CH. 2 Related Rates WS

Name : Per. \qquad

1) Find $\frac{d x}{d t}$ given $x=5$ and $\frac{d y}{d t}=7$ for the equation $3 x^{2}-5 y^{3}=35$.
$3(5)^{2}-5 y^{3}=35 \quad y=2 \quad 6 x \frac{d x}{d t}-15 y^{2} \frac{d y}{d t}=0 \quad 6(5) \frac{d x}{d t}-15(2)^{2}(7)=0 \quad \frac{d x}{d t}=14$
2) The radius of a circle is increasing at the rate of 4 feet per minute.
a) Find the rate at which the area $\left(A=\pi r^{2}\right)$ is increasing when the radius is 12 feet. $\frac{d A}{d t}=96 \pi \mathrm{ft}^{2} / \mathrm{min}$.
b) Find the rate at which the circumference $(C=2 \pi r)$ is increasing at the same time. $\frac{d C}{d t}=8 \pi \mathrm{ft} / \mathrm{min}$.
a) $A=\pi r^{2}$
$\frac{d A}{d t}=2 \pi r \frac{d r}{d t}$
$\frac{d A}{d t}=2 \pi(12)(4)$
$\frac{d A}{d t}=96 \pi \mathrm{ft}^{2} / \mathrm{min}$.
b) $C=2 \pi r \quad \frac{d C}{d t}=2 \pi \frac{d r}{d t}$
$\frac{d C}{d t}=2 \pi(4)$
$\frac{d C}{d t}=8 \pi \mathrm{ft} / \mathrm{min}$.
3) A spherical balloon $\left(V=\frac{4}{3} \pi r^{3}\right)$ is inflated at the rate of 11 cubic feet per minute.
a) How fast is the radius of the balloon changing at the instant the radius is 5 feet? $\frac{d r}{d t}=\frac{11}{100 \pi} \mathrm{ft} / \mathrm{min}$.
b) How fast is the surface area $\left(A=4 \pi r^{2}\right)$ of the balloon changing at the same time? $\frac{d A}{d t}=\frac{22}{5} \mathrm{ft}^{2} / \mathrm{min}$.
a) $\quad V=\frac{4}{3} \pi r^{3} \quad \frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t}$

$$
11=4 \pi(5)^{2} \frac{d r}{d t}
$$

$$
\frac{d r}{d t}=\frac{11}{100 \pi} \mathrm{ft} / \mathrm{min}
$$

b) $A=4 \pi r^{2}$
$\frac{d A}{d t}=8 \pi r \frac{d r}{d t}$
$\frac{d A}{d t}=8 \pi(5) \frac{11}{100 \pi}$
$\frac{d A}{d t}=\frac{22}{5} \mathrm{ft}^{2} / \mathrm{min}$.
4) The height of a cylinder with a radius of 4 ft . is increasing at a rate of 2 feet per minute.

Find the rate of change of the volume of the cylinder when the height is 6 feet. $\left(V=\pi r^{2} h\right)$

$$
V=\pi r^{2} h \quad V=16 \pi h \quad \frac{d V}{d t}=16 \pi \frac{d h}{d t} \quad \frac{d V}{d t}=16 \pi(2) \quad \underline{\frac{d V}{d t}}=32 \pi \mathrm{ft}^{3} / \mathrm{min} .
$$

5) A conical tank is 20 feet across the top and 15 feet deep. If water is flowing into the tank at the rate of 9 cubic feet per minute, $\left(V=\frac{1}{3} \pi r^{2} h\right)$
a) find the rate of change of the depth of the water the instant that it is 2 feet deep. $\frac{d h}{d t}=\frac{81}{16 \pi} \mathrm{ft} / \mathrm{min}$.
b) find the rate of change of the surface of the water at the same time. $\frac{d A}{d t}=9 \mathrm{ft}^{2} / \mathrm{min}$.
a) $\frac{r}{h}=\frac{10}{15} \quad r=\frac{2}{3} h \quad V=\frac{1}{3} \pi\left(\frac{2}{3} h\right)^{2} h \quad V=\frac{4}{27} \pi h^{3}$
$\frac{d V}{d t}=\frac{4}{9} \pi h^{2} \frac{d h}{d t} \quad 9=\frac{4}{9} \pi(2)^{2} \frac{d h}{d t} \quad \frac{d h}{d t}=\frac{81}{16 \pi} \mathrm{ft} / \mathrm{min}$.
b) $A=\pi r^{2} \quad A=\pi\left(\frac{2}{3} h\right)^{2} \quad A=\frac{4}{9} \pi h^{2}$
$\frac{d A}{d t}=\frac{8}{9} \pi h \frac{d h}{d t} \quad \frac{d A}{d t}=\frac{8}{9} \pi(2) \frac{81}{16 \pi} \quad \frac{d A}{d t}=9 \mathrm{ft}^{2} / \mathrm{min}$.
6) A man standing on a 100 ft . cliff watches a boat heading away from the cliff. The boat is travelling at a rate of $88 \mathrm{ft} / \mathrm{s}$.
a) How fast is the distance k between the boat and the man changing when the boat is 70 ft . from the cliff? $50.465 \mathrm{ft} / \mathrm{s}$.
b) How fast is the angle θ changing at this time? \qquad

\boldsymbol{x} $x^{2}+10000=k^{2} \quad 2 x \frac{d x}{d t}=2 k \frac{d k}{d t} \quad 2(70)(88)=2(\sqrt{14900}) \frac{d k}{d t}$ $\sin \theta=\frac{100}{k} \quad \cos \theta \frac{d \theta}{d t}=\frac{-100}{k^{2}} \frac{d k}{d t} \quad \frac{70}{\sqrt{14900}} \frac{d \theta}{d t}=\frac{-100}{14900}\left(\frac{6160}{\sqrt{14900}}\right)$
7) A plane is travelling toward an observer at 300 mph . The plane is flying 3 miles above the ground.
a) How fast is the distance m between the plane and the man changing when the plane is 5 miles from the man $(m=5) ? \quad \frac{d x}{d t}=-240 \mathrm{mph}$
b) How fast is the angle of depression θ changing at this time? $\frac{d \theta}{d t}=36$ radians $/ \mathrm{hr}$ $x^{2}+9=m^{2} \quad 2 x \frac{d x}{d t}=2 m \frac{d m}{d t} \quad 2(4)(-300)=2(5) \frac{d m}{d t}$
$\tan \theta=\frac{3}{x} \quad \sec ^{2} \theta \frac{d \theta}{d t}=\frac{-3}{x^{2}} \frac{d x}{d t} \quad\left(\frac{5}{4}\right)^{2} \frac{d \theta}{d t}=\frac{-3}{4^{2}}(-300)$

