 4–5 8 MATH 131
& MATH

132

Loyola University Chicago (IL) AB 4 3 MATH 131

AB 5 6 MATH 131
& MATH

132

BC 3 3 MATH 131

BC 4–5 8 MATH 161
& MATH

162

Loyola University New
Orleans (LA)

AB 4–5 4 MATH A257
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Loyola University New
Orleans—continued

BC 4–5 8 MATH A257
& MATH

A258

Luther College (IA) AB/BC 4–5 4

Lycoming College (PA) AB 4–5 4 MATH 128

BC 4–5 8 MATH 128
& MATH

129

Lyon College (AR) AB/BC 4–5

Macalester College (MN) AB 3–5 Placement in Math 137. Students who
take at least one mathematics course
at Macalester College will get credit
for MATH 194-Topics in College
Calculus, with a grade of “S”.

BC 3–5 Placement in Math 236 or 237.
Students who take at least one
mathematics course at Macalester
College will get credit for MATH
194-Topics in College Calculus, and
for MATH 137-Single Variable
Calculus, with a grade of “S” for each.

Marist College (NY) AB 3–5 4 MATH 241L

BC 3–5 8 MATH 241L
& MATH

242L

Marlboro College (VT) AB/BC 4–5 8

Marquette University (WI) AB 3–5 4 MATH 80

BC 3–5 8 MATH 80 &
MATH 81

Maryville College (TN) AB/BC 3–5

Maryville University of Saint
Louis (MO)

AB/BC 3–5

Massachusetts Institute of
Technology (MA)

AB 4–5 Placement into the accelerated
calculus sequence 18.01A & 18.02A

BC 4–5 18.01-
Calculus I

The Master’s College and
Seminary (CA)

AB/BC 4–5

McDaniel College (MD) AB/BC 4–5 Students may receive advanced
placement plus up to 8 hours credit.

McGill University (QC) AB 4–5 3 MATH 140

BC 4–5 7 MATH 140
& MATH

141

McKendree College (IL) AB 3 3 Elective
credit

AB 4–5 4 MTH 210
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Mercer University (GA) AB/BC 3–5

Messiah College (PA) AB 3 4 MAT 111 May be counted toward General
Education.

AB 4–5 8 MAT 111 &
MAT 112

May be counted toward General
Education.

BC 2 4 MAT 111 May be counted toward General
Education.

BC 3 8 MAT 111 &
MAT 112

May be counted toward General
Education.

BC 4–5 12 MAT 111,
MAT 112 &

MAT 211

May be counted toward General
Education.

Miami University (OH) AB 3–5 5 MTH 151

BC 3 5 MTH 151 Then enroll in a Calculus II course.
Proficiency credit for MTH 251(4
hours) may be possible; check with
chief departmental adviser.

BC 4–5 9 MTH 151 &
MTH 251

Then enroll in a Calculus III course
and/or MTH 222, or MTH 222.T and
331.T.

Michigan State University (MI) AB 3 0 MTH 132

AB 4–5 3 MTH 132

BC 2 w/AB 4–5 0 MTH 132

BC 3–5 7 MTH 132 &
MTH 133

Michigan Technological
University (MI)

AB 2 0 Student can be placed into MA 1160.

AB 3 0 Student may enroll in MA 2160 but
will not be awarded credit for MA
1160 unless a grade of “C” or higher
is earned in MA 2160.

AB 4–5 4 MA 1160

BC 4–5 8 MA 1160 &
MA 2160

Student is placed into MA 3160.
Students scoring 3 or lower will
receive credit based on their AB
subscore and the AB guidelines.

Middlebury College (VT) AB 4–5 MATH 0121

BC 3 MATH 0121

BC 4–5 MATH 0121
& MATH

0122

Milligan College (TN) AB 3–5 4 MATH 211

BC 3–5 8 MATH 211
& MATH

212

Millsaps College (MS) AB 4–5 4 MATH 1220
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Millsaps College—continued BC 4–5 8 MATH 1220
& MATH

2230

Mills College (CA) AB/BC 4–5

Mississippi College (MS) AB 4–5 3 MAT 121

BC 4–5 6 MAT 121 &
MAT 122

Missouri State University (MO) AB 3–5 5 MTH 261

BC 3–5 10 MTH 261 &
MTH 280

Moravian College (PA) AB/BC 4–5

Morehouse College (GA) AB/BC 4–5

Mount Holyoke College (MA) AB/BC 4–5 4

Mount Saint Vincent
University (NS)

AB/BC 4–5

Muhlenberg College (PA) AB/BC 3–5

Murray State University (KY) AB 3–5 5 MAT 250

BC 3 5 MAT 250

BC 4–5 10 MAT 250 &
MAT 308

New College of Florida (FL) AB/BC 3–5

New Jersey Institute of
Technology (NJ)

AB 5 4 MATH 111
& MATH

113 or
MATH 138

AB/BC 3 3 MATH 138

AB/BC 4 4 MATH 111
or MATH

113 or
MATH 138

BC 5 8 MATH 111
& 112 or

MATH 113
& 114

New Mexico Institute of Mining
and Technology (NM)

AB/BC 3 Receive 2 elective credits in
mathematics. Students proceed
directly into MATH 131.

AB/BC 4–5 4 MATH 131 Students proceed directly into MATH
132.

New York University (NY) AB 4–5 4 V63.0121

BC 4–5 8 V63.0121–
0122
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North Carolina State
University (NC)

AB 3 Placement in MA 241 or 231,
depending upon curriculum. Upon
completion of this course with a C- or
better on the first attempt, 4 hours
credit will be awarded for MA 141, or
3 hours for MA 131, depending on
curriculum.

AB 4–5 4 hours credit for MA 141 or 3 hours
credit for MA 131 or MA 121,
depending upon curriculum.

BC 2 Placement in MA 241 or 231,
depending upon curriculum. Upon
completion of this course with a C- or
better on the first attempt, 4 hours
credit will be awarded for MA 141 or
3 hours credit for MA 131 or 121,
depending upon curriculum.

