\qquad

1) Given the differential equation $\frac{d y}{d x}=\frac{x y}{3}$.
a) Sketch a slope field for the given differential equation at the twelve points indicated.

b) Given $f(0)=1$, use Euler's Method to approximate the particular solution of this differential equation at $x=1$. Use a step size of $h=0.5$.
c) Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(0)=1$.
d) Use the particular solution found in part c to find $f(1)$.
2) Consider the separable differential equation $\frac{d y}{d x}=(x-2)(8-y)$ with $f(3)=2$.

Use Euler's Method, starting at $t=3$ with two steps of equal size, to approximate $f(4)$.
3) A radioactive element has a half-life of 100 years. How long will it take for the element to lose 22% ?
4) Population of Fontana in 1980 was 100,000 and in 2008 the population was 190,000 .
a) What is the growth rate?
b) What is the approximate population in 2020 at this rate of growth?
5) Find the particular solution of the differential equation $\frac{d y}{d x}=\frac{2 x}{y}$ with initial condition $(4,-3)$.
6) A population of elk is represented by the logistic differential equation $\frac{d P}{d t}=\frac{P}{30}-\frac{P^{2}}{18000}$
a) Find the value of k and the carrying capacity. \qquad
b) The initial population is $P(0)=60$ elk.

$$
P(t)=
$$

Find a formula for the population in terms of t.
c) What is the elk population when the growth rate is at its maximum? \qquad
$P=$
d) How long will it take for the elk population to reach 500 ?
$t=$ \qquad
$e)$ What is the elk population after 12 years?
$P=$ \qquad

MC: 7) A conservation organization releases 20 wolves into a preserve. After 2 years, there are 35 wolves in the preserve. The preserve has a carrying capacity of 125 . Determine the population after 4 years.
a) 60
b) 55
c) 105
d) 47
e) 68

8a) Given $\frac{d y}{d x}=\frac{-x}{y}$
Sketch the solution curve through the point $(0,-2)$.

b) Given $\frac{d y}{d x}=x-y$

Sketch the solution curve through the point $(1,0)$.
c) Given $\frac{d y}{d x}=\frac{1}{2} x+1$

Sketch the solution curve through the point $(-3,1)$.

