1) Given the Taylor series $f(x)=12-20(x-9)-\frac{5}{3}(x-9)^{2}+\frac{11}{5}(x-9)^{3}+\ldots . .$.
Find each of the following:
$f^{\prime}(9)=$
$f^{\prime \prime \prime}(9)=$

Determine the center, radius of convergence and interval of convergence of the series
2) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x+4)^{n}}{n 5^{n}}$.
center:
radius:
interval of convergence:

Find a power series for the function, centered at \mathbf{c}, and determine the interval of convergence.
3) $f(x)=\frac{80}{-18-4 x}, \quad c=-7$

Find the 3rd degree Taylor polynomial centered at c for \#4.
4) $f(3)=11$
$f^{\prime}(3)=-20$
$f^{\prime \prime}(3)=\frac{18}{5}$
$f^{\prime \prime \prime}(3)=-4$

5a) Calculate by hand
$\int_{0}^{\pi / 6} \cos x d x=$

6a) Calculate by hand
$f(x)=\sin 2 x$
$f^{\prime}\left(\frac{\pi}{3}\right)=$

7a) Calculate by calculator
$\int_{-1}^{1} e^{-x^{2}} d x=$

5b) Use 6th Degree Taylor series to approximate $\int_{0}^{\pi / 6} \cos x d x=$

6b) Use 5th Degree Taylor series of $\sin x$ to approximate $\frac{d}{d x} \sin 2 x$
$f^{\prime}\left(\frac{\pi}{3}\right)=$

7b) Use 3rd Degree Taylor series of e^{x} to approximate $\int_{-1}^{1} e^{-x^{2}} d x=$

