$$\frac{dy}{dx} = f'(x)g(x) + g'(x)f(x) \qquad \qquad \frac{dy}{dx} = \frac{f'(x)g(x) - g'(x)f(x)}{(g(x))^2}$$
$$\frac{dy}{dx} = f'(g(x)) \cdot g'(x) \qquad -\sin x$$
$$\cos x \qquad \sec^2 x$$
$$-\csc x \cot \qquad \sec x \tan x$$

Quotient Rule
$$y = \frac{f(x)}{g(x)}$$
Product Rule
 $y = f(x) \cdot g(x)$ $\frac{d}{dx} \cos x$ Chain Rule
 $y = f(g(x))$ $\frac{d}{dx} \tan x$ $\frac{d}{dx} \sin x$ $\frac{d}{dx} \sec x$ $\frac{d}{dx} \csc x$

$$-\csc^{2} x \qquad \qquad \frac{1}{f(x)} \cdot f'(x)$$

$$a^{f(x)} \cdot f'(x) \cdot \ln a \qquad \qquad \frac{dy}{dx} = f(x)^{g(x)} \left(g'(x) \ln f(x) + \frac{f'(x)}{f(x)}g(x)\right)$$

$$\frac{1}{1 + \left(f(x)\right)^{2}} \cdot f'(x) \qquad \qquad \frac{1}{\sqrt{1 - \left(f(x)\right)^{2}}} \cdot f'(x)$$

$$ax + C \qquad \qquad \frac{1}{|f(x)| \sqrt{\left(f(x)\right)^{2} - 1}} \cdot f'(x)$$

$$\frac{\frac{d}{dx}ln(f(x))}{\frac{d}{dx}cotx}$$

$$\frac{\frac{d}{dx}f(x)^{g(x)}}{\frac{d}{dx}a^{f(x)}}$$

$$\frac{\frac{d}{dx}a^{f(x)}}{\frac{d}{dx}a^{r(x)}}$$

$$\frac{\frac{d}{dx}arcsinf(x)}{\frac{d}{dx}arcsinf(x)}$$

$$\frac{\frac{d}{dx}arcsecf(x)}{\frac{\int a \, dx}{\frac{dx}{dx}arcsinf(x)}}$$

$$\operatorname{arcsin} \frac{x}{a} + C = \ln |f(x)| + C$$

$$\frac{1}{a} \operatorname{arcsec} \frac{|x|}{a} + C \qquad \frac{1}{a} \operatorname{arctan} \frac{x}{a} + C$$

$$c - \frac{f(c)}{f'(c)} \qquad \frac{1}{b-a} \cdot \int_{a}^{b} f(x) \, dx$$

$$\int_{a}^{b} |v(t)| \, dt \qquad v(t) = 0$$

derivative of position =	derivative of velocity =
A particle is moving to the right or up when	A particle is moving to the left or down when
Formula for the average velocity of a particle	Mean-Value Theorem
Growth Formula	Identity of $\sin 2x =$

$$\cos^2 x - \sin^2 x$$
 $\frac{1 - \cos 2x}{2}$ $\frac{1 + \cos 2x}{2}$ $v = \pi_{a}^{b} [(top \ function)^{2} - (bottom \ function)^{2}] dx$ $v = 2\pi_{a}^{b} x [(top \ function) - (bottom \ function)] dx$ Horizontal Tangents
Maximum, minimumConcave upInflection points

Half-Angle Identity of $\sin^2 x =$	Identity of $\cos 2x =$
Formula for Volume rotated about <i>x</i> -axis (vertical cross sections)	Half-Angle Identity of $\cos^2 x =$
What does $f'(x) = 0$ find?	Formula for Volume rotated about y-axis (vertical cross sections)
What does $f''(x) = 0$ find?	f''(x) > 0 means a graph is

Increasing	Concave down
The endpoints and any maximum or minimum points on the interval.	Decreasing
Take an integral.	Take a derivative.
Avg. acceleration = $\frac{1}{b-a} \cdot \int_{a}^{b} a(t) dt$	Avg. velocity = $\frac{1}{b-a} \cdot \int_{a}^{b} v(t) dt$

f''(x) < 0 means a graph is	f'(x) > 0 means a graph is
f'(x) < 0 means a graph is	To find an absolute maximum or minimum on an interval we must check
How do you find a rate of change?	How do you find Area/Volume?
How do you find average velocity v(t)?	How do you find average acceleration a(t)?

$$V = \int_{a}^{b} (\operatorname{top equation - bottom equation})^{2} dx$$

$$V = \frac{\sqrt{3}}{4} \cdot \int_{a}^{b} (\operatorname{top equation - bottom equation})^{2} dx$$

$$V = \frac{\pi}{8} \cdot \int_{a}^{b} (\operatorname{top equation - bottom equation})^{2} dx$$

$$V = 10 \cdot \int_{a}^{b} (\operatorname{top equation - bottom equation})^{2} dx$$

$$V = \frac{1}{2} \cdot \int_{a}^{b} (\operatorname{top equation - bottom equation})^{2} dx$$

$$V = \frac{1}{4} \cdot \int_{a}^{b} (\operatorname{top equation - bottom equation})^{2} dx$$

$$V = 2 \cdot \tan \frac{3\pi}{8} \cdot \int_{a}^{b} (\operatorname{top equation - bottom equation})^{2} dx$$

$$V = \frac{3\sqrt{3}}{2} \cdot \int_{a}^{b} (\operatorname{top equation - bottom equation})^{2} dx$$

Find Volume if known	Find Volume if known
cross section is an	cross section is a
Equilateral triangle.	Square.
Find Volume if known cross section is a Rectangle whose height is 10 times its' base .	Find Volume if known cross section is a Semicircle.
Find Volume if known	Find Volume if known
cross section is a	cross section is a
45-45-90 triangle whose	45-45-90 triangle whose
hypotenuse is the base .	leg is the base .
Find Volume if known	Find Volume if known
cross section is a	cross section is a
Regular Hexagon .	Regular Octagon .