Interpreting the Graph of $f^{\prime}(x)$

1989 (No Calculator)

5) The figure above shows the graph of f^{\prime} the derivative of a function f. The domain of f is the set of all real numbers x such that $-10 \leq x \leq 10$.
a) For what values of x does the graph of f have a horizontal tangent?
b) For what values of x in the interval $(-10,10)$ does f have a relative maximum?
c) For what values of x is the graph of f concave downward?

1996 (No Calculator) Note: This is the graph of the derivative of f, not the graph of f.

1) The figure above shows the graph of f^{\prime}, the derivative of a function f. The domain of f is the set of all real numbers x such that $-3<x<5$.
a) For what values of x does f have a relative maximum? Why?
b) For what values of x does f have a relative minimum? Why?
c) On what intervals is the graph of f concave upward? Use f^{\prime} to justify your answer.
d) Suppose that $f(1)=0$. In the $x y$-plane provided to the right, draw a sketch that shows the general shape of the graph of the function f on the open interval $0<x<2$.

2000 (Calculator)

3) The figure above shows the graph of f^{\prime}, the derivative of the function f, for $-7 \leq x \leq 7$.

The graph of f^{\prime} has horizontal tangent lines at $x=-3, x=2, x=5$ and a vertical tangent line at $x=3$.
a) Find all values of x for $-7<x<7$, at which f attains a relative minimum. Justify your answer.
b) Find all values of x for $-7<x<7$, at which f attains a relative maximum. Justify your answer.
c) Find all values of x for $-7<x<7$, at which $f^{\prime \prime}(x)<0$.
d) At what value of x, for $-7 \leq x \leq 7$ does f attain its absolute maximum? Justify your answer.

2004 (Form B) (No Calculator)

4) The figure above shows the graph of f^{\prime}, the derivative of the function f, on the closed interval $-1 \leq x \leq 5$. The graph of f^{\prime} has horizontal tangent lines at $x=1$ and $x=3$. The function f is twice differentiable with $f(2)=6$.
a) Find the x-coordinate of each of the points of inflection of the graph of f. Give a reason for your answer.
b) At what value of x does f attain its absolute minimum value on the closed interval $-1 \leq x \leq 5$? At what value of x does f attain its absolute maximum value on the closed interval $-1 \leq x \leq 5$? Show the analysis that leads to your answers.
c) Let g be the function defined by $g(x)=x \cdot f(x)$. Find the equation for the line tangent to the graph of g at $x=2$.
