Per:

Find the extreme values of f on the given interval. Determine at which numbers in the interval they occur.

2)

Abs.min.value

Abs.max.occurs at

1)
$$f(x) = 3x^3 - 9x + 4$$
; [-2, 3]

Abs.max.value

Abs.min.occurs at

3) Find the relative max. and min. and the intervals on which the given function is increasing and those

on which it is decreasing. $f(x) = x(x-2)^2$ rel.max. 4) Find any inflection point and the intervals on which the function is concave upward and those on which it is concave downward.

$$g(x) = x^4 - 4x^3 + 2x + 1$$

 $f(x) = x^{2/5} + 3; [-32, 1]$

inf. pt.

conc.up

conc.down

5) From [0,5] tell me about the function. (Use graph to the right) List the *x*-coordinates for each : Find each :

Inflection points	Abs. max. value
Relative maximum	Abs. min. value
Relative minimum	Abs. max. value occurs at
Hard points	Abs. min. value occurs at
On which interval(s) is the graph:	
increasing/concave up	

increasing/concave up_____

increasing/concave down_____

decreasing/concave up_____

decreasing/concave down_____

6) Given $f(x) = \frac{10}{x}$, find all numbers c in the interval (1,5) where the Mean Value Theorem applies.

rel.min.

inc.

dec.

7)	$f''(x) = (x-2)^2(2x+7)$ Find where inflection point(s) occur(s) and concavity.			8)	$f'(x) = x - \frac{2}{2}$	$\frac{5}{x}$ Find where the	e rel. extreme	values
					occur and when the graph increases and decreases.			
	inf. pt.	conc.up	<u>conc.down</u>		rel.max.	rel.min.	inc.	dec.
	<i>x</i> =				x =	<i>x</i> =		

9) The average cost of our product is given by $\overline{C} = 10x + \frac{400,000}{r}$.

- *a*) How many of our product should we make to minimize the average cost?
- b) What is the average cost per unit?

Tell me what symbols represent

10)	f'(x) < 0 and f''(x) > 0
11)	f'(x) > 0 and $f''(x) < 0$
12)	f'(x) < 0 and $f''(x) < 0$
13)	f'(x) > 0 and $f''(x) > 0$

14) **Draw each graph**

dec./conc. down dec./conc. up

inc./conc.up <u>inc./conc.down</u>

15) If x = 10 is a critical point and $f''(x) = \frac{12 - x}{x + 3}$, show whether x = 10 is a relative max. or min.