\qquad

1) Given the Taylor series $f(x)=8-7(x-4)-2(x-4)^{2}+5(x-4)^{3}+\ldots \ldots$
Find each of the following:
$f^{\prime}(4)=$
$f^{\prime \prime \prime}(4)=$

Determine the center, radius of convergence and interval of convergence of the series
2) $\sum_{n=0}^{\infty} \frac{n!(x+12)^{n}}{9^{n}}$.
3) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-3)^{n}}{n 8^{n}}$.
center:
radius:
interval of convergence:
center:
radius:
interval of convergence:

Find a power series for the function, centered at \mathbf{c}, and determine the interval of convergence.
4) $f(x)=\frac{1}{7 x-2}, \quad c=0$
5) $f(x)=\frac{5}{-12-6 x}, \quad c=-8$

Find the 3rd degree Taylor polynomial centered at c for \#6-7.
6) $f(x)=3^{x} \quad ; \quad c=0$
6b) Use your series to approximate $3^{0.3}$
7) $f(2)=9 \quad f^{\prime}(2)=-5 \quad f^{\prime \prime}(2)=-4 \quad f^{\prime \prime \prime}(2)=10$

Given $f(x)$ and $g(x)$, find each of the following equations.
$f(x)=\frac{1}{1+x}=1-x+x^{2}-x^{3}+x^{4}+\cdots$.

Write out each new series using the given series.
8) $\frac{2 x}{1+x^{2}}=$
9) $\sin 7 x=$
10) $\cos 3 x=$
11) $\ln \left(1+x^{2}\right)$
11) $\ln \left(1+x^{2}\right)$
12) Use Taylor series to approximate
$\int_{0}^{\pi / 6} \cos 3 x d x=$

