\qquad
Note all relevant properties of f and sketch the graph (Label the maximum, minimum and inflection points)

1) $f(x)=6 x^{2}-x^{4}$
$\underline{x-\text { int }} \underline{y-\text { int }} \underline{\text { v.asym. }} \underline{\text { h.asym. rel.max. }} \underline{\text { rel.min. }}$ inc. dec. $\underline{\text { inf.pts. conc.up }}$ conc.down

$\underline{\text { Sketch each graph (Label the maximum, minimum and inflection points) }}$
2) $x-$ int
$x=-5,0,5$
rel.max. rel.min.
$(4,5)$

$$
(-4,-5)
$$

inf.pts.
$(-2,-2)$

$$
(-\infty,-2)
$$

$(0,0)$
conc.up

$$
(0,2)
$$

$(2,2)$

dec.

$$
(-4,4)
$$

3) If $f(x)=2 x^{3}-5 x^{2}+8$, and $x_{1}=2$. Use Newton's Method to find the third approximation x_{3}.
4) A rectangle is bounded by the x-axis and the equation $y=\sqrt{200-x^{2}}$.
a) What length and width should the region be so that its area is a maximum?
b) What is the area? \qquad

5) A farmer plans to fence two rectangular pastures adjacent to a river. The farmer needs an enclosure that has an area of $800 \mathrm{ft}^{2}$. What dimensions should be used so that the farmer uses the least amount of fence? \qquad How much fence is needed? \qquad
River

6) A crate open at the top has vertical sides, a square bottom, and a surface area of $192 \mathrm{~m}^{2}$.
a) Find the dimensions that give the crate maximum volume.
b) What is the maximum volume? \qquad

