\qquad

Volumes rotated about other lines

1) Set up and use your calculator to solve the following volumes for the shaded region above.
a) volume about x-axis
b) volume about y-axis
c) vol.about line $x=4$
d) vol.about line $y=-5$
e) vol.about line $x=-3$
f) vol.about line $y=9$

2) Set up and use your calculator to solve the following volumes for the shaded region above.
a) volume about x-axis
b) volume about y-axis
c) vol.about line $x=10$
d) vol.about line $y=-1$
e) vol.about line $x=-5$
f) vol.about line $y=20$
3) Set up and use your calculator to solve the following volumes for the shaded region above.
a) vol.about line $y=-7$
b) vol.about line $y=15$

c) vol.about line $x=9$
d) vol.about line $x=-8$
4) Let R be the region in the first quadrant under the graph of $y=\sqrt{x-1}$ for $1 \leq x \leq 5$. Find the volume of the solid whose base is the region R and whose cross sections cut by planes perpendicular to the x-axis (vertical cross sections) are :

a) squares
b) equilateral triangles
c) semicircles
d) rectangle (height $=12-x$)
e) regular hexagon

Find the volume of the solid whose base is the region R and whose cross sections cut by planes perpendicular to the y-axis (horizontal cross sections) are :
f) squares
g) equilateral triangles
h) semicircles
5) $f(x)=9-x^{2} \quad g(x)=3-x$

(SET UP AND USE YOUR CALCULATOR)

Find the volume of the solid whose base is the region between $f(x)$ and $g(x)$ and whose cross sections cut by planes perpendicular to the x-axis are:
a) squares
b) equilateral triangles
c) semicircles d) rectangle (height $=10 \cdot$ base)