BC 3 4 hours credit for MA 141 or 3 hours
for MA 131 or MA 121, depending on
curriculum

BC 4–5 8 hours for MA 141 and 241 or 7
hours for MA 131 & 231, depending
on curriculum.

North Central College (IL) AB 4–5 MTH 151 &
MTH 152

AB/BC 3 MTH 130 If student enrolls in MTH 152 and
earns a B- or higher, may replace
credit with MTH 151 OR student may
enroll in MTH 153. If a grade of B- or
higher is earned, then MTH 130 may
be replaced with MTH 151 and 152.
Fulfills mathematics requirement.

BC 4 MTH 151 &
MTH 152

Student may enroll in MTH 254. If
he/she successfully completes MTH
254 with a B- or higher, he/she will
receive 3 additional credit hours for
MTH 153. Fulfills mathematics
requirement.

BC 5 MTH 151,
152, & 153

Northwestern College (IA) AB 4–5 5 MAT 112

BC 3–5 5 MAT 211

Northwestern College (MN) AB 3–4 4 MAT 2121

AB 5 8 MAT 2121 &
MAT 2122

BC 3 4 MAT 2121

BC 4–5 8 MAT 2121 &
MAT 2122

Northwestern University (IL) AB 4 MATH 220
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Northwestern University—
continued

AB 5 MATH 220
& MATH

224

BC 4–5 MATH 220
& MATH

224

Occidental College (CA) AB/BC 4–5

Oglethorpe University (GA) AB 3–5 4 MAT 131

BC 3–5 8 MAT 131 &
MAT 132

Ohio Northern University (OH) AB 3–4 4 MATH 163

AB 5 8 MATH 163
& MATH

164

BC 3 w/AB 3–4 4 MATH 163

BC 3 w/AB 5 8 MATH 163
& MATH

164

BC 4 w/AB 3–4 4 MATH 163

BC 4 w/AB 5 8 MATH 163
& MATH

164

BC 5 w/AB 5 12 MATH 163,
164, & 165

The Ohio State University (OH) AB 3–5 10 MATH 150
& MATH

151

BC 3 10 MATH 150
& MATH

151

BC 4–5 15 MATH 150,
151, & 152

Ohio Wesleyan University (OH) AB 4–5 MATH 110 Student should begin any further
math study MATH 111.

BC 3 MATH 110

BC 4–5 MATH 110
& MATH

111

Student should be placed in MATH
210 or MATH 250.

Oklahoma City University (OK) AB 4–5 4 MATH 2004

BC 4–5 8 MATH 2004
& MATH

2104

Oklahoma State
University (OK)

AB 3–5 4 MATH 2144

BC 3–5 7 MATH 2144
& MATH

2153
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Pacific Lutheran
University (WA)

AB 3–5 4 MATH 151

BC 3 4 MATH 151

BC 4–5 8 MATH 151
& MATH

152

Pacific University (OR) AB/BC 4–5 4

Peabody Conservatory of Music
of The Johns Hopkins
University (MD)

AB/BC 4–5

The Pennsylvania State
University, University Park
Campus (PA)

AB 4–5 4 MATH 140

BC 3 4 MATH 140

BC 4–5 8 MATH 140
& MATH

141

Pepperdine University (CA) AB 3–5 4 MATH 214
& MATH

210.01

BC 3–5 8 MATH 210
& MATH

211

Pitzer College (CA) AB/BC 4–5

Point Loma Nazarene
University (CA)

AB/BC 3 3

AB/BC 4–5 6

Polytechnic University, Brooklyn
Campus (NY)

AB 4–5 4 MA 1012 &
MA 1022

BC 4–5 6 MA 1012,
1022 & 1112

Pomona College (CA) AB 4–5 One course credit is given for a score
of 4 or 5 on the Calculus AB or the
Calculus BC “AB Subscore” when
Calculus II (Math 31) or its
equivalent has been taken and passed
with a grade of C- or better.

BC 4–5 Two course credits are given for
Calculus BC when Calculus III (Math
32) or its equivalent has been taken
and passed with a grade of C- or
better.

Presbyterian College (SC) AB 3–4 3 MATH 201

AB 5 6 MATH 201
& MATH

202

BC 3–4 6 MATH 201
& MATH

202
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Presbyterian College—continued BC 5 9 MATH 201,
202, & 301

Princeton University (NJ) AB 4–5 MATH 103

BC 4–5 MATH 103
& MATH

104

Two units granted upon successful
completion of the 200-level course.
(Students who do not take the course
will receive the AP units to which
their AB or BC exam scores otherwise
entitles them.)

Providence College (RI) AB/BC 4–5

Purdue University (IN) AB 4–5 4 MA 165

BC 4–5 8 MA 165 &
MA 166

Queen’s University at
Kingston (ON)

AB 4–5 TBA

BC 4–5 MATH 121

Quincy University (IL) AB/BC 4–5

Quinnipiac University (CT) AB 4–5 3 MA 141

BC 4–5 6 MA 141 &
MA 142

Randolph-Macon Woman’s
College (VA)

AB/BC 4–5

Reed College (OR) AB/BC 4–5

Rensselaer Polytechnic
Institute (NY)

AB 4–5 4 Calculus I

BC 3 4 Calculus I

BC 4–5 8 Calculus I &
II

Rhodes College (TN) AB 4–5 4 MATH 121

BC 4 4 MATH 121

BC 5 8 MATH 121
& MATH

122

Rice University (TX) AB 4–5 3 MATH 101

BC 4–5 6 MATH 101
& MATH

102

Rochester Institute of
Technology (NY)

AB 4–5 1016–281

BC 3 1016–281

BC 4 1016–
281,282

BC 5 1016–
281,282, &

283

College-by-College Guide to AP Credit and Placement 643
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

www.petersons.com



School Name Test
Required

Score C
re

d
it

s
G

ra
n

te
d

Course
Waived Stipulations

Rollins College (FL) AB/BC 4–5 4

Rose-Hulman Institute of
Technology (IN)

AB 4–5 5 MA 111

BC 4–5 10 MA 111 &
MA 112

Rutgers, The State University of
New Jersey, Newark (NJ)

AB/BC 4–5

Rutgers, The State University of
New Jersey, New Brunswick/
Piscataway (NJ)

AB/BC 4–5

Saint Francis University (PA) AB 3 MATH 105
& 106 or 111

& 112 or
121 & 122

Score of “3” receives waiver from one
of the following combinations:
Mathematics 105 and 106,
Mathematics 111 and 112, or
Mathematics 121 and 122.

