\qquad

1) A radioactive element loses 42% of its mass in 70 years.
a) What is its half-life?
b) How long will it take the element to lose 90% of its mass?
2) Population of West Covina in 1960 was 30,000 and in 2000 the population was 320,000 .
a) What is the growth rate?
b) At this rate of growth, what year will the population reach 500,000 ?
3) Given $\frac{d y}{d x}=2 x(6-y)$ with initial condition $(0,-4)$.
a) Find the particular solution of the differential equation.
b) Use Euler's method with step size
c) Find $y(0.9)$. $h=0.3$ to approximate $y(0.9)$.
4) A population of elk is represented by the logistic differential equation $\frac{d P}{d t}=P\left(\frac{1}{40}-\frac{P}{12000}\right)$
a) Find the value of k and the carrying capacity.

$$
k=\ldots
$$

b) The initial population is $P(0)=50 \mathrm{elk}$.

$$
P(t)=
$$

Find a formula for the population in terms of t.
c) What is the elk population when the growth rate is at its maximum?

$$
P=
$$

d) How long will it take for the elk population to reach 150 ?
$t=$ \qquad
e) What is the elk population after 9 years?

$$
P=
$$

\qquad

MC: 5) A conservation organization releases 50 foxes into a preserve. After 5 years, there are 85 foxes in the preserve. The preserve has a carrying capacity of 225 . Write a logistic equation that models the population.
a) $y=\frac{225}{1+5 e^{-0.300754 t}}$
b) $y=\frac{225}{1+3.5 e^{-0.350754 t}}$
c) $y=\frac{225}{1+3.5 e^{-0.150754 t}}$
d) $y=\frac{225}{1+3.5 e^{-0.950754 t}}$
e) $y=\frac{225}{1+2.5 e^{-0.650754 t}}$

MC: 6) A conservation organization releases 40 coyotes into a preserve. After 4 years, there are 70 coyotes in the preserve. The preserve has a carrying capacity of 175 . Determine the time it takes the population to reach 140 .
a) 12.838 years
b) 15.559 years
c) 11.454 years
d) 10.271 years
e) 14.463 years
7) Given the differential equation $\frac{9}{x} \frac{d y}{d x}=\frac{8}{y}$.
a) Given $f(2)=-2$, use Euler's Method to approximate the particular solution of this differential equation at $x=2.6$. Use a step size of $h=0.2$.
b) Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(2)=-2$.
c) Write the equation of the tangent line at $(2,-2)$
d) Find $f(2.6)$. and use it to approximate $f(2.6)$.

