Formula for Arclength	Formula for Arclength
(Function notation)	or Distance travelled
y=f(x)	(Parametric)
Formula for Speed	Formula for Slope
(Parametric)	(Parametric)
Integration by Parts	Formula for Area (Polar)
What is the name of the	What is my first step in
shortcut that we use in place	this problem?
of Integration by Parts?	$\int \frac{4x^2+2}{x^2-7} dx$

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

$$L = \int_{a}^{b} \sqrt{1 + \left(f'(x)\right)^{2}} dx$$

$$\frac{dy}{dt} = \frac{dy}{dx} = slope$$

$$Speed = \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}}$$

$$A = \frac{1}{2} \cdot \int_{a}^{b} r^{2} d\theta$$

$$\int u \, dv = uv - \int v \, du$$

$$Long \text{ Division}$$
Tabular method

Which technique is used to solve this problem? $\int \frac{8}{(x-4)(x+3)} dx$	Which technique is used to solve this problem? $\int \ln x dx$
Which technique is used to solve this problem? $\int x\sqrt{x^2+3} dx$	Formula for Euler's Method
What is my first step in this problem $\frac{dy}{dx} = 4xy$ if looking for original equation?	What is L'Hopital's Rule?
When does L'Hopital's Rule apply?	What is Taylor's theorem for approximating f(x) to the nth term?

Integration by Parts	Partial Fractions
New $y = Old y + dx \cdot \frac{dy}{dx}$ dx: change in $x\frac{dy}{dx} = Derivative (slope) at the point.$	Substitution
$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$	Separate the variables
$f(x) = f(c) + \frac{f'(c)}{1!}(x-c) + \frac{f''(c)}{2!}(x-c)^{2} + \dots + \frac{f^{n}(c)}{n!}(x-c)^{n}$	If the limit is of the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$.

MacLaurin Series are centered at	The MacLaurin Series for <i>e^x</i> is
The MacLaurin Series for sin x is	The MacLaurin Series for cos x is
Formulas for Hooke's Law	Formulas for Logistical Growth
Area as a limit	$\int_{1}^{\infty} \frac{1}{x^2} dx$ is called an

Series for
$$e^x$$
: $= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + c=0$ Series for $\cos x$: $= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$ Series for $\sin x$: $= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$ $\frac{dy}{dt} = ky(1 - \frac{y}{L})$; $y = \frac{L}{1 + be^{-kt}}$; $b = \frac{L - Y_0}{Y_0}$ The force F required to compress a spring is proportional to the distance d the spring is compressed or stretched from its' original length.where L is the carrying capacity and k is the constant of proportionality $T = kd$ $W = \int_{a}^{b} kx \, dx$ $k = \text{constant of proportionality}$ Improper IntegralArea = $\lim_{n \to \infty} \sum_{i=1}^{n} f\left(a + \frac{b-a}{n}i\right) \left(\frac{b-a}{n}\right)$
height width

Tell whether this series is	Tell whether this series is
convergent or divergent and	convergent or divergent and
why?	why?
$\sum_{n=1}^{\infty} \frac{1}{n} - \frac{1}{n+1}$	$\sum_{n=1}^{\infty} \frac{(-1)^n 7^n}{5^n}$
Tell whether this series is	Tell whether this series is
convergent or divergent and	convergent or divergent and
why?	why?
$\sum_{n=1}^{\infty} \frac{(-1)^n n!}{e^n}$	$\sum_{n=1}^{\infty} \frac{(-1)^n}{n+1}$
Tell whether this series is	Tell whether this series is
convergent or divergent and	convergent or divergent and
why?	why?
$\sum_{n=2}^{\infty} \frac{n^3+2}{n^3-5}$	$\sum_{n=1}^{\infty} \frac{1}{n^{1.4}}$
Tell whether this series is convergent or divergent and why? $\sum_{n=1}^{\infty} 5\left(\frac{2}{3}\right)^n$	The MacLaurin Series for $\frac{1}{1-x}$ is

Diverges by	Converges by
Root Test	Telescoping Series
Converges by	Diverges by
Alternating Series	Ratio Test
Converges by	Diverges by
p-series	nth-term Test
Series for $\frac{1}{1-x}$: = 1+x+x^2+x^3	Converges by Geometric series