CH.2 Related Rates WS

1) Find $\frac{dx}{dt}$ given x = 5 and $\frac{dy}{dt} = 7$ for the equation $3x^2 - 5y^3 = 35$.

$$3(5)^{2} - 5y^{3} = 35 \qquad y = 2 \qquad 6x\frac{dx}{dt} - 15y^{2}\frac{dy}{dt} = 0 \qquad 6(5)\frac{dx}{dt} - 15(2)^{2}(7) = 0 \qquad \frac{dx}{dt} = 14$$

- The radius of a circle is increasing at the rate of 4 feet per minute. 2)
- Find the rate at which the area $(A = \pi r^2)$ is increasing when the radius is 12 feet. $\frac{dA}{dt} = 96\pi \frac{ft^2}{min}$. a)

Name : _____

Per.

Find the rate at which the circumference $(C = 2\pi r)$ is increasing at the same time. $\frac{dC}{dt} = 8\pi \frac{\text{ft}}{\text{min.}}$ *b*)

- a) $A = \pi r^2$ $\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$ $\frac{dA}{dt} = 2\pi (12)(4)$ $\frac{dA}{dt} = 96\pi \frac{\text{ft}^2}{\text{min.}}$ b) $C = 2\pi r$ $\frac{dC}{dt} = 2\pi \frac{dr}{dt}$ $\frac{dC}{dt} = 2\pi (4)$ $\frac{dC}{dt} = 8\pi \frac{\text{ft}}{\text{min.}}$
- 3) A spherical balloon $\left(V = \frac{4}{3}\pi r^3\right)$ is inflated at the rate of 11 cubic feet per minute.

How fast is the radius of the balloon changing at the instant the radius is 5 feet? $\frac{dr}{dt} = \frac{11}{100\pi} \frac{\text{ft}}{\text{min}}$. a) How fast is the surface area $(A = 4\pi r^2)$ of the balloon changing at the same time? $\frac{dA}{dt} = \frac{22}{5} \frac{\text{ft}^2}{\text{min.}}$ *b*) $V = \frac{4}{\pi}r^3$ $\frac{dV}{dr} = 4\pi r^2 \frac{dr}{dr}$ $11 = 4\pi (5)^2 \frac{dr}{dr}$ $\frac{dr}{dr} = \frac{11}{100}$ ft/m a

The height of a cylinder with a radius of 4 ft. is increasing at a rate of 2 feet per minute. 4) Find the rate of change of the volume of the cylinder when the height is 6 feet. $(V = \pi r^2 h)$

$$V = \pi r^2 h \qquad V = 16\pi h \qquad \frac{dV}{dt} = 16\pi \frac{dh}{dt} \qquad \frac{dV}{dt} = 16\pi (2) \qquad \frac{dV}{dt} = 32\pi \frac{\text{ft}^3}{\text{min.}}$$

5) A conical tank is 20 feet across the top and 15 feet deep. If water is flowing into the tank at the rate of 9 cubic feet per minute, $\left(V = \frac{1}{3}\pi r^2 h\right)$

a) find the rate of change of the depth of the water the instant that it is 2 feet deep. $\frac{dh}{dt} = \frac{81}{16\pi} \frac{\text{ft}}{\text{min.}}$ b) find the rate of change of the surface of the water at the same time. $\frac{dA}{dt} = 9 \frac{\text{ft}^2}{\text{min.}}$

a) $\frac{r}{h} = \frac{10}{15}$ $r = \frac{2}{3}h$ $V = \frac{1}{3}\pi \left(\frac{2}{3}h\right)^2 h$ $V = \frac{4}{27}\pi h^3$ $\frac{dV}{dt} = \frac{4}{9}\pi h^2 \frac{dh}{dt}$ $9 = \frac{4}{9}\pi (2)^2 \frac{dh}{dt}$ $\frac{dh}{dt} = \frac{81}{16\pi} \frac{\text{ft}}{\text{min.}}$ b) $A = \pi r^2$ $A = \pi \left(\frac{2}{3}h\right)^2$ $A = \frac{4}{9}\pi h^2$ $\frac{dA}{dt} = \frac{8}{9}\pi h \frac{dh}{dt}$ $\frac{dA}{dt} = \frac{8}{9}\pi (2)\frac{81}{16\pi}$ $\frac{dA}{dt} = 9 \frac{\text{ft}^2}{\text{min.}}$

6) A man standing on a 100 ft. cliff watches a boat heading away from the cliff. The boat is travelling at a rate of 88 ft/s.

a) How fast is the distance *k* between the boat and the man changing when the boat is 70 ft. from the cliff? 50.465 ft/s.

b) How fast is the angle θ changing at this time? -0.591 radians/s

 $x^{2} + 10000 = k^{2} \qquad 2x\frac{dx}{dt} = 2k\frac{dk}{dt} \qquad 2(70)(88) = 2(\sqrt{14900})\frac{dk}{dt}$ $\sin\theta = \frac{100}{k} \qquad \cos\theta\frac{d\theta}{dt} = \frac{-100}{k^{2}}\frac{dk}{dt} \qquad \frac{70}{\sqrt{14900}}\frac{d\theta}{dt} = \frac{-100}{14900}\left(\frac{6160}{\sqrt{14900}}\right)$

7) A plane is travelling toward an observer at 300 mph. The plane is flying 3 miles above the ground.

a) How fast is the distance m between the plane and the man changing when the plane is 5 miles

from the man (m = 5)? $\frac{dx}{dt} = -240$ mph

