\qquad

1) Given $\frac{d y}{d x}=3(8-y)$ with initial condition $(0,6)$.
a) Find the particular solution of the differential equation.
b) Use Euler's method with step size $h=0.5$ to approximate $y(1)$.
c) Use tangent line at $(0,6)$ to approximate $f(1)$.
d) Find $y(1)$.
2) A population of elk is represented by the logistic differential equation $\frac{d P}{d t}=\frac{P}{20}-\frac{P^{2}}{10000}$
a) Find the value of k and the carrying capacity.

$$
k=\ldots
$$

b) The initial population is $P(0)=100 \mathrm{elk}$.

$$
P(t)=
$$

Find a formula for the population in terms of t.
c) What is the elk population when the growth rate is at its maximum?

$$
P=
$$

d) How long will it take for the elk population to reach the amount in part c ?
$t=$ \qquad
e) How long will it take for the elk population to reach 700?
$t=$ \qquad
$f)$ What is the elk population after 75 years?

$$
P=
$$

3) A sadistic organization releases 300 foxes into a preserve. After 3 years, there are 250 foxes in the preserve. The preserve has a carrying capacity of 200.
a) Write a logistic equation that models the population.
b) What is the $\lim _{t \rightarrow \infty} P(t)$?
c) What is the population after 10 years?
d) What is the population after 25 years?
