# CH.10 WS Polar Area

## Name:

- 1) Find the area inside of  $r = 8\sin(\theta)$ .
  - a) Use polar.



2*a*) Set up the integral that would find the area of the shaded leaf of  $r = 10\cos(3\theta)$ .



b) Find the area of the shaded leaf

- 3) Given  $r = 8 + 16 \sin \theta$ , find:
  - *a*) the Area of the Inner Loop



b) the Area of the Outer Loop Outer Loop



4) Find the area of the enclosed region between  $r = 2 - 2\sin\theta$  and  $r = 5 + 4\sin\theta$ 



5) Find the area of the region R inside the graph of r = 4 and also outside the graph of  $r = 3 + 2\cos\theta$ .



6) Find the area of the shaded region enclosed by  $r = 3 - 3\cos\theta$  and r = 4.



## AP<sup>®</sup> CALCULUS BC 2014 SCORING GUIDELINES

### Question 2

The graphs of the polar curves r = 3 and  $r = 3 - 2\sin(2\theta)$  are shown in the figure above for  $0 \le \theta \le \pi$ .

- (a) Let R be the shaded region that is inside the graph of r = 3 and inside the graph of r = 3 - 2sin(2θ). Find the area of R.
- (b) For the curve  $r = 3 2\sin(2\theta)$ , find the value of  $\frac{dx}{d\theta}$  at

$$\theta = \frac{\pi}{6}$$



(c) The distance between the two curves changes for  $0 < \theta < \frac{\pi}{2}$ .

Find the rate at which the distance between the two curves is changing with respect to  $\theta$  when  $\theta = \frac{\pi}{3}$ .

(d) A particle is moving along the curve r = 3 − 2sin(2θ) so that <u>dθ</u> = 3 for all times t ≥ 0. Find the value of <u>dr</u> at θ = π/6.

### AP<sup>®</sup> CALCULUS BC 2013 SCORING GUIDELINES

#### **Question 2**

The graphs of the polar curves r = 3 and  $r = 4 - 2\sin\theta$  are shown in the figure

above. The curves intersect when  $\theta = \frac{\pi}{6}$  and  $\theta = \frac{5\pi}{6}$ .

- (a) Let S be the shaded region that is inside the graph of r = 3 and also inside the graph of  $r = 4 2\sin\theta$ . Find the area of S.
- (b) A particle moves along the polar curve  $r = 4 2\sin\theta$  so that at time t seconds,  $\theta = t^2$ . Find the time t in the interval  $1 \le t \le 2$  for which the x-coordinate of the particle's position is -1.
- (c) For the particle described in part (b), find the position vector in terms of t. Find the velocity vector at time t = 1.5.