AB 4–5 MATH 105
& 106 or 111

& 112 or
121 & 122

Score of “4” or “5” receives credit for
one of the following combinations:
Mathematics 105 and 106,
Mathematics 111 and 112, or
Mathematics 121 and 122.

BC 3 Score of “3” receives waiver from one
of the following combinations:
Mathematics 105 and 106,
Mathematics 111 and 112, or
Mathematics 121 and 122, and also
receives a waiver from Mathematics
221 and 222.

BC 4–5 Score of “4” or “5” receives credit for
one of the following combinations:
Mathematics 105 and 106,
Mathematics 111 and 112, or
Mathematics 121 and 122, and also
receives credit for Mathematics 221
and 222.

Saint John’s University (MN) AB 4–5 4 MATH 119

BC 3 4 MATH 119

BC 4–5 8 MATH 119
& MATH

120

Saint Joseph’s University (PA) AB 4–5 4 MAT 1351 All except Biology majors.

AB 4–5 3 MAT 1251 Biology only.

BC 4–5 8 MAT 1351 &
MAT 1361

St. Lawrence University (NY) AB 4–5 MATH 135

BC 4–5 MATH 135
& MATH

136

St. Louis College of
Pharmacy (MO)

AB/BC 4–5

Saint Louis University (MO) AB 4–5 4 MT A 142
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Saint Louis University—
continued

BC 4–5 8 MT A 142 &
MT A 143

Saint Mary’s College (IN) AB 3 3 MATH 105

AB 4 6 MATH 105
& MATH

106

AB 5 8 MATH 131
& MATH

132

BC 3 4 MATH 131

BC 4–5 8 MATH 131
& MATH

132

Saint Mary’s College of
California (CA)

AB 3 MATH 00E

AB 4–5 MATH 27

BC 3 MATH 27

BC 4–5 MATH 27 &
MATH 28

St. Mary’s College of
Maryland (MD)

AB/BC 4–5

St. Norbert College (WI) AB/BC 3–5

St. Olaf College (MN) AB 4–5 MATH 126
or MATH

128

BC 3 w/AB 4–5

BC 4–5 Soph level
math course

Salem College (NC) AB 3 MATH 100
& MATH

101

Credit for Math 100 plus placement
in Math 101.

AB 4–5 MATH 100
& MATH

101

Math 100 plus placement in Math
101.

BC 3 MATH 100,
101, & 102

Credit for Math 100 and 101 plus
placement into Math 102.

BC 4–5 MATH 100,
101, & 102

Math 100 and 101 plus placement
into Math 102.

Samford University (AL) AB 3–5 4 MATH 240

BC 3–5 8 MATH 240
& MATH

260

San Diego State University (CA) AB 3–5 4 MATH 150 Exempts from CSU Entry level
Mathematics Test.
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San Diego State University—
continued

BC 3–5 6 MATH 150
& MATH

151

Santa Clara University (CA) AB 4–5 8 MATH 11 &
12 or MATH

30 & 31

BC 3 4 MATH 11 or
MATH 30

BC 4–5 12 Math11 or
30, 12 or 31,

and 13

Sarah Lawrence College (NY) AB/BC 4–5

Scripps College (CA) AB/BC 4–5

Seattle Pacific University (WA) AB 4–5 5 MAT 1225

BC 4–5 10 MAT 1225 &
MAT 1226

Seattle University (WA) AB 3 5 MATH 130

AB 4 5 MATH 134

AB 5 10 MATH 134
& MATH

135

BC 3 5 MATH 134

BC 4 10 MATH 134
& MATH

135

BC 5 10 MATH 134
& MATH

135

If requested, Mathematics
department can test to see if MATH
136 credit can also be allowed.

Sewanee: The University of the
South (TN)

AB/BC 4–5 4

Siena College (NY) AB/BC 4–5

Simpson College (IA) AB/BC 3–5

Skidmore College (NY) AB 4–5 In most cases such credits will count
only as elective credit toward the
degree and, with few exceptions, will
not replace specific all-college or
major requirements.

BC 4–5

Smith College (MA) AB/BC 4–5

Southern Methodist
University (TX)

AB 4–5 3 MATH 1337

BC 3 w/AB 4–5 3 MATH 1337

BC 4 3 MATH 1337

BC 5 6 MATH 1337
& MATH

1338

Southwest Baptist
University (MO)

AB 3–5 5 MAT 1195
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Southwest Baptist University—
continued

BC 3–5 10 MAT 1195 &
MAT 2255

Southwestern University (TX) AB/BC 4–5 3–4

Stanford University (CA) AB 4 5 MATH 42

AB 5 10 MATH 51

BC 3 5 MATH 42

BC 4–5 10 MATH 51

State University of New York at
Binghamton (NY)

AB/BC 3–4 4 Unspecified
lower-level

math

AB/BC 5 8 MATH 221
& 4 credits

of
Unspecified
lower-level

math

State University of New York at
Buffalo (NY)

AB/BC 3–5

State University of New York
College at Geneseo (NY)

AB 3 4 MATH 1TR

AB 4–5 4 MATH 221

BC 3 4 MATH 221 Students who take the Calculus BC
exam receive a Calculus AB subgrade.
If a student does not qualify for BC
credit, the AB subgrade will be used
to determine AB credit.

