$\frac{d y}{d x}=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)$	$\frac{d y}{d x}=\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{(g(x))^{2}}$
$\frac{d y}{d x}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$	
$\cos x$	

Quotient Rule $y=\frac{f(x)}{g(x)}$	Product Rule $y=f(x) \cdot g(x)$
$\frac{d}{d x} \cos x$	Chain Rule $y=f(g(x))$
$\frac{d}{d x} \tan x$	$\frac{d}{d x} \sin x$
$\frac{d}{d x} \sec x$	$\frac{d}{d x} \csc x$

$-\csc ^{2} x$	$\frac{1}{f(x)} \cdot f^{\prime}(x)$
$a^{f(x)} \cdot f^{\prime}(x) \cdot \ln a$	$\frac{d y}{d x}=f(x)^{g(x)}\left(g^{\prime}(x) \ln f(x)+\frac{f^{\prime}(x)}{f(x)} g(x)\right)$
$\frac{1}{1+(f(x))^{2}} \cdot f^{\prime}(x)$	$\frac{1}{\sqrt{1-(f(x))^{2}}} \cdot f^{\prime}(x)$
$a x+C$	$\frac{1}{\|f(x)\| \sqrt{(f(x))^{2}-1}} \cdot f^{\prime}(x)$

$\frac{d}{d x} \ln (f(x))$	$\frac{d}{d x} \cot x$
$\frac{d}{d x} f(x)^{g(x)}$	$\frac{d}{d x} a^{f(x)}$ where " a " is a constant
$\frac{d}{d x} \arcsin f(x)$	$\frac{d}{d x} \arctan f(x)$
$\frac{d}{d x} \operatorname{arcsec} f(x)$	$\int a d x$ where " a " is a constant

$\frac{x^{a+1}}{a+1}+C$	$\frac{a^{x}}{1 \cdot \ln a}+C$
$=\sin x+C$	$=-\cos x+C$
$=\ln \|\sin x\|+C$	$=-\ln \|\cos x\|+C$
$=\ln \|\sec x+\tan x\|+C$	

$\int a^{x} d x$ where " a " is a constant	$\int x^{a} d x=$ where " a " is a constant
$\int \sin x d x=$	$\int \cos x d x=$
$\int \tan x d x=$	$\int \cot x d x=$
$\int \csc x d x=$	$\int \sec x d x=$

$\arcsin \frac{x}{a}+C$	$=\ln \|f(x)\|+C$
$\frac{1}{a} \operatorname{arcsec} \frac{\|x\|}{a}+C$	$\frac{1}{a} \arctan \frac{x}{a}+C$
$c-\frac{f(c)}{f^{\prime}(c)}$	$\frac{1}{b-a} \cdot \int_{a}^{b} f(x) d x$
$\int_{a}^{b}\|v(t)\| d t$	$v(t)=0$

$\int \frac{f^{\prime}(x)}{f(x)} d x=$	$\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=$ where " a " is a constant
$\int \frac{1}{a^{2}+x^{2}} d x=$ where " a " is a constant	$\int \frac{1}{x \sqrt{x^{2}-a^{2}}} d x=$ where " a " is a constant
Average Value	Newton's Method
A particle is at rest when.....	Formula for distance traveled is ...

acceleration	
$v(t)<0$	velocity
$f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$	$\frac{1}{b-a} \cdot{ }_{a} v^{\prime} v(t) d t$
$2 \sin x \cos x$	$y=C e^{k t}$

derivative of position $=\ldots .$.	derivative of velocity $=\ldots .$.
A particle is moving to the right or up when	A particle is moving to the left or down when \qquad
Formula for the average velocity of a particle......	Mean-Value Theorem
Growth Formula	Identity of $\sin 2 x=$

$\cos ^{2} x-\sin ^{2} x$	$\frac{1-\cos 2 x}{2}$
$\frac{1+\cos 2 x}{2}$	$V=\pi \int_{\mathrm{a}}^{b}\left[(\text { top function })^{2}-(\text { bottom function })^{2}\right] d x$
$V=2 \pi \int_{\mathrm{a}}^{b} x[(\text { top function })-(\text { bottom function })] d x$	Horizontal Tangents Maximum, minimum
Concave up	Inflection points

Half-Angle Identity of $\sin ^{2} x=$

Identity of $\cos 2 x=$

Formula for Volume rotated about x-axis (vertical cross sections)

Half-Angle Identity of
$\cos ^{2} x=$

What does $f^{\prime}(x)=0$ find?

What does $f^{\prime \prime}(x)=0$ find?
$f^{\prime \prime}(x)>0$ means a graph is...

Increasing

Concave down

The endpoints and any maximum or minimum

Decreasing

 points on the interval.Take an integral.
Take a derivative.

Avg. acceleration $=\frac{1}{b-a} \cdot \int_{a}^{b} a(t) d t \quad$ Avg. velocity $=\frac{1}{b-a} \cdot \int_{a}^{b} v(t) d t$
$f^{\prime \prime}(x)<0$ means a graph is... $f^{\prime}(x)>0$ means a graph is...

To find an absolute $f^{\prime}(x)<0$ means a graph is...

How do you find a rate of change?

How do you find Area/Volume?

How do you find average velocity $v(t)$?

How do you find average acceleration $\mathbf{a}(\mathrm{t})$?

$V=\int_{a}^{b}(\text { top equation - bottom equation })^{2} d x$	$V=\frac{\sqrt{3}}{4} \cdot \int_{a}^{b}(\text { top equation - bottom equation })^{2} d x$
$V=\frac{\pi}{8} \cdot \int_{a}^{b}(\text { top equation - bottom equation })^{2} d x$	$V=10 \cdot \int_{a}^{b}(\text { top equation - bottom equation })^{2} d x$
$V=\frac{1}{2} \cdot \int_{a}^{b}(\text { top equation - bottom equation })^{2} d x$	$V=\frac{1}{4} \cdot \int_{a}^{b}(\text { top equation - bottom equation })^{2} d x$
$V=2 \cdot \tan \frac{3 \pi}{8} \cdot \int_{a}^{b}(\text { top eq.- bottom eq. })^{2} d x$	$V=\frac{3 \sqrt{3}}{2} \cdot \int_{a}^{b}(\text { top equation - bottom equation })^{2} d x$

Find Volume if known cross section is an Equilateral triangle.

Find Volume if known cross section is a Square.

Find Volume if known cross section is a
Rectangle whose height is $\mathbf{1 0}$ times its' base .

Find Volume if known cross section is a Semicircle.

Find Volume if known cross section is a 45-45-90 triangle whose hypotenuse is the base .

Find Volume if known cross section is a Regular Hexagon .

Find Volume if known cross section is a
45-45-90 triangle whose leg is the base .

Find Volume if known cross section is a Regular Octagon.

