\qquad

$\underline{2002}$
(No Calculator)
4) The graph of the function f shown above consists of two line segments. Let g be the function given by $g(x)=\int_{0}^{x} f(t) d t$.
a) Find $g(-1), g^{\prime}(-1)$, and $g^{\prime \prime}(-1)$.
b) For what values of x in the open interval $(-2,2)$ is g increasing? Explain your reasoning.
c) For what values of x in the open interval $(-2,2)$ is the graph of g concave down? Explain your reasoning.
d) On the axes provided, sketch the graph of g on the closed interval $[-2,2]$.

2004 (No Calculator)

5) The graph of the function f shown above consists of a semicircle and three line segments. Let g be the function given by $g(x)=\int_{-3}^{x} f(t) d t$.
a) Find $g(0)$ and $g^{\prime}(0)$.
b) Find all values of x in the open interval $(-5,4)$ at which g attains a relative maximum. Justify your answer.
c) Find the absolute minimum value of g on the closed interval $[-5,4]$. Justify your answer.
d) Find all values of x in the open interval $(-5,4)$ at which the graph of g has a point of inflection.

Let f be a function defined on the closed interval $-5 \leq x \leq 5$ with $f(1)=3$. The graph of f^{\prime}, the derivative of f, consists of two semicircles and two line segments, as shown above.
(a) For $-5<x<5$, find all values x at which f has a relative maximum. Justify your answer.
(b) For $-5<x<5$, find all values x at which the graph of f has a point of inflection. Justify your answer.
(c) Find all intervals on which the graph of f is concave up and also has positive slope. Explain your reasoning.
(d) Find the absolute minimum value of $f(x)$ over the closed interval $-5 \leq x \leq 5$. Explain your reasoning.