BC 4–5 8 MATH 221
& MATH

222

Students who take the Calculus BC
exam receive a Calculus AB subgrade.
If a student does not qualify for BC
credit, the AB subgrade will be used
to determine AB credit.

State University of New York
College of Environmental
Science and Forestry (NY)

AB/BC 4–5

Stetson University (FL) AB 3 3 MS 101

AB 4–5 4 MS 201

BC 3 4 MS 201

BC 4–5 8 MS 201 &
MS 202

Stevens Institute of
Technology (NJ)

AB/BC 4–5 3 MA 115 or
MA 117

Stonehill College (MA) AB/BC 4 4 Calculus I

AB/BC 5 8 Calculus I &
II

BC w/AB 4–5 8 Calculus I &
II
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Stony Brook University, State
University of New York (NY)

AB 3 3 None

AB 4–5 4 MAT 131

BC 4–5 8 MAT 131 &
MAT 132

Susquehanna University (PA) AB/BC 4–5 In exceptional cases, the department
may also recommend credit for scores
of 3.

Swarthmore College (PA) AB 5 MATH 015,
the first half

of 025, &
placement

026

AB/BC 4 MATH 015

BC 5 MATH 015
& MATH

025

Sweet Briar College (VA) AB/BC 4–5

Syracuse University (NY) AB 3 6 MAT 285 &
MAT 286

AB 4–5 6 MAT 285 &
286 or MAT

295

Engineering and Computer Science: 4
credits awarded for MAT 295 only
pending results of the math
placement examination.

BC 4–5 8 MAT 295 &
MAT 296

Engineering and Computer Science:
Up to 8 credits awarded for MAT 295
and 296 pending results of the math
placement examination.

Tabor College (KS) AB 4–5 8 MA 106 &
MA 111

A score of 3 is subject to faculty
review.

BC 4–5 8 MA 111 &
MA 112

A score of 3 is subject to faculty
review.

Taylor University (IN) AB 3 3 MAT 140

AB 4 4 MAT 151

AB 5 8 MAT 151 &
MAT 230

BC 2 3 MAT 140

BC 3 4 MAT 151

BC 4–5 8 MAT 151 &
MAT 230

Tennessee Technological
University (TN)

AB 3 3 MATH 1830

AB 4 4 MATH 1910

AB 5 4 MATH 1910
(section 800)

BC 3 4 MATH 1910
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Tennessee Technological
University—continued

BC 4 8 MATH 1910
& MATH

1920

BC 5 8 MATH 1910
& MATH

1920
(section 800)

Texas A&M University (TX) AB 4–5 4 MATH 151 Credit in MATH 151 may be
substituted for MATH 131, 142, or
171. Credit in MATH 152 may be
substituted for credit in MATH 172.

BC 3 4 MATH 151 Credit in MATH 151 may be
substituted for MATH 131, 142, or
171. Credit in MATH 152 may be
substituted for credit in MATH 172.

BC 4–5 8 MATH 151
& MATH

152

Texas Christian University (TX) AB 3–5 4 10524

BC 3–4 4 10524

BC 5 8 10524,
20524

Texas Tech University (TX) AB 4–5 3 MATH 1351

BC 4–5 6 MATH 1351
& MATH

1352

Transylvania University (KY) AB/BC 4–5

Trinity College (CT) AB 4–5 MATH 131

BC 4–5 MATH 131
& MATH

132

Trinity University (TX) AB 4–5 3 MATH 1311

BC 4–5 3–6 MATH 1311
& MATH

1312

Truman State University (MO) AB 3 4 MATH 192

AB 4–5 5 MATH 198

BC 3–5 10 MATH 198
& MATH

263

Tufts University (MA) AB 4–5 One acceleration credit, equivalent to
Mathematics 11, and placement into
Mathematics 12.

BC 3 w/AB 4–5 One acceleration credit, equivalent to
Mathematics 11, and placement into
Mathematics 12.
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Tufts University—continued BC 4 One acceleration credit, equivalent to
Mathematics 11, and placement into
Mathematics 12.

BC 5 MATH 11 &
MATH 12

Placement into MATH 13 or MATH
46

Tulane University (LA) AB 4–5 4 MATH 121

BC 3 4 MATH 121

BC 4–5 8 MATH 121
& MATH

122

Union College (NE) AB/BC 3–5

Union College (NY) AB/BC 3–5

Union University (TN) AB 3–5 4 MAT 211

BC 3–5 8 MAT 211 &
MAT 212

The University of Alabama in
Huntsville (AL)

AB 4–5 4 MA 171

BC 3 4 MA 171

BC 4–5 8 MA 171 &
MA 172

The University of Arizona (AZ) AB 3–5 3 MATH 125

BC 3 3 MATH 125

BC 4–5 6 MATH 125
& MATH

129

University of Arkansas (AR) AB 3–4 MATH 2554

AB 5 MATH
2554H

BC 3–4 MATH 2554
& MATH

2564

BC 5 MATH
2554H &
MATH
2564H

University of California,
Berkeley (CA)

AB/BC 3–5

University of California,
Davis (CA)

AB 3 4 Maximum credit allowed: 8 units for
all Mathematics exams

AB 4–5 4 Mathematics
12, 16A, 17A

or 21A

Maximum credit allowed: 8 units for
all Mathematics exams

BC 3–4 8 Mathematics
12, 16A, 17A

or 21A

Maximum credit allowed: 8 units for
all Mathematics exams
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University of California,
Davis—continued

BC 5 8 Mathematics
12, 16A-16B,
17A-17B or

21A-21B

Maximum credit allowed: 8 units for
all Mathematics exams

University of California,
Irvine (CA)

AB 3 4 Elective
credit only

AB 4–5 4 MATH 2A

BC 3 8 MATH 2A Students who take the Calculus BC
examination and earn a subscore of 3
or higher on the Calculus AB portion
will receive credit for the Calculus AB
examination, even if they do not
receive a score of 3 or higher on the
BC examination.

