\qquad
Find the extreme values of \boldsymbol{f} on the given interval. Determine at which numbers in the interval they occur.

1) $\quad f(x)=3 x^{3}-9 x+4 ;[-2,3]$

Abs.max.value

Abs.min.occurs at
3) Find the relative max. and min. and the intervals on which the given function is increasing and those on which it is decreasing. $\quad f(x)=x(x-2)^{2}$ rel.max.
2)
$f(x)=x^{2 / 5}+3 ;[-32,1]$
Abs.min.value

Abs.max.occurs at
4) Find any inflection point and the intervals on which the function is concave upward and those on which it is concave downward.

$$
g(x)=x^{4}-4 x^{3}+2 x+1
$$

inf. pt.
rel.min.
conc.up
inc.
conc.down
dec.
5) From $[0,5]$ tell me about the function. (Use graph to the right)

List the \boldsymbol{x}-coordinates for each: Find each :

Inflection points \qquad
Relative maximum \qquad
Relative minimum \qquad
Hard points \qquad
On which interval(s) is the graph:

increasing/concave up \qquad
increasing/concave down \qquad
decreasing/concave up \qquad
decreasing/concave down \qquad
6) Given $f(x)=\frac{10}{x}$, find all numbers c in the interval $(1,5)$ where the Mean Value Theorem applies.
7) $f^{\prime \prime}(x)=(x-2)^{2}(2 x+7)$ Find where inflection point(s) occur(s) and concavity. $\underline{\text { inf. pt. conc.up } \quad \underline{\text { conc.down }} \text { }}$
8) $f^{\prime}(x)=x-\frac{5}{x}$ Find where the rel. extreme values occur and when the graph increases and decreases. $\underline{\text { rel.max. rel.min. }}$ inc.
$x=\quad x=$
9) The average cost of our product is given by $\bar{C}=10 x+\frac{400,000}{x}$.
a) How many of our product should we make to minimize the average cost? \qquad
b) What is the average cost per unit? \qquad

Tell me what symbols represent

10) $f^{\prime}(x)<0$ and $f^{\prime \prime}(x)>0$ \qquad
11) $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)<0$ \qquad
12) $f^{\prime}(x)<0$ and $f^{\prime \prime}(x)<0$ \qquad
13) $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)>0$ \qquad
14) Draw each graph
dec./conc.down dec./conc. up
inc./conc. up inc./conc. down
15) If $x=10$ is a critical point and $f^{\prime \prime}(x)=\frac{12-x}{x+3}$, show whether $x=10$ is a relative max. or min.
