\qquad Per. \qquad
Let $f(x)=\sqrt{9-x}$ and $g(x)=\frac{2 x}{5}$

1) Find Area of Region R
2) Find Area of Region S

3) Find volume of solid formed by revolving Region R about:
a) x-axis
b) y-axis
c) $y=20$
d) $x=-7$
e) $y=-6$
f) $x=15$
4) Find the volume of the solid whose base is the region R and whose cross sections cut by planes perpendicular to the x-axis are:
a) squares
b) rectangle $($ height $=x+4)$
c) equilateral triangles
5) Find the volume of the solid whose base is the region S and whose cross sections cut by planes perpendicular to the y-axis are:
a) semicircles
b) rectangle $($ height $=12 \cdot$ base $)$
6) Given the enclosed region R between $f(x)=\sin x$ and $g(x)=e^{-x}$, find each of the following:
a) Volume rotated about $y=10$

b) Volume rotated about $x=-4$
c) Volume of the solid whose base is the region R
d) Volume rotated about $y=-20$ whose vertical cross sections are equilateral triangles.
7) Given the enclosed region R between $f(x)=\sqrt[3]{x}$ and the x-axis, find each of the following:
a) Area of enclosed region (vertical cross sections)
b) Area of enclosed region (horizontal cross sections)

c) Volume of the solid whose base is the region R whose vertical cross sections are squares
d) Volume of the solid whose base is the region R whose horizontal cross sections are semicircles.
$e)$ The vertical line $x=k$ divides R into two regions with equal area. Find the value of k.
