Summary of tests for Series

Test	Series	Converges	Diverges	Comment
nth-Term	$\sum_{n=1}^{\infty} a_n$		$\lim_{n\to\infty} a_n \neq 0$	This test cannot be used to show convergence.
Geometric Series	$\sum_{n=0}^{\infty} ar^n$	r <1	r ≥1	Sum: $S = \frac{a}{1-r}$
Telescoping	$\sum_{n=1}^{\infty} (b_n - b_{n+1})$	$\lim_{n\to\infty}b_n=L$		Sum: $S = b_1 - L$
<i>p</i> -Series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	p > 1	<i>p</i> ≤ 1	
Alternating Series	$\sum_{n=1}^{\infty} \left(-1\right)^{n-1} a_n$	$0 < a_{n+1} \le a_n$ and $\lim_{n \to \infty} a_n = 0$		Remainder: $ R_{N} \le a_{N+1} $
Integral (f is continuous, positive, and decreasing)	$\sum_{n=1}^{\infty} a_n,$ $a_n = f(n) \ge 0$	if $\int_{1}^{\infty} f(x)dx$ converges	if $\int_{1}^{\infty} f(x)dx$ diverges	Remainder: $0 < R_N < \int_{N}^{\infty} f(x) dx$
Root	$\sum_{n=1}^{\infty} a_n$	$\lim_{n\to\infty} \sqrt[n]{ a_n } < 1$	$\lim_{n\to\infty} \sqrt[n]{ a_n } > 1$	Test is inconclusive if $\lim_{n\to\infty} \sqrt[n]{ a_n } = 1.$
Ratio	$\sum_{n=1}^{\infty} a_n$	$\lim_{n\to\infty}\left \frac{a_{n+1}}{a_n}\right <1$	$\lim_{n\to\infty}\left \frac{a_{n+1}}{a_n}\right > 1$	Test is inconclusive if $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = 1.$
Direct comparison $(a_n,b_n>0)$	$\sum_{n=1}^{\infty} a_n$	$0 < a_n \le b_n$ and $\sum_{n=1}^{\infty} b_n$ converges $n = 1$	$0 < b_n \le a_n$ and $\sum_{n=1}^{\infty} b_n$ diverges $n = 1$	Either show your series is less than a convergent series or greater than a divergent series.
Limit Comparison $(a_n, b_n > 0)$	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$ $\operatorname{and} \sum_{n=1}^{\infty} b_n \text{ converges}$	$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$ and $\sum_{n=1}^{\infty} b_n \text{ diverges}$	If you know your series is convergent then compare your series to a convergent series and vice versa.