BC 4–5 8 MATH 2A &
MATH 2B

Students who take the Calculus BC
examination and earn a subscore of 3
or higher on the Calculus AB portion
will receive credit for the Calculus AB
examination, even if they do not
receive a score of 3 or higher on the
BC examination.

University of California, Los
Angeles (CA)

AB/BC 3–5

University of California,
Riverside (CA)

AB 3–5 4 MATH 009A Additional subject coverage may be
granted after individual counseling.

BC 3–5 8 MATH 009A
& MATH

009B

Additional subject coverage may be
granted after individual counseling.

University of California, Santa
Barbara (CA)

AB 3–5 4 Mathematics
3A, 15, 34A,

or
equivalent

BC 3–5 8 Mathematics
3A, 3B, 15,

34A, 34B, or
equivalent

University of California, Santa
Cruz (CA)

AB 3–5 4 A maximum of one IN will be granted
from mathematics and statistics.

BC 3–5 8 Either AP exam satisfies one “IN” and
“Q”. Maximum of 8 credits granted for
both AP exams. A maximum of one IN
will be granted from mathematics and
statistics.

University of Central
Arkansas (AR)

AB 3–5 MATH 1591

BC 3–5 MATH 1591
& MATH

2561

University of Central
Florida (FL)

AB 3–5 MAC 2311
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University of Central Florida—
continued

BC 3 MAC 2311

BC 4–5 MAC 2311
& MAC

2312

University of Chicago (IL) AB 5 MATH
15100

A student who wishes to receive
credit for MATH 15300 or to register
either for MATH 16100-16200-16300
or for PHYS 14100-14200-14300, or
both, is required to take the calculus
placement test during Orientation.

BC 4 MATH
15100

A student who wishes to receive
credit for MATH 15300 or to register
either for MATH 16100-16200-16300
or for PHYS 14100-14200-14300, or
both, is required to take the calculus
placement test during Orientation.

BC 5 MATH
15100 &
MATH
15200

A student who wishes to receive
credit for MATH 15300 or to register
either for MATH 16100-16200-16300
or for PHYS 14100-14200-14300, or
both, is required to take the calculus
placement test during Orientation.

University of Colorado at
Boulder (CO)

AB 4–5 9 MATH 1300
or APPM

1350

BC 1–2 w/AB
4–5

9 MATH 1300
or APPM

1350

BC 3 w/AB 3–5 9 MATH 1300
or APPM

1350

BC 4–5 18 MATH 1300
& MATH
2300 or

APPM 1350
& APPM

1360

University of Connecticut (CT) AB 4–5 4 MATH 115Q

BC 3 4 MATH 115Q

BC 4–5 8 MATH 115Q
& MATH

116Q

University of Dallas (TX) AB 3–5 4 MAT 1404 Three credits of approved math must
be taken at the University.

BC 3–5 8 MAT 1404 &
MAT 1411

Three credits of approved math must
be taken at the University.

University of Dayton (OH) AB 4–5 4 If a student receives a score of 3 and
passes the Department of
Mathematics test, 4 credit hours will
be given. Students with a score of 5
may be eligible for additional credit.
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University of Dayton—continued BC 4 4

BC 5 8

University of Delaware (DE) AB 3–5 4 MATH 241

BC 3 4 MATH 241

BC 4–5 8 MATH 241
& MATH

242

University of Denver (CO) AB 4 4 MATC 4

AB 5 8 MATC 4/ 4
elective

BC 3 4 MATC 4

BC 4 8 MATC 4/ 4
elective

BC 5 12 MATC 4/ 8
elective

University of Evansville (IN) AB/BC 4–5

University of Florida (FL) AB 3–5 4 MAC 2311 Mathematics Requirement.

BC 3 4 MAC 2311 Mathematics Requirement.

BC 4–5 8 MAC 2311
& MAC

2312

Mathematics Requirement.

University of Georgia (GA) AB 3 0 MATH 1113 Students who score a 3 on the AB test
should be placed into MATH 2200 and
urged to take the MAT 1113 Auxiliary
test.

AB 4–5 3 MATH 2200

BC 3–4 3 MATH 2200

BC 5 3 MATH 2200
& MATH

2210

University of Illinois at
Chicago (IL)

AB 1–2 Students in this category are invited
to take a proficiency examination in
Mathematics 180. Passing this
examination gives 5 semester hours of
credit in Mathematics 180 and
advanced placement in Mathematics
181.

AB 3–5 5 MATH 180 Advanced Placement in Mathematics
181.

BC 1 Students in this category are invited
to take a proficiency examination in
Mathematics 180. Passing this
examination gives 5 semester hours of
credit in Mathematics 180 and
advanced placement in Mathematics
181.
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University of Illinois at
Chicago—continued

BC 2 5 MATH 180 Advanced Placement in Mathematics
181.

BC 3–5 10 MATH 180
& MATH

181

Advanced Placement in any course for
which Mathematics 181 is a
prerequisite.

University of Illinois at
Urbana–Champaign (IL)

AB 4–5 5 MATH 220

BC 3 w/AB 4–5 5 MATH 220

BC 4–5 8 MATH 220
& MATH

231

The University of Iowa (IA) AB 4–5 4 22M:017,
22M:021,
22M:025,
22M:031

BC 3–5 8 22M:017,
22M:021–
022, 22M:
025–026,
22M:031–

032

University of Kansas (KS) AB/BC 3–5 5 MATH 121

University of Kentucky (KY) AB 3–5 4 MA 113

BC 3–5 8 MA 113 &
MA 114

4 credit hours each for MA 113, 114
with a grade of CR.

University of Maryland,
Baltimore County (MD)

AB 3 4 MATH 150 If the Math Department approves
placement in MATH 152, credit for
MATH 151 will be assigned upon
successful completion of MATH 152.

AB 4–5 4 MATH 151

BC 3 4 MATH 151

BC 4–5 8 MATH 151
& MATH

152

University of Maryland, College
Park (MD)

AB 4–5 4 MATH 140 MATH 141 may be completed through
credit-by-exam. MATH 140 fulfills
both CORE-Fundamental Studies
Math requirement and CORE-Math &
Formal Reasoning non-lab
requirement.

