Formula for Arclength
(Function notation)

$$
y=f(x)
$$

Formula for Arclength or Distance travelled (Parametric)

Formula for Speed (Parametric)

Formula for Slope (Parametric)

Integration by Parts

What is the name of the shortcut that we use in place of Integration by Parts?

What is my first step in this problem?

$$
\int \frac{4 x^{2}+2}{x^{2}-7} d x
$$

$L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$	$L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$
$\frac{d y / d t}{d x / d t} \frac{d y}{d x}=s l o p e$	
$A=\frac{1}{2} \cdot \int_{a}^{b} r^{2} d \theta$	Speed $=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}$

Which technique is used to solve this problem?

$$
\int \frac{8}{(x-4)(x+3)} d x
$$

Which technique is used to solve this problem?

$$
\int \ln x d x
$$

Which technique is used to solve this problem?

$$
\int x \sqrt{x^{2}+3} d x
$$

What is my first step in this problem

$$
\frac{d y}{d x}=4 x y
$$

if looking for original equation?

When does
L'Hopital's Rule apply?

What is L'Hopital's Rule?

What is Taylor's theorem for approximating $f(x)$ to the nth term?

Integration by Parts

Partial Fractions

New $y=$ Old $y+d x \cdot \frac{d y}{d x}$
$d x$: change in x
$\frac{d y}{d x}=$ Derivative (slope) at the point.

Substitution

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Separate the variables

$$
\begin{aligned}
f(x)= & f(c)+\frac{f^{\prime}(c)}{1!}(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+ \\
& \ldots \ldots+\frac{f^{n}(c)}{n!}(x-c)^{n}
\end{aligned}
$$

If the limit is of the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$.

MacLaurin Series are centered at ...

The MacLaurin Series for \boldsymbol{e}^{x} is....

The MacLaurin Series for $\sin x$ is....

The MacLaurin Series for $\cos x$ is....

Formulas for Hooke's Law

Area as a limit

Formulas for Logistical Growth

Series for $e^{x}: \quad=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+$

$$
c=0
$$

Series for $\cos x:=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots$
Series for $\sin x:=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots$

The force F required to compress a spring

$$
\frac{d y}{d t}=k y\left(1-\frac{y}{L}\right) ; y=\frac{L}{1+b e^{-k t}} \quad ; \quad b=\frac{L-Y_{0}}{Y_{0}}
$$

where L is the carrying capacity and k is the constant of proportionality is proportional to the distance d the spring is compressed or stretched from its' original length.

$$
\begin{gathered}
F=k d \\
W=\int_{a}^{b} k x d x \\
k=\text { constant of proportionality }
\end{gathered}
$$

Improper Integral

Area $=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(a+\frac{b-a}{n} i\right)\left(\frac{b-a}{n}\right)$
height width $i=$ interval

Tell whether this series is convergent or divergent and

$$
\begin{gathered}
\text { why? } \\
\sum_{n=1}^{\infty} \frac{1}{n}-\frac{1}{n+1}
\end{gathered}
$$

Tell whether this series is convergent or divergent and why?

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} 7^{n}}{5^{n}}
$$

Tell whether this series is convergent or divergent and why?

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} n!}{e^{n}}
$$

Tell whether this series is convergent or divergent and why?

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n+1}
$$

Tell whether this series is convergent or divergent and

$$
\begin{gathered}
\text { why? } \\
\sum_{n=2}^{\infty} \frac{n^{3}+2}{n^{3}-5}
\end{gathered}
$$

Tell whether this series is convergent or divergent and why?

$$
\sum_{n=1}^{\infty} 5\left(\frac{2}{3}\right)^{n}
$$

Tell whether this series is convergent or divergent and

$$
\begin{aligned}
& \text { why? } \\
& \sum_{n=1}^{\infty} \frac{1}{n^{1.4}}
\end{aligned}
$$

1
$\overline{1-x}$ is

Diverges by Root Test	Converges by Telescoping Series
Converges by Alternating Series	Diverges by Ratio Test
Converges by p-series	Diverges by nth-term Test
Series for $\frac{1}{1-x}:=1+x+x^{2}+x^{3} \ldots$	Converges by Geometric series

