2005

- 6. Let f be a function with derivatives of all orders and for which f(2) = 7. When n is odd, the nth derivative of f at x = 2 is 0. When n is even and $n \ge 2$, the nth derivative of f at x = 2 is given by $f^{(n)}(2) = \frac{(n-1)!}{3^n}$.
 - (a) Write the sixth-degree Taylor polynomial for f about x = 2.
 - (b) In the Taylor series for f about x = 2, what is the coefficient of $(x 2)^{2n}$ for $n \ge 1$?
 - (c) Find the interval of convergence of the Taylor series for f about x = 2. Show the work that leads to your answer.

2006 AP° CALCULUS BC FREE-RESPONSE QUESTIONS

- 5. Consider the differential equation $\frac{dy}{dx} = 5x^2 \frac{6}{y-2}$ for $y \ne 2$. Let y = f(x) be the particular solution to this differential equation with the initial condition f(-1) = -4.
 - (a) Evaluate $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at (-1, -4).
 - (b) Is it possible for the x-axis to be tangent to the graph of f at some point? Explain why or why not.
 - (c) Find the second-degree Taylor polynomial for f about x = −1.
 - (d) Use Euler's method, starting at x = −1 with two steps of equal size, to approximate f(0). Show the work that leads to your answer.

6. The function f is defined by the power series

$$f(x) = -\frac{x}{2} + \frac{2x^2}{3} - \frac{3x^3}{4} + \dots + \frac{(-1)^n nx^n}{n+1} + \dots$$

for all real numbers x for which the series converges. The function g is defined by the power series

$$g(x) - 1 - \frac{x}{2!} + \frac{x^2}{4!} - \frac{x^3}{6!} + \dots + \frac{(-1)^n x^n}{(2n)!} + \dots$$

for all real numbers x for which the series converges.

- (a) Find the interval of convergence of the power series for f. Justify your answer.
- (b) The graph of y = f(x) − g(x) passes through the point (0, −1). Find y'(0) and y"(0). Determine whether y has a relative minimum, a relative maximum, or neither at x − 0. Give a reason for your answer.

AP® CALCULUS BC 2007 SCORING GUIDELINES

Question 6

Let f be the function given by $f(x) = e^{-x^2}$.

- (a) Write the first four nonzero terms and the general term of the Taylor series for f about x = 0.
- (b) Use your answer to part (a) to find $\lim_{x\to 0} \frac{1-x^2-f(x)}{x^4}$.
- (c) Write the first four nonzero terms of the Taylor series for $\int_0^x e^{-t^2} dt$ about x = 0. Use the first two terms of your answer to estimate $\int_0^{1/2} e^{-t^2} dt$.
- (d) Explain why the estimate found in part (c) differs from the actual value of $\int_0^{1/2} e^{-t^2} dt$ by less than $\frac{1}{200}$.

2008 AP® CALCULUS BC FREE-RESPONSE QUESTIONS

х	h(x)	k'(x)	h"(x)	h'"(x)	$h^{(4)}(x)$
1	11	30	42	99	18
2	80	128	488 3	448 3	584 9
3	317	753 2	1383 4	3483 16	1125 16

- Let h be a function having derivatives of all orders for x > 0. Selected values of h and its first four derivatives are indicated in the table above. The function h and these four derivatives are increasing on the interval 1 ≤ x ≤ 3.
 - (a) Write the first-degree Taylor polynomial for h about x = 2 and use it to approximate h(1.9). Is this approximation greater than or less than h(1.9)? Explain your reasoning.
 - (b) Write the third-degree Taylor polynomial for h about x = 2 and use it to approximate h(1.9).
 - (c) Use the Lagrange error bound to show that the third-degree Taylor polynomial for h about x = 2 approximates h(1.9) with error less than 3 × 10⁻⁴.

- 6. The Maclaurin series for e^x is $e^x 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots + \frac{x^n}{n!} + \dots$. The continuous function f is defined by $f(x) \frac{e^{(x-1)^2} 1}{(x-1)^2}$ for $x \ne 1$ and f(1) 1. The function f has derivatives of all orders at x 1.
 - (a) Write the first four nonzero terms and the general term of the Taylor series for $e^{(x-1)^2}$ about x-1.
 - (b) Use the Taylor series found in part (a) to write the first four nonzero terms and the general term of the Taylor series for f about x − 1.
 - (c) Use the ratio test to find the interval of convergence for the Taylor series found in part (b).
 - (d) Use the Taylor series for f about x-1 to determine whether the graph of f has any points of inflection.

$$f(x) = \begin{cases} \frac{\cos x - 1}{x^2} & \text{for } x \neq 0 \\ -\frac{1}{2} & \text{for } x = 0 \end{cases}$$

- 6. The function f, defined above, has derivatives of all orders. Let g be the function defined by $g(x) = 1 + \int_0^x f(t) dt$.
 - (a) Write the first three nonzero terms and the general term of the Taylor series for $\cos x$ about x = 0. Use this series to write the first three nonzero terms and the general term of the Taylor series for f about x = 0.
 - (b) Use the Taylor series for f about x = 0 found in part (a) to determine whether f has a relative maximum, relative minimum, or neither at x = 0. Give a reason for your answer.
 - (c) Write the fifth-degree Taylor polynomial for g about x = 0.
 - (d) The Taylor series for g about x = 0, evaluated at x = 1, is an alternating series with individual terms that decrease in absolute value to 0. Use the third-degree Taylor polynomial for g about x = 0 to estimate the value of g(1). Explain why this estimate differs from the actual value of g(1) by less than $\frac{1}{6!}$.