BC 4–5 8 MATH 140
& MATH

141

Students who receive credit for
MATH 140 or 140 & 141 may not
receive credit for MATH 220 or 220 &
221.

University of Mary
Washington (VA)

AB 3–5 3 MATH 0121

BC 3–5 6 MATH 0121
& MATH

0122

University of Miami (FL) AB 5 4 MTH 131
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University of Miami—continued BC 4 4 MTH 131

BC 5 8 MTH 131 &
MTH 132

University of Michigan (MI) AB 4–5 2 MATH 120 No credit for either Math 120 or Math
121 if Math 105 or 115 is elected. 2
additional credits for Math 120
granted after successful completion of
this course with grade of C or better.

BC 4–5 4 MATH 120
& MATH

121

No credit for either Math 120 or Math
121 if Math 105 or 115 is elected. 2
additional credits for each of Math
120 and Math 121 granted upon
successful completion of this course
with grade of C or better.

University of
Michigan–Dearborn (MI)

AB 3–5 MATH 115

BC 3 MATH 115

BC 4–5 MATH 115
& MATH

116

University of Minnesota,
Morris (MN)

AB 3–4 5 MATH 1021

AB 5 5 MATH 1101

BC 3 5 MATH 1101

BC 4–5 10 MATH 1101
& MATH

1102

University of Minnesota, Twin
Cities Campus (MN)

AB 3–5 4 MATH 1271 Fulfills mathematical thinking
requirement.

BC 1–2 w/AB
3–5

4 MATH 1271 Fulfills mathematical thinking
requirement.

BC 3 4 MATH 1271 Fulfills mathematical thinking
requirement.

BC 4–5 8 MATH 1271
& MATH

1272

Fulfills mathematical thinking
requirement.

University of
Missouri–Columbia (MO)

AB 3–5 8 MATH 110
& MATH

1500

Math 1100 (College Algebra) credit
will be added to a student’s transcript
at the end of the first term of
enrollment.

BC 3–5 13 MATH 110,
1500 & 1700

Math 1100 (College Algebra) credit
will be added to a student’s transcript
at the end of the first term of
enrollment.

University of Missouri–Kansas
City (MO)

AB 3–5 4 MATH 210
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University of Missouri–Kansas
City—continued

BC 3–5 8 MATH 210
& MATH

220

University of
Missouri–Rolla (MO)

AB 4–5 5 Math/Stat 8

BC 3 5 Math/Stat 8

BC 4–5 10 Math/Stat 8
& 21

University of Nebraska–
Lincoln (NE)

AB 3–5 5 MATH 106

BC 3–5 10 MATH 106
& MATH

107

The University of North
Carolina at Asheville (NC)

AB 3–5 4 MATH 191

BC 3 4 MATH 191

BC 4–5 8 MATH 191
& MATH

192

The University of North
Carolina at Chapel Hill (NC)

AB 3–5 3 MATH 110P
& MATH

231

AB 3–5 6 MATH 110P
& MATH

231 &
MATH 232

The University of North
Carolina Wilmington (NC)

AB 3–5 4 MAT 161

BC 3–5 8 MAT 161 &
MAT 162

University of North Florida (FL) AB 3–5 4 MAC 2311

BC 3 4 MAC 2311

BC 4–5 8 MAC 2311
& MAC

2312

University of Notre Dame (IN) AB 4–5 4 MATH
10550

AB/BC 3 3 MATH
10250

BC 4–5 8 MATH
10550 &
MATH
10560

University of Oklahoma (OK) AB 3–5 MATH 1823

BC 3 MATH 1823

BC 4–5 MATH 1823
& MATH

2423

University of Pennsylvania (PA) AB 0 0 no credit
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University of Pennsylvania—
continued

BC 5 MATH 104 An internal departmental
examination is also available for
credit.

University of Pittsburgh (PA) AB 3–5 4 MATH 0220

BC 3–5 8 MATH 0220
& MATH

0230

University of Puget Sound (WA) AB 3–5 MATH 121 Credit is not allowed for both AB and
BC exams.

BC 3–5 MATH 121
& MATH

122

Credit is not allowed for both AB and
BC exams.

University of Redlands (CA) AB/BC 3–5

University of Rhode Island (RI) AB 3–5 7 MATH 111
& MATH

141

Students scoring a 3 on these AP
tests should consult a URI academic
advisor for appropriate class
placement.

BC 3–5 8 MATH 141
& MATH

142

Students scoring a 3 on these AP
tests should consult a URI academic
advisor for appropriate class
placement.

University of Richmond (VA) AB 4–5 3 MATH 211

BC 4–5 6 MATH 211
& MATH

212

University of Rochester (NY) AB 2–3 Placement in MTH 161, 161Q or 162
determined by department. If placed
in MTH 162 and earns “C-” or better,
credit given for MTH 161.

AB 4–5 MTH 161 Placement in MTH 162 or 171Q.

BC 2 Placement in MTH 161, 161Q or 162
determined by department. If placed
in MTH 162 and earns “C-” or better,
credit granted for MTH 161.

BC 3 MTH 161 Placement in MTH 162 or 171Q.

BC 4–5 MTH 161 &
MTH 162

Placement in MTH 163, 164, 165, or
173Q by department. Student may
choose to register for MTH 171Q and
receive credit for MTH 161 but not
162.

University of St. Thomas (MN) AB 3–5 MATH 113

BC 3–5 MATH 113
& MATH

114

BC 3–5 w/AB
3–5

MATH 113

University of St. Thomas (TX) AB 4–5 MATH 1431
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University of St. Thomas—
continued

BC 4–5 MATH 1431
& MATH

1432

The Mathematics Department offers a
collection of placement exams for
entry-level students. An applicant
with a score of 4 or 5 on an AB
portion of the Advanced Placement
exam in Mathematics will earn four
hours of credit for MATH 1431.

