CALCULUS CH.9 WS (9.7 - 9.10) NAME _____

1) Given the Taylor series $f(x) = 8 - 7(x-4) - 2(x-4)^2 + 5(x-4)^3 + \dots$ Find each of the following: f'(4) = f'''(4) = f''''(4) = f'''''(4) = f''''(4) = f'''''(4) =

Determine the center, radius of convergence and interval of convergence of the series

2) $\sum_{n=0}^{\infty}$	$\frac{!(x+12)^n}{9^n}.$	3)	$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1}}{n}$	$\frac{\left(x-3\right)^n}{n\ 8^n}.$
--------------------------	--------------------------	----	---	--------------------------------------

center:
radius:
interval of convergence:

<u>center:</u> <u>radius:</u> interval of convergence:

Find a power series for the function, centered at c, and determine the interval of convergence.

4)
$$f(x) = \frac{1}{7x - 2}$$
, $c = 0$
5) $f(x) = \frac{5}{-12 - 6x}$, $c = -8$

Find the 3rd degree Taylor polynomial centered at c for #6-7.

6)
$$f(x) = 3^x$$
; $c = 0$
6b) Use your series to approximate $3^{0.3}$

7)
$$f(2) = 9$$
 $f'(2) = -5$ $f''(2) = -4$ $f'''(2) = 10$

Given f(x) and g(x), find each of the following equations.

$$f(x) = \frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 + \dots$$
 $g(x) = \cos x$

$$g(x) = \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^6}{6!} +$$

Write out each new series using the given series.

8)
$$\frac{2x}{1+x^2} =$$

$$8) \quad \frac{2x}{1+x^2} =$$

9)
$$\sin 7x =$$
 9) $\sin 7x =$

10)
$$\cos 3x =$$
 10) $\cos 3x =$

11)
$$\ln(1+x^2)$$
 11) $\ln(1+x^2)$

12) Use Taylor series to approximate
$$\int_{0}^{\pi/6} \cos 3x \, dx =$$