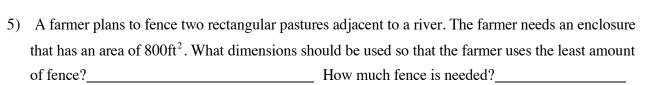
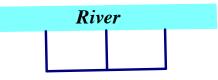

Calculus CH.3 Review #2 Name : _____

Per:____

Note all relevant properties of f and sketch the graph (Label the maximum, minimum and inflection points)

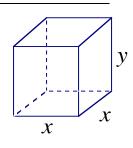

1) $f(x) = 6x^2 - x^4$										
$\underline{x - \text{int}}$	y - int	v.asym.	h.asym.	rel.max.	rel.min.	inc.	dec.	inf .pts.	conc.up	conc.down



Sketch each graph	h $(Label the maximum)$	n, minimum		5			
2) <u>x – int</u>	y - int	v.asym.	h.asym.		4		
x = -5, 0, 5	(0, 0)	none	none		3		
					2		
rel.max.	rel.min.	inc.	dec.		1		
(4,5)	(-4,-5)	(-4, 4)	$(-\infty, -4)$	-5 -4 -3	-2 -1 0	123	4 5
			(4,∞)		-1		
inf .pts.	conc.up		conc.down		-2		
(-2,-2)	$(-\infty, -2)$		(-2, 0)				
(0,0)	(0,2)		(2,∞)		-5		
(2, 2)							

3) If $f(x) = 2x^3 - 5x^2 + 8$, and $x_1 = 2$. Use Newton's Method to find the third approximation x_3 .

- 4) A rectangle is bounded by the *x*-axis and the equation $y = \sqrt{200 x^2}$.
 - *a*) What length and width should the region be so that its area is a maximum?
 - *b*) What is the area?



х

x

- 6) A crate open at the top has vertical sides, a square bottom, and a surface area of 192 m^2 .
 - *a*) Find the dimensions that give the crate maximum volume.
 - *b*) What is the maximum volume?