University of San Diego (CA) AB/BC 3–5

The University of Scranton (PA) AB/BC 4–5 3–6

University of South
Carolina (SC)

AB 3–5 MATH 141

BC 3–5 MATH 141
& MATH

142

Students who score a 1 or 2 but
receive a 3 or above on the Calculus
AB subscore will earn credit for
MATH 141.

University of Southern
California (CA)

AB/BC 3–5 4

The University of Tennessee at
Chattanooga (TN)

AB 3–5 4 MATH 151
& MATH

152

BC 3–5 8 MATH 151,
152, 161, &

162

The University of Texas at
Austin (TX)

AB 3 M 408C, B

AB 4–5 M 408C, A

BC 3 M 408C, B
or M 408K,

408L, B

BC 4 M 408C, A
or M 408K,
A; M 408L,

B

BC 5 M 408C, A
or M 408K,

408L, A

The University of Texas at
Dallas (TX)

AB 3 MATH 2312

AB 4–5 MATH 2312
& MATH

1325

BC 3 MATH 2312
& MATH

1325

BC 4 MATH 2312
1 2417 or

MATH 2312
1 1325
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The University of Texas at
Dallas—continued

BC 5 MATH 2312
1 2417 or

MATH 1325
1 1326[]

University of the Pacific (CA) AB 4–5 6 MATH 51

BC 4–5 3 MATH 53

University of the Sciences in
Philadelphia (PA)

AB/BC 3–5

University of Tulsa (OK) AB 3–5 4 MATH 2014

BC 3–5 8 MATH 2014
& MATH

2024

University of Utah (UT) AB 3–5 8 QA/QB
Requirement

Placement by Department. A score of
2 in the Calculus AB or Calculus BC
will waive the QA Requirement but
no credit hours will be awarded.

BC 3–5 8 QA/QB
Requirement

A score of 2 in the Calculus AB or
Calculus BC will waive the QA
Requirement but no credit hours will
be awarded. Placement by
Department.

University of Virginia (VA) AB 4–5 4 MATH 131

BC 4–5 8 MATH 131
& MATH

132

University of Washington (WA) AB 2 Placement only into MATH 124.
Placement into first quarter of
calculus.

AB 3–4 5 MATH 124 First quarter of calculus.

AB 5 10 MATH 124
& MATH

125

BC 2 w/AB 3–5 5 MATH 124 First quarter of calculus. Counts
toward Natural World general
education requirement for graduation.
Also satisfies Quantitative and
Symbolic Reasoning graduation
requirement.

BC 3 5 MATH 124 First quarter of calculus. Counts
toward Natural World general
education requirement for graduation.
Also satisfies Quantitative and
Symbolic Reasoning graduation
requirement.

BC 4–5 10 MATH 124
& MATH

125

First two quarters of calculus. Counts
toward Natural World general
education requirement for graduation.
Also satisfies Quantitative and
Symbolic Reasoning graduation
requirement.
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University of Wisconsin–La
Crosse (WI)

AB/BC 3–5 5 MATH 207

University of Wisconsin–
Madison (WI)

AB 3 3 Mathematics
Electives

Exempt from Quantitative Reasoning
Part A.

AB 4–5 5 MATH 221

BC 2 5 MATH 221

BC 3–5 10 MATH 221
& MATH

222

University of Wisconsin–River
Falls (WI)

AB 3–5 4 MATH 166

BC 3 4 MATH 166

BC 4–5 8 MATH 166
& MATH

167

Ursinus College (PA) AB/BC 4–5

Valparaiso University (IN) AB 4 4 MATH 131

AB 5 8 MATH 131
& MATH

132

BC 3 4 MATH 131

BC 4–5 8 MATH 131
& MATH

132

Vanderbilt University (TN) AB 4–5 6 MATH 150a
& MATH

150b

BC 3 w/AB 4–5 6 MATH 150a
& MATH

150b

BC 4–5 8 MATH 155a
& MATH

155b

Vassar College (NY) AB/BC 4–5

Villanova University (PA) AB/BC 4–5

Virginia Military Institute (VA) AB 3–5 3 MA 115

BC 3–5 6 MA 115 &
MA 116

Virginia Polytechnic Institute
and State University (VA)

AB 3–5 3 MATH 1205

BC 3 3 MATH 1205

BC 4–5 6 MATH 1205
& MATH

1206
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Wabash College (IN) AB 4–5 The exception being for English
Composition, Mathematics, and
Modern and Ancient languages, where
the department may grant or deny
Advanced Placement credit based on
proficiency exam performance and
may waive the additional course
requirement.

BC 4–5

Wagner College (NY) AB/BC 4–5

Wake Forest University (NC) AB 4–5 4 MTH 555

BC 3 4 MTH 555

BC 4–5 4 MTH 111

Wartburg College (IA) AB/BC 3 MA 201

AB/BC 4–5 MA 201 &
MA 202

Washington & Jefferson
College (PA)

AB/BC 4–5

Washington and Lee
University (VA)

AB 5 3 MATH 101

BC 5 6 MATH 101
& MATH

102

Washington College (MD) AB 3–5 4 MAT 201

BC 3–5 8 MAT 201 &
MAT 202

Washington University in St.
Louis (MO)

AB 4 Take Math Placement test. You will
probably be placed into Math 132.

AB 5 3 MATH 131 You will be placed in MATH 132.

BC 4 Take Math Placement test. You will
probably be placed into Math 233.

BC 5 6 MATH 131
& MATH

132

You will be placed into Math 233. An
AB Subscore of 5 will earn 3 units of
credit for Math 131.

Wellesley College (MA) AB 4–5 MATH 115

BC 3 MATH 115

BC 4–5 MATH 115
& 116 or

MATH 115
& 120

Wells College (NY) AB/BC 4–5

Wesleyan College (GA) AB/BC 4–5

Wesleyan University (CT) AB 4–5 Wesleyan courses required for credit:
Student must complete any 200-level
mathematics course with a grade of
C- or better.
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School Name Test
Required

Score C
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s
G
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te
d

Course
Waived Stipulations

Wesleyan University—continued BC 3 Wesleyan courses required for credit:
The student passes Math 122 or a
200-level Mathematics course with a
grade of C- or better.

