

## 1995 (Calculator)

6) The graph of a differentiable function $f$ on the closed interval $[1,7]$ is shown above.

Let $h(x)=\int_{1}^{x} f(t) d t$ for $1 \leq x \leq 7$
a) Find $h(1)$.
b) Find $h^{\prime}(4)$.
c) On what interval or intervals is the graph of $h$ concave upward? Justify your answer
d) Find the value of $x$ at which $h$ has its minimum on the closed interval [1,7]. Justify your answer.


## 1997 AB-5,BC-5

5) The graph of a function $f$ consists of a semicircle and two line segments as shown above. Let $g$ be the function given by $g(x)=\int_{0}^{x} f(t) d t$.
a) Find $g(3)$.
b) Find all values of $x$ on the open interval $(-2,5)$ at which $g$ has a relative maximum. Justify your answer.
c) Write an equation for the line tangent to the graph of $g$ at $x=3$.
d) Find the $x$-coordinate of each point of inflection of the graph of $g$ on the open interval $(-2,5)$. Justify your answer.

6) The graph of the function $f$, consisting of three line segments, is given above. Let $g(x)=\int_{1}^{x} f(t) d t$.
a) Compute $g(4)$ and $g(-2)$.
b) Find the instantaneous rate of change of $g$, with respect to $x$, at $x=1$.
c) Find the absolute minimum value of $g$ on the closed interval $[-2,4]$. Justify your answer.
d) The second derivative of $g$ is not defined at $x=1$ and $x=2$. How many of these values are $x$-coordinates of points of inflection of the graph of $g$ ? Justify your answer.


## 2003 (No Calculator)

4) Let $f$ be a function defined on the closed interval $-3 \leq x \leq 4$ with $f(0)=3$. The graph of $f^{\prime}$, the derivative of $f$, consists of one line segment and a semicircle, as shown above.
a) On what intervals, if any, is $f$ increasing? Justify your answer.
b) Find the $x$-coordinate of each point of inflection of the graph of $f$ on the open interval $-3<x<4$. Justify your answer.
c) Find an equation for the line tangent to the graph of $f$ at the point $(0,3)$.
d) Find $f(-3)$ and $f(4)$. Show the work that leads to your answers.


## 2006 (Calculator)

3) The graph of the function $f$ shown above consists of six line segments. Let $g$ be the function given by $g(x)=\int_{0}^{x} f(t) d t$.
a) Find $g(4), g^{\prime}(4)$ and $g^{\prime \prime}(4)$.
b) Does $g$ have a relative minimum, a relative maximum, or neither at $x=1$ ? Justify your answer.
c) Suppose that $f$ is defined for all real numbers $x$ and is periodic with a period of length 5 . The graph above shows two periods of $f$. Given that $g(5)=2$, find $g(10)$ and write an equation for the line tangent to the graph of $g$ at $x=108$.

## 2010 (No Calculator)

## Question 5



Graph of $g^{\prime}$
The function $g$ is defined and differentiable on the closed interval $[-7,5]$ and satisfies $g(0)=5$. The graph of $y=g^{\prime}(x)$, the derivative of $g$, consists of a semicircle and three line segments, as shown in the figure above.
(a) Find $g(3)$ and $g(-2)$.
(b) Find the $x$-coordinate of each point of inflection of the graph of $y=g(x)$ on the interval $-7<x<5$. Explain your reasoning.
(c) The function $h$ is defined by $h(x)=g(x)-\frac{1}{2} x^{2}$. Find the $x$-coordinate of each critical point of $h$, where $-7<x<5$, and classify each critical point as the location of a relative minimum, relative maximum, or neither a minimum nor a maximum. Explain your reasoning.

