CH.10 WS \#1 Parametric

Name:

1) A particle moving along a curve in the plane has position $(x(t), y(t))$ at time t, where

$$
\frac{d x}{d t}=3 t^{2}-1 \quad \text { and } \quad \frac{d y}{d t}=e^{t}+7
$$

for all real values of t. At time $t=0$, the particle is at the point $(8,5)$.
a) Find the speed of the particle at time $t=2$.
b) Find the acceleration vector and the acceleration vector at time $t=2$.
c) Find the total distance traveled by the particle over the time interval $0 \leq t \leq 5$.
d) Find the position of the particle at time $t=2$.
$e)$ Find the equation of the tangent line at $t=0$.
2) A point (x, y) is moving along a curve $y=f(x)$. Given $\frac{d y}{d x}=2 t-8$ and $\frac{d y}{d t}=t^{2}+5$
a) Find the rate of change, in units per second, of the x-coordinate of the point at $t=5$.
b) What is the speed of the point at this time?
c) Find $\frac{d^{2} y}{d x^{2}}$ at $t=3$.
3) A particle moving along a curve in the $x y$-plane has position $(x(t), y(t))$ at time $t \geq 0$ with

$$
\frac{d x}{d t}=\sqrt{3 t} \quad \text { and } \quad \frac{d y}{d t}=3 \cos \left(\frac{t^{2}}{2}\right) .
$$

The particle is at position $(1,5)$ at time $t=4$.
a) Find the acceleration vector at time $t=4$.
b) Find the y-coordinate of the position of the particle at time $t=0$.
c) On the interval $0 \leq t \leq 4$, at what timedoes the speed of the particle first reach 3.5 ?
d) Find the total distance traveled by the particle over the time interval $0 \leq t \leq 4$.
e) There is a point on the curve at which the line tangent to the curve has a slope of 1 . At what time is the object at that point?

1. At time t, a particle moving in the $x y$-plane is at position $(x(t), y(t))$, where $x(t)$ and $y(t)$ are not explicitly given. For $t \geq 0, \frac{d x}{d t}=4 t+1$ and $\frac{d y}{d t}=\sin \left(t^{2}\right)$. At time $t=0, x(0)=0$ and $y(0)=-4$.
(a) Find the speed of the particle at time $t=3$, and find the acceleration vector of the particle at time $t=3$.
(b) Find the slope of the line tangent to the path of the particle at time $t=3$.
(c) Find the position of the particle at time $t=3$.
(d) Find the total distance traveled by the particle over the time interval $0 \leq t \leq 3$.

Question 2

The velocity vector of a particle moving in the plane has components given by

$$
\frac{d x}{d t}=14 \cos \left(t^{2}\right) \sin \left(e^{t}\right) \text { and } \frac{d y}{d t}=1+2 \sin \left(t^{2}\right) \text {, for } 0 \leq t \leq 1.5 .
$$

At time $t=0$, the position of the particle is $(-2,3)$.
(a) For $0<t<1.5$, find all values of t at which the line tangent to the path of the particle is vertical.
(b) Write an equation for the line tangent to the path of the particle at $t=1$.
(c) Find the speed of the particle at $t=1$.
(d) Find the acceleration vector of the particle at $t=1$.