BC 4–5 Wesleyan courses required for credit:
Student must complete any 200-level
mathematics course with a grade of
C- or better.

Western Washington
University (WA)

AB/BC 3–5 9 MATH 240
&

Quantitative
& Symbolic
Reasoning

Student may receive credit for either
AB or BC, but not both unless
recommended by Mathematics
Department after placement.

Westminster College (UT) AB 3 8 MATH 141
& MATH

100T

AB 4–5 8 MATH 141
& MATH

201

BC 3 8 MATH 141
& MATH

201

BC 4–5 8 MATH 201
& MATH

202

Westmont College (CA) AB/BC 4–5

Wheaton College (MA) AB/BC 4–5

Whitman College (WA) AB 4–5 3 MATH 125

BC 4–5 6 MATH 125
& MATH

126

Whitworth College (WA) AB 3–4 4 MA 110

AB 5 8 MA 110 &
MA 111

BC 3–5 8 MA 110 &
MA 111

Willamette University (OR) AB 4–5 MATH 141 Credit for these courses may be
applied toward the Quantitative and
Analytical Reasoning requirement.

BC 4 MATH 141 Credit for these courses may be
applied toward the Quantitative and
Analytical Reasoning requirement.

BC 5 MATH 141
& MATH

142

Credit for these courses may be
applied toward the Quantitative and
Analytical Reasoning requirement.

William Jewell College (MO) AB 4–5 4 GEN 104

BC 4–5 8 GEN 104 &
MAT 200
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Course
Waived Stipulations

Williams College (MA) AB 2–3 MATH 104
& STAT 101

If a score of 4 or 5 is earned on the
Calculus–AB test, the student is
eligible to reduce the requirements in
the Math major by one course. If
course credit is blank, there is no
reduction in the number of courses
required for that major.

AB 4–5 MATH 104,
105, 251, &
STAT 201

BC 1–2 MATH 104
& STAT 101

If a score of 4 or 5 is earned on the
Calculus–AB test, the student is
eligible to reduce the requirements in
the Math major by one course. If
course credit is blank, there is no
reduction in the number of courses
required for that major.

BC 3–5 MATH 104,
106, 251 &
STAT 201

Winona State University (MN) AB/BC 3–5

Wittenberg University (OH) AB/BC 4–5

Wofford College (SC) AB 4–5 3 MATH 181

BC 3 3 MATH 181

BC 4–5 6 MATH 181
& MATH

182

Worcester Polytechnic
Institute (MA)

AB 4–5 MA 1021 &
MA 1022

BC 4–5 MA 1021,
1022, &

1023

Xavier University (OH) AB 3–5 4 MATH 170

BC 3 4 MATH 170

BC 4–5 8 MATH 170
& MATH

171
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  1. What is the ISBN of the book you have purchased? (The ISBN can be found on the book’s back
cover in the lower right-hand corner. ) ______________________

  2. Where did you purchase this book?
❑ Retailer, such as Barnes & Noble
❑ Online reseller, such as Amazon.com
❑ Petersons.com
❑ Other (please specify) _____________________________

  3. If you purchased this book on Petersons.com, please rate the following aspects of your online
purchasing experience on a scale of 4 to 1
(4 = Excellent and 1 = Poor).

4 3 2 1

Comprehensiveness of Peterson’s
Online Bookstore page ❑ ❑ ❑ ❑

Overall online customer
experience ❑ ❑ ❑ ❑

  4. Which category best describes you?
❑ High school student
❑ Parent of high school student
❑ College student
❑ Graduate/professional student
❑ Returning adult student

Peterson’s
Book Satisfaction Survey

Give Us Your Feedback

Thank you for choosing Peterson’s as your source for personalized solutions for your education and career

achievement. Please take a few minutes to answer the following questions. Your answers will go a long way in

helping us to produce the most user-friendly and comprehensive resources to meet your individual needs.

When completed, please tear out this page and mail it to us at:

Publishing Department

2000 Lenox Drive

Lawrenceville, NJ 08648

You can also complete this survey online at www.petersons.com/booksurvey.

❑ Teacher
❑ Counselor
❑ Working professional/military
❑ Other (please

specify) _______________________

  5. Rate your overall satisfaction with this book.

Extremely Satisfied Satisfied Not Satisfied

❑ ❑ ❑

Peterson’s, a Nelnet company



  6. Rate each of the following aspects of this book on a scale of 4 to 1 (4 = Excellent and 1 = Poor).

4 3 2 1

Comprehensiveness of the
information ❑ ❑ ❑ ❑

Accuracy of the information ❑ ❑ ❑ ❑

Usability ❑ ❑ ❑ ❑

Cover design ❑ ❑ ❑ ❑

Book layout ❑ ❑ ❑ ❑

Special features (e.g., CD,
flashcards, charts, etc.) ❑ ❑ ❑ ❑

Value for the money ❑ ❑ ❑ ❑

  7. This book was recommended by:
❑ Guidance counselor
❑ Parent/guardian
❑ Family member/relative
❑ Friend
❑ Teacher
❑ Not recommended by anyone—I found the book on my own
❑ Other (please specify) _____________________________

  8. Would you recommend this book to others?

Yes Not Sure No

❑ ❑ ❑

  9. Please provide any additional comments.

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

Remember, you can tear out this page and mail it to us at:

Publishing Department

2000 Lenox Drive

Lawrenceville, NJ 08648

or you can complete the survey online at www.petersons.com/booksurvey.

Your feedback is important to us at Peterson’s, and we thank you for your time!

If you would like us to keep in touch with you about new products and services, please include your

e-mail here: ___________________________________________

Peterson’s, a Nelnet company
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