Find the extreme values of f on the given interval. Determine at which numbers in the interval they occur.

1) $f(x)=3 x^{3}-9 x+4 ;[-2,3]$

Abs.max.value Abs.min.value Abs.max.occurs at Abs.min.occurs at
3) $f(x)=4 x^{5}-5 x^{4}$
rel.max.
rel.min.
inc.
dec.
inf .pts.
conc.up
conc.down
5) From $[0,8]$ tell me about the function. (Use graph to the right)

List the x-coordinates for each : Find each :

Inflection points \qquad
Relative maximum \qquad
Relative minimum \qquad
Hard points \qquad
On which interval(s) is the graph:
Abs. max. value \qquad
4) $g(x)=\frac{2 x}{\sqrt{x-10}}$
rel.max.
rel.min.
inc.
dec.

Abs. min. value \qquad
Abs. max. value occurs at \qquad
Abs. min. value occurs at \qquad

increasing/concave up \qquad
increasing/concave down \qquad
decreasing/concave up \qquad
decreasing/concave down \qquad
6) $f^{\prime \prime}(x)=(x-2)^{2}(2 x+7)$

Find the inflection points and concavity.
$\underline{\text { inf. pt. }} \quad \underline{\text { conc.up }} \quad$ conc.down
7) $f^{\prime}(x)=\frac{x^{2}(2 x+12)}{x-9}$ Find the relative extreme values and when the graph increases and decreases.
rel.max. $\underline{\text { rel.min. } \underline{\text { inc. }} \text {. }}$

$$
x=\quad x=
$$

8) $f(x)=\frac{8 x^{2}}{x^{2}+1}$
$\underline{x \text {-int }} \quad \underline{y \text {-int }} \quad \underline{\text { v.asym. }} \quad \underline{\text { h.asym. }} \quad \underline{\text { rel.max. }}$ rel.min. inc. dec. \quad inf.pts. \quad conc.up \quad conc.down

9) A rectangle is bounded by the x-axis and the equation $y=\sqrt{72-x^{2}}$. What length and width should the rectangle be so that its area is a maximum? What is the area?
10) Given $f(x)=7 x^{2}-2 x$, find all numbers c in the interval $(1,5)$ where the Mean Value Theorem applies.
11) Given $f(x)=x^{2}-80$, and $x_{1}=10$. Use Newton's Method to find the third approximation x_{3}.
12) If $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)<0$ then
13) Draw a graph that is decreasing/concave up the graph is \qquad
