CH.10 WS Polar Area

1) Find the area inside of $r=8 \sin (\theta)$.
a) Use polar.
\qquad

b) Use Geometry.

2a) Set up the integral that would find the area of the shaded leaf of $r=10 \cos (3 \theta)$.
b) Find the area of the shaded leaf

3) Given $r=8+16 \sin \theta$, find:
a) the Area of the Inner Loop

$$
r=8+16 \sin \theta
$$

b) the Area of the Outer Loop

$r=8+16 \sin \theta$
4) Find the area of the enclosed region between $r=2-2 \sin \theta$ and $r=5+4 \sin \theta$

5) Find the area of the region R inside the graph of $r=4$ and also outside the graph of $r=3+2 \cos \theta$.

6) Find the area of the shaded region enclosed by $r=3-3 \cos \theta$ and $r=4$.

AP ${ }^{\oplus}$ CALCULUS BC 2014 SCORING GUIDELINES

Question 2

The graphs of the polar curves $r=3$ and $r=3-2 \sin (2 \theta)$ are shown in the figure above for $0 \leq \theta \leq \pi$.
(a) Let R be the shaded region that is inside the graph of $r=3$ and inside the graph of $r=3-2 \sin (2 \theta)$. Find the area of R.
(b) For the curve $r=3-2 \sin (2 \theta)$, find the value of $\frac{d x}{d \theta}$ at $\theta=\frac{\pi}{6}$.

(c) The distance between the two curves changes for $0<\theta<\frac{\pi}{2}$.

Find the rate at which the distance between the two curves is changing with respect to θ when $\theta=\frac{\pi}{3}$.
(d) A particle is moving along the curve $r=3-2 \sin (2 \theta)$ so that $\frac{d \theta}{d t}=3$ for all times $t \geq 0$. Find the value of $\frac{d r}{d t}$ at $\theta=\frac{\pi}{6}$.

AP ${ }^{\oplus}$ CALCULUS BC 2013 SCORING GUIDELINES

Question 2

The graphs of the polar curves $r=3$ and $r=4-2 \sin \theta$ are shown in the figure above. The curves intersect when $\theta=\frac{\pi}{6}$ and $\theta=\frac{5 \pi}{6}$.
(a) Let S be the shaded region that is inside the graph of $r=3$ and also inside the graph of $r=4-2 \sin \theta$. Find the area of S.
(b) A particle moves along the polar curve $r=4-2 \sin \theta$ so that at time t seconds, $\theta=t^{2}$. Find the time t in the interval $1 \leq t \leq 2$ for which
 the x-coordinate of the particle's position is -1 .
(c) For the particle described in part (b), find the position vector in terms of t. Find the velocity vector at time $t=1.5$.

